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Abstract

Rhabdomyosarcomas (RMS) are aggressive childhood soft-tissue malignancies deriving from mesenchymal progenitors that are committed to
muscle-specific lineages. Despite the histopathological signatures associated with three main histological variants, termed embryonal, alveolar
and pleomorphic, a plethora of genetic and molecular changes are recognized in RMS. Over the years, exposure to carcinogens or ionizing radi-
ations and gene-targeting approaches in vivo have greatly contributed to disclose some of the mechanisms underlying RMS onset. In this
review, we describe the principal distinct features associated with RMS variants and focus on the current available experimental animal models
to point out the molecular determinants cooperating with RMS development and progression.
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Introduction

Rhabdomyosarcomas have an incidence of about 50% of all soft-tis-
sue sarcomas and 10% of all malignant solid tumours in children [1,
2]. They derive from mesenchimal progenitors committed to myo-
genic lineages and so may arise in almost any body district [3–6],
thus exhibiting a muscle-specific expression pattern that makes this
malignancy rather unique [7]. Diagnosis of RMS, indeed, is predicted
by the immunohistochemical or molecular detection of Myogenic
Regulatory Factors, such as MyoD and myogenin [8, 9], whereas the
expression of contractile proteins, like myosin, is indicative of differ-
entiated tumour phenotypes [10]. Basically, several different genomic
imbalances and translocations have been recognized in RMS, leading
to identification of a rather complex number of deregulated pathways
and targets [3–5]. Recently, much attention has been devoted to the
tumour-initiating cells involved in RMS development, suggesting that
differences in tumour histology may be dependent on the presence of

specific genetic changes in different mesenchymal cell progenitors
[11–15]. In this article, we present an overview of the chemical, phys-
ical and genetic approaches employed to trigger RMS formation in
different mammalian and non-mammalian models.

Histological, genetic and molecular
characteristics of RMS

RMS have been classified on the basis of histopathological criteria
and genetic signatures. They include two major histological vari-
ants, termed embryonal (ERMS) and alveolar (ARMS), and a less
common pleomorphic (PRMS) variant. ERMS are more responsive
to treatments and make up to 80% of RMS in children of less
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than 10 yrs of age. ERMS may occur in any body district and are
heterogeneous in terms of histological appearance, ranging from
poorly to highly differentiated lesions, virtually resembling the
multi-step process of embryonic muscle differentiation. ARMS,
instead, are characterized by poorer prognosis and are mainly
detected in the trunk and body extremities in adolescents and
adults [16]. ARMS cells resemble lung alveoli, with clusters of
eosinophilic tumour cells arranged loosely and disposed in an
alveolar pattern. PRMS are rare and mainly found in adults, and
typically have a poor clinical outcome [17, 18].

Rhabdomyosarcomas histotype is preferentially correlated with
particular genomic aberrations (Table 1); in particular, ERMS are
characterized by a severe genomic instability primarily due to
losses or gains on different chromosomes [19–22]. The most fre-
quent signatures characterizing ERMS are the loss of heterozygo-
sis (LOH) and imprinting (LOI) on chromosome region 11p15.5
[23–29]. These genetic alterations trigger the impaired expression
of different putative tumour suppressor genes like H19 [30],
CDKN1C (p57/KIP2) [31, 32], and SLC22AIL (BWR1A) [33], but
also the overexpression of IGF-2, a tumour-promoting gene
imprinted in the opposite direction [24, 34]. In addition, frequently
associated with ERMS are the deficiency in Patched (PTCH) gene
due to LOH on chromosome 9q22 [21, 35, 36] and activating
mutations in RAS gene [37–39]. Alveolar, instead, are predomi-
nantly characterized by the presence of non-random chromosomal
translocations [40–42], as well as by other less frequent genetic
changes [43–49]. In particular, the t(2;13)(q35;q14) and t(1;13)
(p36;q14) translocations account for about 70% and 10% of
ARMS, respectively, giving rise to chimeric proteins that are
formed by the fusion of the paired and homeo-DNA binding
domain of Pax3 or Pax7 factors with the transactivation domain
of Fkhr (FoxO1a) [40–42]. The so-originated Pax3-Fkhr and Pax7-
Fkhr transcription factors enable an aberrant transcriptional
programme, contributing to RMS progression through multiple
mechanisms [19, 50–52]. Finally, in PRMS, a miscellaneous of
several different genetic aberrations has been detected [53, 54].

Among the several molecular alterations found in RMS, some are
frequent and others are rare, unveiling heterogeneous aetiologies
under the convergent phenotype. As summarized in Table 2, the net-
work of these alterations encompasses the expression of the chimeric
Pax3- and Pax7-Fkhr factors [40–42] and the loss or gain of activity
of different players, including members of the p53 [55–61], Rb [62]
and CDKs families [31, 32, 44, 49], tumour-suppressor genes [30,
33], autocrine/paracrine growth factors [24, 34, 63–85], chemokines
[86, 87], immunoglobulin superfamily members [88], myogenic pro-
teins [50, 52, 89–92], and components of the Akt [93], n- and c-Myc
[46–48, 94], Ras/Erk [37–39] and Sonic hedgehog [21, 35] pathways.
Moreover, the involvement of certain gene aberrations has been
inferred from the study of different human syndromes particularly
correlated with RMS [59] (Table 3), including the Li-Fraumeni syn-
drome [55], Beckwith-Wiedemann syndrome [95], neurofibromato-
sis-1 [96], Costello syndrome [97], Gorlin syndrome [98],
retinoblastoma [99], mosaic variegated aneuploidy syndrome [100],
mismatch repair deficiency syndrome [101] and Rubinstein-Taybi
syndrome [102].

