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The extent and duration of immunity following infection with severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2) are critical outstanding questions about the epidemiology of this novel virus, and studies are
needed to evaluate the effects of serostatus on reinfection. Understanding the potential sources of bias and
methods for alleviating biases in these studies is important for informing their design and analysis. Confounding
by individual-level risk factors in observational studies like these is relatively well appreciated. Here, we show how
geographic structure and the underlying, natural dynamics of epidemics can also induce noncausal associations.
We take the approach of simulating serological studies in the context of an uncontrolled or controlled epidemic,
under different assumptions about whether prior infection does or does not protect an individual against
subsequent infection, and using various designs and analytical approaches to analyze the simulated data. We find
that in studies assessing whether seropositivity confers protection against future infection, comparing seropositive
persons with seronegative persons with similar time-dependent patterns of exposure to infection by stratifying or
matching on geographic location and time of enrollment is essential in order to prevent bias.

bias (epidemiology); coronavirus disease 2019; epidemic dynamics; epidemics; immunity; SARS-CoV-2;
seroprotection

Abbreviation: SARS-CoV-2, severe acute respiratory syndrome coronavirus 2.

The extent and duration of immunity following infec-
tion with severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) are critical outstanding questions about the
epidemiology of this novel virus (1). Serological tests, which
detect the presence of antibodies, are becoming more widely
available (2). However, the presence of antibodies, or sero-
conversion, does not guarantee immunity to reinfection, and
experimental data with other coronaviruses raise concerns
that antibodies could in some circumstances enhance future
infections (3). Studies are needed to evaluate the short-
and long-term effects of seropositivity. Understanding the
potential sources of bias and methods for alleviating biases
in these studies is important for informing their design and
analysis.

Serological studies may be useful for a variety of rea-
sons, including 1) assessment of the cumulative incidence
of infection within a community, 2) identification of risk
factors for transmission, and 3) determination of the extent

of clustering of infections within a community (4, 5). While
these types of studies are often cross-sectional and use
seroconversion as the endpoint, here we consider longi-
tudinal studies where seroconversion is the exposure of
interest.

These seroprotection studies may be conducted by start-
ing with a cross-sectional serological survey, where the
tested individuals are then followed to identify future infec-
tions. To obtain a sufficient cohort of seropositive persons,
enrollment may need to occur on multiple days. Follow-
up for identification of future infections depends on regular
monitoring of symptoms and/or polymerase chain reaction
testing for the virus. Consistent case definitions across the
study and tracking of individual enrollment and seroconver-
sion dates are key to reducing the risk of misclassification.
If cases are defined on the basis of symptom onset, the study
outcome will be the association between seropositivity and
progression to symptoms. If cases are based on virological
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testing, the study outcome will be the association between
seropositivity and infection. These endpoints have different
public health implications, and the choice should depend on
the scientific question of interest (6).

A crude analysis of this longitudinal study would compare
time from enrollment to infection between persons who
are seropositive at enrollment and those who are seronega-
tive at enrollment. However, because seroprotection studies
are observational, since the exposure (i.e., seropositivity)
is not assigned at random, investigators must control for
potential confounders to obtain unbiased estimates. Studies
of seropositivity and its effect on future infection are par-
ticularly prone to confounding, because factors that affect
someone’s risk of infection and therefore their serostatus
prior to enrollment (the exposure) are likely to be simi-
lar to factors that affect someone’s risk of infection after
enrollment (the outcome). For example, persons in high-risk
occupations (e.g., health-care workers) are more likely to
become seropositive and more likely to be exposed again
once they are seropositive.