Collectively, the large body of experimental evidence indicates that
RMS development frequently requires the suppression of the p53
pathway in conjunction with secondary cooperating events, including
the aberrant activity of different tyrosine-kinases receptors along the
Ras axis, or the occurrence of Pax3/7-Fkhr chimeric products in the
case of ARMS [3–6].

Experimental animal models of RMS

Rhabdomyosarcomas development has been detected upon exposure
to carcinogen agents or ionizing radiations (Table 4), as well as in
several different genetically engineered animal models (Table 5). An
overview of these models, together with their main pathological fea-
tures, is provided below.

Carcinogen agents and ionizing radiations-
exposed animal models

Heavy metals
Heavy metals (such as As, Cd, Cr, Ni, Co, Cu, Fe, Hg, Pb, Pt) repre-
sent an important family of highly toxic environmental pollutants
arising as industrial by-products and displaying mutagenic and car-
cinogenic potential. Indeed, metal cations can catalyse the produc-
tion of reactive oxygen species which, in turn, elicit a variety of
macromolecular alterations by impairing cellular functions. About
50 years ago, RMS formation was first observed upon intramuscular
injection of nickel and cobalt compounds into adult rats [103, 104].
Since then, other works have shown that nickel compounds are effi-
cient triggers of RMS formation in rat and rabbit models [105–107].
More recently, an in vitro study revealed that cancerous cells derived
from the nickel compounds-treated rats were characterized by a
mature phenotype [108].

Pyrrolizidine alkaloids
The pyrrolizidine alkaloid monocrotaline and its major metabolite
dehydroretronecine are naturally occurring toxins widely distrib-
uted in the world. These alkaloids are among the most common
poisonous plants affecting livestock, wildlife and humans, as they
cause liver toxicity and cancer [109, 110]. Administration of de-
hydroretronecine produced RMS in over 50% of the treated rats,
in addition to other neoplasms occurring at lower percentage
such as myelogenous leukaemias, hepatocellular carcinomas, and
pulmonary adenomas [111].

Benzenediazonium sulphate and relative compounds
Benzenediazonium sulphate (BD) is formed during the cytochrome P-
450 catalysed metabolism of the carcinogenic 1-(phenylazo)-2-hy-
droxynaphthalene (Sudan I, Solvent Yellow 14), which was used as a
colouring agent for food and other materials in several countries. Fur-
thermore, BD is a metabolic breakdown product of different classes
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of nitrogen-nitrogen bond-containing chemicals. Subcutaneous injec-
tions of BD in Swiss mice gave rise to different neoplasms that were
classified as RMS, fibrosarcomas and osteosarcomas [112]. Other
variants of this molecule, namely 4-hydroxy- and 4-methyl-BD, are
two ingredients derived from the non-cultivable unedible Agaricus
xanthodermus and the cultivable Agaricus bisporus mushrooms,
respectively. These molecules promoted RMS development in mice,
in addition to fibromas, fibrosarcomas and myxosarcomas [113, 114].

N-methyl-N′-nitro-N-nitrosoguanidine
N-nitroso compounds, such as N-methyl-N′-nitro-N-nitrosoguani-
dine (MNNG), are chemical carcinogens detectable in preserved
foodstuffs and cigarettes and represent important risk factors
contributing to development of nasopharyngeal carcinoma [115].
It has been shown that fish models, such as Medaka (Oryzias
latipes) and Zebrafish (Danio rerio), develop a broad range of
neoplasms of mesenchymal derivation, including RMS, when
exposed to MNNG [116, 117].

Azoxymethane and methylazoxymethanol
Azoxymethane (AOM) is a potent carcinogen causing a high incidence
of colon cancer in rodents [118]. Once administered, AOM is metabo-
lized into methylazoxymethanol [119], a mitotoxic molecule that
spontaneously decomposes to a reactive alkylating agent with tumo-
urigenic [120] and neurotoxic properties [121]. Different fish species
exposed to methylazoxymethanol-acetate exhibited RMS formation
[122].

Polycyclic aromatic hydrocarbons
Polycyclic aromatic hydrocarbons are implicated in the aetiology
of human cancer due to exposure to cigarette smoke, urban air,
pollution, coal combustion and certain occupational situations
[123]. For example, exposure to 7,12-dimethylbenz[a]anthracene
elicited RMS formation in Zebrafish, although at low incidence
[124], whereas the same molecule was recently shown more
effective in causing RMS in male Sprague–Dawley rats [125].
Also, RMS was detected in mice treated with benzo[a]pyrene

Table 1 Genetic signatures associated with RMS histotypes

ERMS ARMS PRMS

LOH and/or LOI 11p15.5 [23–29]
9q22 [21, 35, 36]

Translocations 11p1-q11 [22] t(2;13)(q35;q14)
t(1;13)(p36;q14) [40–42]

Amplifications 12q13-15 [20] 12q13-15 [43–45]
2p24 [43, 46–48]
2q34-qter
15q24-26
1p36
13q31-32
1q21
8q13-21 [43]

1q25-q31
11q13.5-q14
8p11.2-p11.1 [53]

Gains of chromosomes 2, 7, 8, 11, 12, 13q21,
17, 18, 19, 20 [20, 21]

13 [43] 1p22-p23
7p
20/20p
1q21-q25
3p12
3q26-pter
4q28-q31 [54]
18/18p
8q21-q23/8q
22q [53, 54]
5, 6q [53]

Losses of chromosomes 3, 6, 10, 14, 15, 16, 17 [20, 21]
9q22, 1p35-36, 14q21-q32 [21]

16q
9q32-34
13q14-qter [43]
17p
9p21 [49]

1q, 14, 17p
12q13.2-q13.3 [53]
10q23
15q21-q22
2q21-q35 [54]
3p
5q32-qter
13 [53, 54]
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Table 2 Principal molecular alterations detected in RMS

Gene family Molecular target Alteration in RMS References

Chimeric fusion genes PAX3-FKHR
PAX7-FKHR

Product of translocation t(2;13)(q35;q14)
Product of translocation t(1;13)(q36,q14)

[40–42]

P53, RB and CDKs P53 Loss of activity due to several different gene
mutations and/or deletions

[55–59]

MDM2 Overexpression and/or gene amplification [58, 60]

P63, P73 Transcript overexpression [61]

RB Homozygous deletion on the protein-binding
pocket domain

[62]

CDKN2A, ARF Gene deletion [49]

CDKN2B Gene deletion [49]

CDK4 Overexpression due to locus amplification in
12q13-15

[44]

CDKN1C (p57/KIP2) Loss of expression due to LOH in 11p15.5 locus [31, 32]

Tumour-suppressor
genes

H19 Loss of expression due to LOH in 11p15.5 locus [30]

SLC22AIL (BWR1A) Loss of expression due to LOH in 11p15.15 locus [33]

Autocrine/paracrine
growth factors

HGF/c-MET c-MET activating mutations
c-MET overexpression and/or amplification
Pax-Fkhr-dependent c-MET overexpression

[63–68]

IGF1R Pax-Fkhr-dependent IGF1R up-regulation [69–71]

IGF-2 Overexpression due to LOI, LOH and paternal
disomy
Pax3-Fkhr-dependent overexpression

[24, 34]

IGFBP5 Overexpression [72, 73]

HER-1/EGFR Overexpression [74]

HER-2 Overexpression [74]

PDGFR-A, PDGF-A and C Overexpression [75]

VEGF Overexpression of both short and long isoforms [76]

VEGFR1 Overexpression at mRNA and protein levels
Pax3-Fkhr-dependent overexpression

[76–78]

FGFR4 High expression at mRNA and protein levels
Activating mutations in the tyrosine-kinase domain

[79]

FGF, glypican-5 Gene amplification [80]

NGF pathway Anti-apoptotic autocrine loop [81]

TGF-b/myostatin Increased expression [82–85]

Chemokines MMP2, CXCR4 Pax3-Fkhr-dependent overexpression [86]

IL-4R Pax3-Fkhr-dependent overexpression [87]

Immunoglobulin
superfamily

RAGE Reduced gene expression [88]

Myogenic proteins MyoD Frequent expression in inactivated form [50, 52, 89–92]
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[126], even in association with nickel compounds [105]. Interest-
ingly, benzo[a]pyrene carcinogenicity was lost in mice lacking the
aryl hydrocarbon receptor [127].

Depleted uranium and lead
An interesting study was recently performed to assess the health
risk effects of soldiers exposed to depleted uranium and lead
employed to build tungsten alloy-based munitions [128]. For this
purpose, male F344 rats were implanted intramuscularly with pel-
lets of weapons-grade alloy to simulate shrapnel wounds. Within
4–5 months from the time of implantation, animals exhibited seri-
ous haematological changes indicative of polycythemia and

aggressive PRMS in the surrounding of the pellets, with rapid for-
mation of lung metastases.

Ionizing radiations
Epidemiological evidence identifies ionizing radiations as causative
agents contributing to the stepwise process of carcinogenesis.
Indeed, repeated doses of b-radiation on the backs of CD-1 mice trig-
gered a subset of neoplasms, with RMS being the most frequently
observed [129]. RMS cell lines derived from these tumours all exhib-
ited p53 inactivating mutations, suggesting that excessive exposure
to radiation contributes to RMS development through the loss of p53
tumour-suppressor activity.