Confounding by individual-level risk factors is relatively
well appreciated. Less obvious perhaps is that geographic
structure (7) or the underlying, natural dynamics of epi-
demics (8, 9) can induce noncausal associations between an
exposure and an outcome. For example, even when seropos-
itivity confers no protection against future infection, if the
overall size of an epidemic is very different in different
communities, people in communities with small epidemics
will have a low prevalence of the exposure (seropositivity)
and a low incidence of the outcome (infection after enroll-
ment), while people in communities with larger epidemics
will have a higher prevalence of the exposure and a higher
incidence of the outcome, biasing estimates of the effect of
seroprotection. Bias may also occur if people are enrolled
at different times during an epidemic. If enrollment occurs
during an upward trajectory (such as the early exponential
phase of an epidemic), persons enrolled early in the epidemic
will be both less likely to be seropositive (exposure) and less
likely to become infected at a given point in time after enroll-
ment (outcome) than those with a later date of enrollment.
Moreover, in an epidemic that is controlled (thus with an
up-then-down trajectory of incidence), the representation of
seropositive individuals will increase with time, but the rate
at which these persons experience the outcome will increase
and then decrease, creating potential for confounding in
either direction.

In this article, we take the approach of simulating such
studies in the context of an uncontrolled or controlled epi-
demic, under different assumptions about whether prior
infection does or does not protect an individual against sub-
sequent infection, and using various designs and analytical
approaches to analyze the simulated data. By identifying
the direction and comparative magnitude of bias of the
estimated degree of protection relative to a known true effect
of prior infection (known because we have built it into the
simulations), we identify means of designing and analyzing
such studies that can render them less likely to show bias due
to these confounding factors. This framework of simulating
studies in the context of an epidemic has been widely used
to understand experimental (10) and observational (8, 11)

studies of risk factors and prevention interventions for infec-
tious disease.

METHODS

We simulate a stochastic outbreak of a disease in a net-
work of people grouped into communities, with each com-
munity’s outbreak seeded by introductions over time (7, 12).
For each simulation, we generate a network graph, where
individuals are grouped into either 1 community of 10,000
people or 10 communities of 1,000 people each. Individuals
are only connected to persons in their own community,
with the probability of such a connection being based on
an input parameter in the simulation. For “well-mixed”
communities, every individual is connected to every other
individual in their community, while for simulations with
“clustered” communities, people have a limited number of
connections within their community, which creates smaller
subcommunities, or “clusters,” by chance. In these latter
simulations, individuals may have varying numbers of actual
connections, but all of them have the same expected num-
ber. The network graph of a “well-mixed” community is a
complete graph, while that of a “clustered” community is a
random graph with uniform edge probability. In simulations
with 10 communities, all communities are independent of
one another, conditional on the introduction of infection
from the outside.

At each time step in the model, each susceptible indi-
vidual has a daily probability of infection from each of
their infectious contacts of 1 − e−β, where β is the force
of infection. Hence, e−β is the conditional probability of
infection-free survival over a single day among those at risk
at the start of the day. If a subject has n infectious contacts
on a given day, the force of infection is nβ, and thus the
day’s conditional probability of infection is 1 − e−nβ. Since
the number of contacts per individual varies by simulation,
β varies by simulation to keep the reproduction number R
fixed (see Web Appendix 1, available at https://academic.
oup.com/aje). The outbreak is seeded with stochastic intro-
ductions into the communities between days 1 and 50 based
on an external force of infection (different from β; see Web
Figure 1), which means that in simulations with multiple
communities, outbreaks may start at different times in each
community, and some communities may avoid infection
completely.

The disease natural history follows a susceptible-exposed-
infectious-susceptible′ model, where under the null hypoth-
esis (i.e., no immunity), persons in the susceptible and
susceptible′ compartments are equally susceptible, while
under the alternative hypothesis, those in the susceptible′

compartment are less susceptible (in principle, perhaps
completely immune; but in keeping with prior evidence
about coronaviruses, we assume that they are partially im-
mune) (13, 14). In simulations with partial immunity, we
make the simplifying assumption that susceptibility is im-
mediately decreased following the infectious period and
remains constant over time. Seroconversion is assumed to
be detectable at the end of the infectious period. We simulate
scenarios with limited control measures in place (effective

Am J Epidemiol. 2021;190(2):328–335

https://academic.oup.com/aje
https://academic.oup.com/aje


330 Kahn et al.

Table 1. Parameters for Simulated Serological Studies in the Context of an Uncontrolled or Controlled Epidemic, Under Different Assumptions
About Whether Prior Infection Protects an Individual Against Subsequent Infection, and Using Various Designs and Analytical Approaches

Parameter Value(s)