Table 2 Continued

Gene family Molecular target Alteration in RMS References

AKT Akt High levels of phosphorylated Akt (Thr308 and Ser473) [93]

RAS/ERK and MYC KRAS-2, NRAS Activating point mutations [37]

HRAS-1 Activating point mutations [38, 39]

n-MYC Gene amplification [46–48]

c-MYC Overexpression [94]

Sonic hedgehog PTCH1 Gene deletion [21, 35]

Table 3 Human syndromes associated with RMS

Human cancer syndromes Locus Genetic mutation MIM ID References

Li-Fraumeni syndrome 17p13.1, 9p21 Germline transmission of a
mutated P53 allele

151623 [55]

Beckwith-Wiedemann
syndrome

11p15.5 Mutation or deletion of imprinted
genes within the 11p15.5 locus

130650 [95]

Neurofibromatosis-1 17q11.2 Mutation in NF1 162200 [96]

Costello syndrome 11p15.5 Germline mutation in HRAS 218040 [97]

Gorlin syndrome 9q22.3 Germline mutations in PTCH1 or
PTCH2

109400 [98]

Retinoblastoma 13q14.1-q14.2 Germline mutation in RB1 180200 [99]

Mosaic variegated
aneuploidy syndrome

15q15 Constitutional biallelic truncating
and missense mutations in BUB1B

257300 [100]

Mismatch repair
deficiency syndrome

7p22, 3p21.3,
2p16, 2p22-p21

Biallelic germline mutations of
MLH1, MSH2, MSH6 or PMS2

276300 [101]

Rubinstein-Taybi syndrome Unknown Mutations in CREBBP (>60%) or
EP300 (about 3%)

180849 [102]

MIM (Mendelian Inheritance in Man) identification numbers referred to each syndrome can be used to retrieve further information at the
following site: http://www.ncbi.nlm.nih.gov/omim.
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Virus infection and transgenic expression of viral
proteins

Results from a study performed in the 1968s have shown that the
infection of newborn rats with Moloney-murine sarcoma virus
(MoMSV) predisposes to RMS formation [130]. After virus inocula-
tion in the inguinal area, the solid tumour grown rapidly and
expanded toward the leg muscles and the dorsal musculature.
Metastases occurred regularly in the lungs and draining lymph
nodes, and the metastatic cells in the lung closely resembled the
cells of the primary tumour. A subsequent in vitro analysis demon-
strated that RMS cells derived from the MoMSV-infected rats had an
immature phenotype, displaying staining for desmin, but lack of
myosin expression [108].

More recently, transgenic mice harbouring the Simian Virus T
Antigene (SV40 TAg) gene under the control of the beta-globin

control region were generated, attempting the possibility to
observe haematopoietic malignancies as a consequence of the
erythroid-specific expression [131]. Unlikely, these mice devel-
oped PRMS in different anatomic sites and showed hyperplasia
of the pancreatic islet cells, which progressed to pancreatic islet
tumour.

In another model, transgenic mice expressing the 2.7-kb SV40
TAg early region under the control of the 5′ region of
the SM22alpha gene (expressed in embryonic cardiac muscle)
developed a rare form of cardiac RMS at the age of approximately
8–12 weeks [132]. Authors reasoned that the SV40 TAg protein
and/or its upstream regulatory region may be implicated in the
binding and sequestration of specific protein partners whose iden-
tity was yet unknown and whose loss of function may be involved
in RMS formation. To reconcile these data with some recent find-
ings, it is now accepted that SV40 TAg, like other viruses products,

Table 4 Experimental animal models of RMS – chemical and physical triggers

Triggers
Modality of administration
and animal models Tumour analysis References

Heavy metals: nickel
and cobalt compounds

Intramuscular single injection
in thigh of Wistar rats, C3H
or Swiss mice

PRMS, highly anaplastic
RMS, fibrosarcoma and myoma

[103–105]

Testis injection in Fisher rats RMS, fibrous histiocytomas and
fibromas

[106]

Intramuscular implant in rabbits RMS with small polygonal or
elongated cells, mature myofibres

[107]

Pyrrolizidine alkaloids:
dehydroretronecine or
monocrotaline

Subcutaneous injection in male
Sprague-Dawley rats

RMS [111]

Benzenediazonium sulphate
and derivates

Subcutaneous injection in Swiss mice RMS, fibrosarcomas, osteosarcoma,
fibromas and myxosarcomas

[112–114]

N-methyl-N′-nitro-
N-nitrosoguanidine

Microinjection, water or dietary
exposure in Medaka or Zebrafish

RMS and other mesenchymal-derived
sarcomas

[116, 117]

Azoxymethane and
methylazoxymethanol
acetate

Water exposure in Medaka and
Guppy fish

RMS [122]

Polycyclic aromatic hydrocarbons:
dimethylbenz[a]anthracene and
benzo[a]pyrene

Microinjection, water or dietary exposure
in Zebrafish

RMS in embryos and juveniles [124]

Subcutaneous injection in neonatal male
Sprague-Dawley rats

PRMS and ERMS [125]

Subcutaneous implantation of filters overlaid
with gelatine containing benzo[a]pyrene in mice

Foreign-body-induced sarcoma and
RMS

[126]

Tungsten alloy-based munitions
embedded
with uranium and lead

Intramuscular leg implantation of nickel-
and tantalum-pellets in male F344 rats

Polycythemia and PRMS with lung
metastases

[128]

Ionizing radiations Repeated doses of b-radiation in CD-1 mice RMS, squamous-cell carcinoma and
malignant fibrous histiocytoma

[129]
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has the ability to bind p53 and determine its loss of function, as
recently demonstrated in patients affected by Li-Fraumeni
syndrome with one P53 allele active [133].

Thus, these findings suggest that viral proteins such as SV40
TAg, having the ability to bind proteins like p53 and pRb, may contrib-
ute to RMS pathogenesis.

Table 5 Experimental animal models of RMS – biological triggers

Triggers Treatment or genetic approach and animal model Tumour analysis References

Virus and viral proteins MoMSV inoculation in newborn Wistar rats Undifferentiated RMS with lung
and limph node metastases

[130]

Erythroid-specific transgenic expression of
SV40 Tag in SJL mice

PRMS and pancreatic islet tumour [131]

Cardiac-specific transgenic expression of SV40
TAg in C57BL/6 mice

Cardiac RMS [132]

P53 Knock-out P53 in C57BL/6 9 CBA mice Undifferentiated RMS and other
neoplasms

[135]

Double knock-out P53 and FOS in 129Sv X
C57BL/6 mice

ERMS [139]

Transgenic HER-2/neu expression in Balb/c
mice with P53+/� background

ERMS [143]

KRASG12V conditional expression in adult Balb/c
mice with P53+/� or P53�/� background

PRMS [144]

Transgenic KRASG12V expression and
simultaneous loss of P53 or gain of P53R172H

mutant in C57B16J/S129 mice

PRMS with lung metastases [145]

PAX3-FKHR PAX3-FKHR knock-in expression and P53 or
INK4a/ARF knock-out expression in conditional mice

ARMS [149]

RAS KRASG12D expression alone or combined with
a P53+/� or P53�/� background in Zebrafish

Highly invasive ERMS [158]

HGF Transgenic broad overexpression of HGF in
FVB/N mice

RMS, amelanotic melanoma,
hepatic and mammary tumours

[64]

Transgenic HGF expression in FVB/C57BL/6
mice with a background INK4a deficient

Lymphomas, fibrosarcomas and
multifocal ERMS

[68]

Sonic hedgehog PTCH+/� knock-out in CD-1 mice RMS [36]

Conditional PTCH+/� knock-out in C57BL/6 9

CD-1 mice
RMS [174]

Conditional P53�/� in Balb/c mice
with PTCH+/� background

ERMS [175]

Gene-trap mediated SUFU+/� in C57BL/6 mice
with P53�/�background

RMS [176]

Muscular
disorders-associated proteins

Nonsense mutation in dystrophin in
non-transgenic mdx mice (model of DMD)

ARMS and ERMS [185, 186]

Mdx mice interbreeded with P53-deficient mice ERMS [191]

Knock-out aSGCA in C57BL/10ScSn/J mice
(model of LGMD-2D)

ERMS [186]

Deficiency of dysferlin in A/J mice
(model of LGMD-2B)

PRMS at high frequency [192]
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Gene-targeted animal models

P53 pathway
P53 tumour-suppressor activity promotes apoptosis, senescence
or reversible protective cell cycle arrest upon a variety of cellular
damage signals [134]. In this sense, cells harbouring inactivating
P53 gene mutations are predisposed to cancer, as they escape
self-protecting cell death and acquire a long-lived resistant condi-
tion. Patients affected by the Li-Fraumeni syndrome, harbouring
germline P53 mutations, develop soft-tissue sarcomas [55],
including a significant percentage of RMS [13,56]. In addition,
P53 mutations and/or overexpression of its negative regulator
MDM2 are frequently recognized in RMS [58, 60]. So far, P53
null mice were generated through homologous recombination
strategy [135]. These mice had normal development, but were
susceptible to spontaneous formation of different cancers, includ-
ing RMS at low incidence [135–138]. Subsequent works have
firmly supported that RMS incidence is greatly increased when
loss of p53 activity occurs in association with other deregulated
pathways. As such, RMS tumour frequency was increased in mice
upon concomitant loss of P53 and FOS [139], the latter being a
major component of the AP-1 transcription factor, which regulates
various biological processes by converting extracellular signals
into changes in the expression of specific target genes [140].
Also, the activity of the tyrosine-kinase HER-2/neu receptor, which
is expressed in approximately one-half of human RMS [141] and
is involved in the transformation of many cell types [142], pro-
moted ERMS formation in transgenic mice when coupled to loss
of P53 [143].

A synergism between p53 and Ras pathways has been frequently
observed in RMS. For instance, the conditional expression of the can-
cer-related activating KRASG12V mutation in adult muscles of P53 null
mice triggered formation of PRMS [144], whereas the same
KRASG12V form in the presence of the P53R172H mutant triggered
PRMS with more aggressive metastases [145], suggesting that p53
mutants, due to gain of toxicity, can have more deleterious effects on
tumour development compared with the sole p53 loss [146].

In summary, loss of p53 activity and/or gain of p53 cytotoxic
function play(s) a central role in RMS development, especially when
coupled to the aberrant activity of additional pathways.