No. of communities 1 or 10

Average community size, no. of persons 1-community simulations: 10,000

10-community simulations: 1,000

Probability of connection with someone within the same
community

Well-mixed: 1 (everyone is connected to everyone else in their community)

Clustered: 0.002 probability per edge for 1 community and 0.02 probability
per edge for 10 communities

Probability of connection with someone in another
community

0

RE
a (17) Controlled: 2.0 → 0.8

Uncontrolled: 1.5

Latency period, days 5.6 (gamma distribution with shape = 5, rate = 0.9)

Infectious period, days 10 (gamma distribution with shape = 3, rate = 0.3)

No. of days in simulation 200

Day on which epidemic control measures begin Controlled epidemic: day 120

Uncontrolled epidemic: never

Reduction in β after control, % 60

Day(s) of enrollment in the serological study Same day: day 100

Different days (uncontrolled): days 50, 100, and 150

Different days (controlled): days 100 and 150

% of persons enrolled (unmatched) 50

Seropositivity protection, % 0 (null)

50

95

a RE, effective reproduction number.

reproduction number (RE) = 1.5) and scenarios in which
control measures that reduce the force of infection per
infected individual (β) are implemented on day 120 of the
study period, reducing RE from 2 to 0.8. Beta is set to yield
these values of RE. Table 1 shows the specific numbers
corresponding to these parameters of the simulations, and
Web Appendix 1 describes the generation of the network
and outbreak in more detail.

For each simulation setting (1 or 10 communities, well-
mixed or clustered communities, control measures or not,
and seroprotective efficacy), we consider 3 sampling de-
signs: 1) enrolling people on a single day without matching
(day 100), 2) enrolling people on multiple days (days 50,
100, and 150) without matching, and 3) enrolling people
on multiple days with matching of enrolled seropositive and
seronegative individuals. Enrollment on multiple days may
occur if, for example, different cross-sectional surveys are
conducted, and this study enrolls the participants in those
surveys. A random sample of individuals are enrolled in the
study at these specified time points over the course of the
outbreak.

We classify people as seropositive or seronegative based
on their serostatus on the day of enrollment in the study, and

then we follow them up until they are infected or until the
study period ends at day 200. In the unmatched designs, we
enroll half of the people in each community in the study, with
an equal number enrolled on each day of enrollment. In the
matched designs, for every seropositive individual enrolled
on each day of enrollment, we also enroll 1 seronegative
individual on that day from the same community. This
increases the balance between exposure arms but reduces the
overall sample size.

For each simulation setting and sampling design, we con-
duct 2 analyses. First, we conduct an unstratified analysis in
which we calculate the hazard ratio of infection comparing
seropositive persons with seronegative persons, using a Cox
proportional hazards model with time starting from enroll-
ment (i.e., possibly not the same calendar time if people
enroll on different dates). Second, given the potential for
stochasticity to generate heterogeneous outbreaks between
communities (7), we also conduct an analysis stratified by
community and day of enrollment to prevent confounding by
these variables. In this analysis, a Cox proportional hazards
model with time starting from enrollment is fitted with a
separate baseline hazard function for each combination of
community and day of enrollment but a common hazard ratio
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Figure 1 Continues

due to seropositivity. R code for the simulations and analysis
(R Foundation for Statistical Computing, Vienna, Austria)
is available on GitHub (15); additional analyses consid-
ered are described in Web Appendix 2 and illustrated in
Web Figures 2 and 3.

RESULTS

Figure 1 shows the results from 1,000 simulations for
each of 36 combinations of parameters (see Table 1).
Figure 1A–D shows results from simulations with limited
control measures in place (RE = 1.5). Results shown in
Figure 1A and 1C are under the null value (hazard ratio =
1), meaning that seropositivity provides no protection
against reinfection (β+ = β−, where β+ is the force of
infection for contact between an infectious individual and
a seropositive individual and β− is the force of infec-
tion for contact between an infectious individual and a
seronegative individual). In Figure 1B and 1D, seropositivity

reduces susceptibility by 50% (β+ = 0.5 × β−) and 95%
(β+ = 0.05 × β−), respectively.

The simulations are carried out in well-mixed communi-
ties, meaning everyone within a community is connected to
each other, except in Figure 1C, which has random cluster-
ing within each community. This clustering leads to correla-
tions between the infection statuses of particular individuals
close together in the network and may be understood as cre-
ating multiple smaller (albeit overlapping) “communities”
within each discrete community.

For simulations with 1 well-mixed community with the
same day of enrollment for all individuals (top lines of
Figure 1A, 1B, and 1D), a crude analysis returns unbiased
results. If enrollment occurs on different days (second and
third lines of Figure 1A, 1B, and 1D), a crude analysis yields
an upwardly biased estimate of the hazard ratio, making
seropositivity appear harmful. However, matching on day of
enrollment or stratifying the analysis by day of enrollment
removes this bias.
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Figure 1. Median estimated hazard ratios for infection (circles) and interquartile ranges (IQRs; bars) comparing seropositive individuals with
seronegative individuals in 1,000 simulations for each of 36 combinations of parameters. A) Well-mixed communities, uncontrolled epidemic,
no seroprotection; B) well-mixed communities, uncontrolled epidemic, 50% seroprotection; C) clustered communities, uncontrolled epidemic,
no seroprotection; D) well-mixed communities, uncontrolled epidemic, 95% seroprotection; E) well-mixed communities, controlled epidemic, no
seroprotection; F) well-mixed communities, controlled epidemic, 50% seroprotection. Note the different x-axis scales in the different panels. We
considered 3 sampling designs for each simulation setting: 1) enrolling people in a serological study on a single day without matching, 2) enrolling
people on multiple days without matching, and 3) enrolling people on multiple days with matching. In the matched designs, for each seropositive
individual enrolled on each enrollment day, a seronegative individual from the same community was also enrolled on that day. We compared
analyses stratified by enrollment day and community with unstratified analyses. Simulations with 0 events in either the seropositive arm or the
seronegative arm were excluded (percentage of simulations excluded in each panel: A, 0.85%; B, 1.6%; C, 0.28%; D, 22.1%; E, 4.7%; F, 6.3%).
For analyses with a high infection hazard for any enrolled individuals (e.g., different days of enrollment in panels B, D, and F), the estimated
hazard ratio is between the ratio of the force of infection in seropositive persons to the force of infection in seronegative persons (β+:β−) and
the null value (hazard ratio = 1). This occurs because an individual’s hazard is not simply the product of their number of contacts and the force
of infection. This is not a bias in the conventional sense, but rather a difference between the ratio β+:β− and the parameter that is estimated by
the Cox model (see Web Appendix 1 for more details).

With multiple communities (and thus multiple, uncon-
nected epidemics, as in the bottom halves of Figure 1A, 1B,
and 1D), an unadjusted analysis creates the same upward
bias regardless of whether enrollment is on the same calen-
dar date or multiple calendar dates, as the same calendar date
does not mean the same phase of the epidemic in each of the
communities. Once again, the bias is upward because people
in communities with larger or more advanced epidemics
are exposed to higher hazards and are more likely to be
seropositive at baseline (Figure 2A–D). As before, the bias
can be removed through the use of a matched design or
stratified analysis, this time matching or stratifying on both
community and day of enrollment. For analyses with a high
number of infectious contacts for any enrolled individuals
(e.g., see different days of enrollment in Figure 1B and 1D),
the estimated hazard ratio is between the ratio β+:β− and
the null value (hazard ratio = 1). This occurs because an
individual’s hazard is not simply the product of their number
of contacts and the force of infection. This is not a bias in the
conventional sense, but rather a difference between the ratio
β+:β− and the parameter that is estimated by the Cox model
(see details in Web Appendix 1). For settings with a lower
force of infection or fewer infectious contacts, this difference
is imperceptible.

Clustering of contacts within communities (a departure
from the assumption of a well-mixed epidemic (Figure 1C))

produces an upward bias even in the matched design and
stratified analyses. As we noted above, this reflects the fact
that the different parts of the network have different local
prevalences at any given time, resulting in a milder form of
the same heterogeneity-induced bias as that seen when there
are many discrete communities. Because these clusters of
high- and low-prevalence areas overlap and arise during the
study, there is no a priori way to adjust for them.