Pax3-Fkhr transcription factor
Pax3-Fkhr chimeric factor strongly cooperates together with the loss
of P53 or INK4a/ARF locus in ARMS onset. Transgenic mice carrying
PAX3-FKHR exhibited defects in muscle development, including ecto-
pic skeletal myogenesis in the developing neural tube, although they
did not exhibit spontaneous tumour formation [147, 148], supporting
the idea that Pax3-Fkhr expression was not sufficient per se to cause
RMS. However, targeting a conditional PAX3-FKHR knock-in allele in
terminally differentiating Myf6-expressing myofibres promoted ARMS
formation [149]. Strikingly, ARMS frequency was increased in these
conditional mice by the simultaneous disruption of either p53 path-
way or INK4a/ARF locus [14, 149], the latter containing two overlap-

ping tumour suppressor genes, p16INK4a and p14ARF [68], involved in
the regulation of cell cycle, senescence and apoptosis [150, 151].
These data suggest that expression of Pax3-Fkhr in differentiating
Myf6-myofibres seems to be a sine qua non condition predisposing
to ARMS, particularly when coupled to disruption of gene targets con-
trolling cell cycle, such as P53 and those included in the INK4a/ARF
locus.

Ras/Erk pathway
Activating RAS mutations have been primarily associated with ERMS
[13, 37–39, 152–155]. Indeed, mutations in components of the Ras
pathway are responsible of clinically overlapping dominant disorders
that are characterized by RMS development, including the Noonan
syndrome, Costello syndrome, cardiofaciocutaneous syndrome and
LEOPARD syndrome [156]. Costello syndrome, in particular, is char-
acterized by short stature, facial dysmorphism, cardiac defects and
predisposition to cancers, including ERMS, because of germline acti-
vating mutations in the HRAS gene on chromosome 11p15.5
[97, 157]. Indeed, an elegant model of ERMS has been established by
the delivery of a transgenic construct harbouring an activated RAS
form (KRASG12D) in muscle-associated cells of Zebrafish [158].
Injected embryos developed highly invasive tumours composed of
heterogeneous cell populations, comprising undifferentiated muscle
cells, multi-nucleated striated muscle fibres, and infiltrating
blood cells. In addition, tumour incidence markedly increased
when the KRASG12D transgene was injected into mutant fish with a
P53+/� and �/� background, confirming the cooperation between Ras
and p53 pathways in RMS development. On the basis of microarray
analysis on sorted cell populations of Zebrafish, authors postulated
that the tumour-initiating cells were reasonably similar to muscle
satellite cells. In summary, oncogenic RAS may itself play a primary
role in ERMS development, especially when the gain of activity occurs
in muscle satellite cells. Moreover, RMS frequency is greatly
increased upon the simultaneous loss of p53 function, as observed in
Zebrafish [158] and adult mice [144, 145].

Hgf/c-Met pathway
C-MET proto-oncogene encodes a tyrosine-kinase receptor that, upon
binding with the hepatocyte growth factor (Hgf), promotes cellular
growth, motility and survival, extracellular matrix degradation and
angiogenesis [159, 160]. Excessive activation of this pathway has
been implicated in a subset of human cancers, including RMS [161,
162]. In transgenic mice, inappropriate Hgf expression gave rise to
distinct tumours of both mesenchymal and epithelial origin [64, 163,
164], with a prevalence of malignant mammary tumours, melanomas,
RMS, fibrosarcomas, squamous papillomas, basal cell and hair folli-
cle tumours. Later, it has been demonstrated that aberrant c-Met sig-
nalling and simultaneous INK4a/ARF locus inactivation are critical for
RMS genesis [68]. Indeed, a consistent percentage of INK4a/ARF�/�

mice developed lymphomas and fibrosarcomas [165], whereas
almost all INK4a/ARF�/� mice overexpressing Hgf exhibited highly
invasive RMS at 3 months of age [68]. These data suggest that con-
stitutive activation of c-Met and simultaneous absence of p16INK4a
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and p19ARF may give rise to a pre-malignant population of myogenic
precursors, which cannot withdraw from the cell cycle and are resis-
tant to p53-mediated apoptosis [166, 167]. Unlike embryogenesis,
during which a Pax3-dependent expression of c-MET in the lateral
dermomyotome is required for the appropriate migration of myogenic
precursors to the limb [168], an aberrant Pax3-Fkhr-dependent c-
MET transcription takes place in RMS. As the Hgf/c-Met pathway is
only transiently required for the activation of satellite cells following
skeletal muscle injury [169], its persistent gain of function in RMS
cells has been supposed to allow invasiveness through continuous
proliferation and migration [63, 65–67], ideally resembling a regener-
ating muscle that fails to repair [68].