In the simulations shown in Figure 1E and 1F, transmis-
sion is reduced partway through the outbreak in 1 or more
well-mixed communities, representing intensified control
measures (RE = 2 → 0.8). In these simulations, there are
fewer reinfections, as reflected in the wider interquartile
ranges. As before, the single-community estimates are
unbiased when all people enroll on the same day, but when
enrollment occurs on different days or there are multiple
communities, the estimates are biased. In the single-
community simulations with 2 different days of enrollment,
the unstratified, nonmatched analysis estimates are slightly
biased away from the null, making seropositivity look
protective. This occurs because there are more seropositive
persons at later enrollment dates when the average hazard
over the rest of the study is lowest (Figure 2E and 2F).

Hence, with multiple communities or multiple enrollment
dates, confounding can go in either direction depending on
the dynamics of the epidemic at the times of enrollment.
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Figure 2. Average daily hazard, or proportion of persons in the initial susceptible compartment (i.e., never infected) moving to the exposed
compartment in a serological study, in 1,000 outbreak simulations within a single community of 10,000 persons. A) Well-mixed communities,
uncontrolled epidemic, no seroprotection; B) well-mixed communities, uncontrolled epidemic, 50% seroprotection; C) clustered communities,
uncontrolled epidemic, no seroprotection; D) well-mixed communities, uncontrolled epidemic, 95% seroprotection; E) well-mixed communities,
controlled epidemic, no seroprotection; F) well-mixed communities, controlled epidemic, 50% seroprotection. Note the different y-axis scales in
the different panels. Horizontal gray bars show the lengths of follow-up for each day of enrollment. The height of each bar indicates the average
hazard for that duration of follow-up. In panels A–D, follow-up begins on days 50, 100, and 150, while in panels E and F, follow-up begins on
days 100 and 150 only. In panels E and F, the vertical gray dashed lines denote the day on which control measures are implemented, which
reduces the force of infection by 60%. The number of infectious individuals continues to grow beyond the day of control for approximately the
average length of the latency period (5.6 days) due to the presence of persons who were infected in the days just before implementation of
control measures. This causes the hazard to increase again after its initial drop before declining again.
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Matching on enrollment alleviates the different biases, as
does stratification in cases where there are infections in both
the seropositive and seronegative arms. If there are substan-
tially fewer seropositive persons than seronegative persons
and the risk of infection after enrollment is low (i.e., because
of effective control measures), there can be settings with no
infections among the seropositive enrollees in some or all
strata. In these cases, stratified analyses can lead to unstable
results because methods of accounting for 1 arm with 0
cases (e.g., adding a case to each arm) can overcorrect when
the 0-case arm has far fewer individuals than the other.
Matched designs are thus preferable because they remove
this imbalance between the 2 exposure arms.

We note that in the simulations under the null scenario
with limited control measures (Figure 2A and 2C), the daily
hazard (proportion of persons in the susceptible compart-
ment moving to the exposed compartment) continues to
increase over time. In simulations with controlled epidemics
and/or immunity (Figure 2B and 2D–F), the daily hazard
increases and then plateaus or decreases.

DISCUSSION

We find that in studies assessing whether seropositiv-
ity confers protection against future infection, comparing
seropositive persons with seronegative persons with similar
time-dependent patterns of exposure to infection is essential,
because otherwise confounding can bias results; accounting
for differential exposure among seropositive and seroneg-
ative persons is necessary to prevent bias. This bias can
arise either from having multiple days of enrollment over the
course of the study by design or from having multiple com-
munities where the outbreak stochastically starts at different
times (Table 2). Matching in the design or stratifying in the
analysis on community and day of enrollment alleviates this
bias in well-mixed communities. When there is clustering
within communities, a slight upward bias remains, suggest-
ing that the local network structure in a study is an important
factor to consider.

While most people are susceptible when they are enrolled
in a study, it is possible for people to be exposed or infec-
tious upon enrollment. Excluding persons who are infected
soon after enrollment (e.g., within the average latency
period) would remove many of these cases. For potentially
asymptomatic infections, investigators would not be able

to exclude these cases from the study without viral testing
for active infection. Small biases may occur if all people
enrolled in the study are not susceptible at enrollment.

The results shown here assume perfect specificity of the
serological test. As expected (16), imperfect specificity
causes bias toward the null (Web Appendix 3 and Web
Figure 4). More complex interactions between immunity and
infection, including immunity that wanes over the time scale
of the study, viral-load–dependent infection, and effects of
repeated exposures, such as boosting of titers, may affect
these biases as well, or may introduce other potential biases.
Further research is needed to understand the effects of these
biological mechanisms in the specific context of SARS-
CoV-2.

These simulations focus on the bias inherent in some
study designs that may be considered, but they do not ad-
dress the feasibility of implementing these designs. In addi-
tion, we do not focus on the statistical power of these studies;
this may have important consequences in determining an
adequate sample size. Sample-size considerations will be
particularly important in balancing the advantage of starting
enrollment later, when the cumulative incidence is higher
and thus the exposure arms are more likely to be balanced,
and avoiding the tail of an outbreak or a setting after con-
trol measures have been implemented, which will reduce
the infection risk for all participants. We have shown that
matching can address these issues, but matching requires
exposure status to be known at enrollment. This may be
feasible if the study is designed following a serological
survey, where people can be enrolled on the basis of their
antibody presence from the survey. If the exposure needs to
be measured for the seroprotection study, however, matching
may require far more serological testing to be conducted,
inflating the cost of the study. Investigators will need to
consider the relative sample-size requirements and testing
burden of these designs in the context of their specific study.

As serological studies begin, understanding potential
sources of bias and how to alleviate them is important for
accurately estimating the extent and duration of immunity
to SARS-CoV-2. Here we have focused on the impact of
epidemic dynamics on estimation of seroprotection and
have assumed that all people in the model are exchangeable
and differ only in whom they contact. Future work could
examine additional heterogeneity, such as behaviors or
factors that increase risk of infection, which might lead to
further biases.

Table 2. Possible Types of Bias in Serological Studies Conducted During an Outbreak of an Infectious Disease

Cause of Bias Direction of Bias Ways to Correct

Multiple communities with
different timing of epidemics

Upward Matched design or stratified analysis (matching works better when
both number of seropositives and risk of infection are low)

Different days of enrollment Upward or
downward

Matched design or stratified analysis (matching works better when
both number of seropositives and risk of infection are low)

Clustered communities Upward Cannot correct a priori but could consider matching on household
or neighborhood

Am J Epidemiol. 2021;190(2):328–335



Potential Biases in Seroprotection Studies 335

ACKNOWLEDGMENTS

Author affiliations: Center for Communicable Disease
Dynamics, Harvard T.H. Chan School of Public Health,
Boston, Massachusetts (Rebecca Kahn, Lee
Kennedy-Shaffer, Marc Lipsitch); Department of
Immunology and Infectious Diseases, Harvard T.H. Chan
School of Public Health, Boston, Massachusetts (Yonatan
H. Grad, Marc Lipsitch); Department of Epidemiology,
Harvard T.H. Chan School of Public Health, Boston,
Massachusetts (Rebecca Kahn, James M. Robins, Marc
Lipsitch); and Department of Biostatistics, Harvard T.H.
Chan School of Public Health, Boston, Massachusetts (Lee
Kennedy-Shaffer, James M. Robins).

This work was supported in part by award
U54GM088558 from the National Institute of General
Medical Sciences (National Institutes of Health), by award
U01IP001121 from the Centers for Disease Control and
Prevention, and by grant N00014-19-1-2466 from the
Office of Naval Research.

We thank Dr. Jan Vandenbroucke for helpful comments
on the manuscript.

The content of this article is solely the responsibility of
the authors and does not necessarily represent the official
views of the National Institutes of Health.

Conflict of interest: none declared.

REFERENCES

1. Lipsitch M. Who is immune to the coronavirus? NY Times.
April 13, 2020. https://www.nytimes.com/2020/04/13/
opinion/coronavirus-immunity.html. Accessed April 13,
2020.