Sonic hedgehog pathway
Inappropriate activation of the Sonic hedgehog (Shh) pathway, due to
Ptch1 receptor inactivation, has been associated with familial cancer.
In particular, germline mutations in the PTCH1 gene lead to Gorlin
syndrome, also termed Nevoid Basal Cell Carcinoma Syndrome, char-
acterized by a variety of clinical problems such as increased body
size, developmental abnormalities of the skeleton, and increased inci-
dence of sporadic Basal Cell Carcinomas (BCC), Medulloblastoma
(MB) and RMS [98]. In addition, a deficiency in PTCH1 gene due to
LOH on chromosome 9q22 has been further implicated in RMS [21].
Ptch1 basally suppresses the activity of the seven-pass membrane
protein Smoothened (Smo), while the binding to the Sonic hedgehog
(Shh) relieves the inhibition of Smo, culminating in the activation of
the downstream Gli transcription factors. The latter regulate a variety
of processes in invertebrate and vertebrate embryonic development
[170, 171]. So far, PTCH1+/� mice have been considered as a model
of multi-organ tumourigenesis [172], as they were characterized by
the development of many characteristic features of Gorlin syndrome,
including a predisposition to radiation-induced teratogenesis and
RMS formation [36]. Importantly, PTCH1+/�mice displayed elevated
Igf-2 levels [35, 36], suggesting that Ptch1 acts as a negative regula-
tor of Igf-2, which is in turn required for the formation of MB and
RMS. In comparison with P53+/� mice, PTCH1+/� mice predominantly
showed less aggressive RMS due to a greater degree of differentia-
tion [173], clearly highlighting how different mutations can have a dif-
ferent impact on tumour behaviour. Later on, the development of an
elegant conditional mouse model allowed to demonstrate that the
time-point and the gene dose of PTCH1 inactivation predispose to
development of certain tumours rather than others [174]. In particu-
lar, RMS was observed when PTCH1 heterozygosity was induced pre-
natally [174], especially in the presence of simultaneous loss of p53
[175]. On the other hand, mono- or bi-allelic postnatal deletion of
PTCH1 respectively lead to hamartomatous gastrointestinal cystic
tumours, BCC precancerous lesions of the gastrointestinal epithelium
and mesenteric tumours [174].

Recently, mice deficient for another regulator of the Shh pathway,
termed Suppressor of Fused (SUFU), have been generated [176].
SUFU is a negative modulator of Shh signalling [170] and its gene
ablation results in embryonic lethality [177], suggesting a critical role
in higher organisms. Like PTCH1, SUFU is believed to be a tumour-
suppressor gene [178], as a subset of MB patients carry germline

and somatic SUFU mutations. In comparison with PTCH1+/� mice,
SUFU+/� mice were not tumour prone; however, simultaneous loss of
SUFU and P53 triggered MB and RMS in mice [176].

Overall, these data suggest that inappropriate activation of the
Shh pathway contributes to RMS development, especially in associa-
tion with p53 loss of function.

Muscular disorders associated-proteins
Four different animal models of neuromuscular disorders have been
associated with RMS development. Among them, the non-trans-
genic mdx mice ideally represent the animal phenocopy of the X-
linked Duchenne Muscular Dystrophy (DMD) [179], as they lack
dystrophin due to a premature stop codon in exon 23 of dystrophin
gene [180–182]. Dystrophin confers resistance to skeletal, cardiac
and smooth muscle cells [183] by connecting F-actin in the subsar-
colemmal cytoskeleton to the Dystrophin-Glycoprotein Complex
(DGC) that spans the sarcolemma and attaches to laminin-2 (mero-
sin) in the extracellular matrix [184]. In particular, it has been
shown that old mdx mice (between 16.5 and 24 months of age)
develop ARMS [185], although another research group has
described development of ERMS in the same model [186]. Sponta-
neous formation of ERMS has been also detected in alpha sarco-
glycan (aSGCA) deficient mice [186], which represent the animal
phenocopy of the autosomal recessive Limb-Girdle Muscular Dys-
trophy-2D form (LGMD-2D) [187, 188]. The aSGCA gene encodes
a transmembrane glycoprotein that stabilizes the DGC complex
[184] and protects muscle cells from contraction-induced damage
[189, 190]. It is worth noting that all mdx and aSGCA�/� mice
developing RMS were characterized by harbouring cancer-related
mutated p53 forms or overexpressing mutated or deleted Mdm2
forms lacking the p53-binding domain (in the case of mdx model)
[186], confirming that disruption of the p53 pathway cooperates
with RMS formation. To further corroborate this evidence, P53-defi-
cient mdx mice have been recently generated, thus demonstrating
that the regenerative microenvironment in skeletal muscle of mdx
mice, when coupled to P53 deficiency, is sufficient to robustly
induce ERMS in young mice [191]. Finally, development of PRMS
at a high frequency has been detected in the A/J mouse strain
[192], characterized by a progressive muscular dystrophy homolo-
gous to LGMD-2B due to lack of dysferlin, a protein involved in
muscle repair [193, 194].

Results from studies on these animal models suggest that the
continuous activation and proliferation of satellite cells, characterizing
the lifelong myofibre degeneration and regeneration in muscular dis-
orders, predispose a local environment that may greatly increase the
chance of developing RMS, particularly in the presence of Mdm2/p53
cancer-associated alterations.

Conclusions

Generation of animal models has provided a powerful tool for under-
standing the molecular determinants cooperating with RMS forma-
tion. Due to technology limitations, until few years ago, experimental
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induction of RMS was merely obtained by exposure to disparate clas-
ses of chemicals and ionizing radiations as well. Over the last two
decades, the growing availability of genetic models has clearly out-
lined that the onset of RMS, as commonly seen in different cancers,
requires the simultaneous occurrence of multiple aberrant molecular
events, such as the loss of P53, RB and INK4a/ARF function along
with the gained activity of Hgf/c-Met, Ras, Shh pathways and Pax3/7-
Fkhr chimeric factors. Recent data further confirmed that loss of skel-
etal muscle integrity, as observed in some neuromuscular disorders,
may supply a local tissue environment predisposing to RMS develop-
ment. Apart from these different cues, RMS tumour histotype seems
to be developmentally stage-dependent, being dictated from the
timing and cell host in which specific molecular alterations arise.