2. Branswell H. CDC launches studies to get more precise count
of undetected Covid-19 cases. https://www.statnews.
com/2020/04/04/cdc-launches-studies-to-get-more-precise-
count-of-undetected-covid-19-cases/. Published April 4,
2020. Accessed April 13, 2020.

3. Peeples L. News feature: avoiding pitfalls in the pursuit of a
COVID-19 vaccine. Proc Natl Acad Sci U S A. 2020;117(15):
8218–8221.

4. Metcalf CJE, Farrar J, Cutts FT, et al. Use of serological
surveys to generate key insights into the changing global
landscape of infectious disease. Lancet. 2016;388(10045):
728–730.

5. Bryant JE, Azman AS, Ferrari MJ, et al. Serology for
SARS-CoV-2: apprehensions, opportunities, and the path
forward. Sci Immunol. 2020;5(47):eabc6347.

6. World Health Organization. Correlates of Vaccine-Induced
Protection: Methods and Implications. Geneva, Switzerland:
World Health Organization; 2013. https://www.who.int/
immunization/documents/WHO_IVB_13.01/en/. Accessed
May 25, 2020.

7. Kahn R, Hitchings M, Bellan S, et al. Impact of stochastically
generated heterogeneity in hazard rates on individually
randomized vaccine efficacy trials. Clin Trials. 2018;15(2):
207–211.

8. Goldstein E, Pitzer VE, O’Hagan JJ, et al. Temporally
varying relative risks for infectious diseases: implications for
infectious disease control. Epidemiology. 2017;28(1):
136–144.

9. Koopman JS, Longini IM Jr. The ecological effects of
individual exposures and nonlinear disease dynamics
in populations. Am J Public Health. 1994;84(5):
836–842.

10. Halloran ME, Auranen K, Baird S, et al. Simulations for
designing and interpreting intervention trials in infectious
diseases. BMC Med. 2017;15(1):Article 223.

11. Ray GT, Lewis N, Klein NP, et al. Depletion-of-
susceptibles bias in analyses of intra-season waning of
influenza vaccine effectiveness. Clin Infect Dis. 2020;70(7):
1484–1486.

12. Hitchings MDT, Lipsitch M, Wang R, et al. Competing
effects of indirect protection and clustering on the power of
cluster-randomized controlled vaccine trials. Am J Epidemiol.
2018;187(8):1763–1771.

13. Reed SE. The behaviour of recent isolates of human
respiratory coronavirus in vitro and in volunteers: evidence of
heterogeneity among 229E-related strains. J Med Virol. 1984;
13(2):179–192.

14. Callow KA, Parry HF, Sergeant M, et al. The time course of
the immune response to experimental coronavirus infection
of man. Epidemiol Infect. 1990;105(2):435–446.

15. Kahn R. Serologic-studies. https://github.com/rek160/
serologic-studies. Published May 2, 2020. Accessed May 18,
2020.

16. Copeland KT, Checkoway H, McMichael AJ, et al. Bias due
to misclassification in the estimation of relative risk. Am J
Epidemiol. 1977;105(5):488–495.

17. Meyers LA, Pourbohloul B, Newman MEJ, et al. Network
theory and SARS: predicting outbreak diversity. J Theor Biol.
2005;232(1):71–81.

Am J Epidemiol. 2021;190(2):328–335

https://www.nytimes.com/2020/04/13/opinion/coronavirus-immunity.html
https://www.nytimes.com/2020/04/13/opinion/coronavirus-immunity.html
https://www.statnews.com/2020/04/04/cdc-launches-studies-to-get-more-precise-count-of-undetected-covid-19-cases/
https://www.statnews.com/2020/04/04/cdc-launches-studies-to-get-more-precise-count-of-undetected-covid-19-cases/
https://www.statnews.com/2020/04/04/cdc-launches-studies-to-get-more-precise-count-of-undetected-covid-19-cases/
https://www.who.int/immunization/documents/WHO_IVB_13.01/en/
https://www.who.int/immunization/documents/WHO_IVB_13.01/en/
https://github.com/rek160/serologic-studies
https://github.com/rek160/serologic-studies

	Potential Biases Arising From Epidemic Dynamics in Observational Seroprotection Studies
	METHODS
	RESULTS 
	DISCUSSION