In perspective, it will be attractive to bring together old and
new evidence by coupling chemical and physical exposure in
gene-targeted animal models. This combined approach could help

to unravel how a specific genetic background may predispose to
or protect from cancer formation in the presence of environmen-
tal risk factors.

Acknowledgements

We are grateful to Dr. Arianna Bellucci for kindly revising the manuscript. This
work was supported by the Associazione Amici per il Cuore-ONLUS, Chiari

(Brescia)-Italy to A.F. and E.M., by the Fondazione Cariplo grant to E.M. and by

the University of Brescia research fund (ex 60%) to A.F.

Conflict of interest

The authors confirm that there are no conflicts of interest.

References

1. Ognjanovic S, Linabery AM, Charbonneau
B, et al. Trends in childhood rhabdomyo-

sarcoma incidence and survival in the Uni-

ted States, 1975-2005. Cancer. 2009; 115:
4218–26.

2. Meyer WH, Spunt SL. Soft tissue sarcomas

of childhood. Cancer Treat Rev. 2004; 30:

269–80.
3. Barr FG. The role of chimeric paired box

transcription factors in the pathogenesis of

pediatric rhabdomysarcoma. Cancer Res.
1999; 59: 1711s–5s.

4. Merlino G, Helman LJ. Rhabdomyosar-

coma–working out the pathways. Onco-

gene. 1999; 18: 5340–8.
5. De Giovanni C, Landuzzi L, Nicoletti G,

et al. Molecular and cellular biology of

rhabdomyosarcoma. Future Oncol. 2009; 5:

1449–75.
6. Xia SJ, Pressey JG, Barr FG. Molecular

pathogenesis of rhabdomyosarcoma. Can-

cer Biol Ther. 2002; 1: 97–104.
7. Tonin PN, Scrable H, Shimada H, et al.

Muscle-specific gene expression in rhabdo-

myosarcomas and stages of human foetal

skeletal muscle development. Cancer Res.
1991; 51: 5100–6.

8. Berkes CA, Tapscott SJ. MyoD and the

transcriptional control of myogenesis.

Semin Cell Dev Biol. 2005; 16: 585–95.
9. Bergstrom DA, Tapscott SJ. Molecular

distinction between specification and

differentiation in the myogenic basic helix-

loop-helix transcription factor family. Mol
Cell Biol. 2001; 21: 2404–12.

10. Morotti RA, Nicol KK, Parham DM, et al.
An immunohistochemical algorithm to
facilitate diagnosis and subtyping of rhab-

domyosarcoma: the Children’s Oncology

Group experience. Am J Surg Pathol. 2006;

30: 962–8.
11. Charytonowicz E, Cordon-Cardo C, Matu-

shansky I, et al. Alveolar rhabdomyosar-

coma: is the cell of origin a

mesenchymal stem cell? Cancer Lett.

2009; 279: 126–36.
12. Merlino G, Khanna C. Fishing for the ori-

gins of cancer. Genes Dev. 2007; 21: 1275

–9.
13. Linardic CM, Downie DL, Qualman S,

et al. Genetic modeling of human rhabdo-

myosarcoma. Cancer Res. 2005; 65: 4490–
5.

14. Keller C, Capecchi MR. New genetic

tactics to model alveolar rhabdomyosar-

coma in the mouse. Cancer Res. 2005;

65: 7530–2.
15. Ren YX, Finckenstein FG, Abdueva DA,

et al. Mouse mesenchymal stem cells

expressing PAX-FKHR form alveolar rhab-

domyosarcomas by cooperating with sec-
ondary mutations. Cancer Res. 2008; 68:

6587–97.
16. Tsokos M, Webber BL, Parham DM, et al.

Rhabdomyosarcoma. A new classification

scheme related to prognosis. Arch Pathol

Lab Med. 1992; 116: 847–55.
17. Sultan I, Qaddoumi I, Yaser S, et al. Com-

paring adult and pediatric rhabdomyosar-

coma in the surveillance, epidemiology and

end results program, 1973 to 2005: an

analysis of 2,600 patients. J Clin Oncol.
2009; 27: 3391–7.

18. Wolden SL, Alektiar KM. Sarcomas across

the age spectrum. Semin Radiat Oncol.
2010; 20: 45–51.

19. Barr FG. Molecular genetics and pathogen-

esis of rhabdomyosarcoma. J Pediatr

Hematol Oncol. 1997; 19: 483–91.
20. Weber-Hall S, Anderson J, McManus A,

et al. Gains, losses, and amplification of

genomic material in rhabdomyosarcoma ana-

lyzed by comparative genomic hybridization.

Cancer Res. 1996; 56: 3220–4.
21. Bridge JA, Liu J, Weibolt V, et al. Novel

genomic imbalances in embryonal rhabdo-

myosarcoma revealed by comparative
genomic hybridization and fluorescence

in situ hybridization: an intergroup rhabdo-

myosarcoma study. Genes Chromosomes

Cancer. 2000; 27: 337–44.
22. Gordon T, McManus A, Anderson J, et al.

Cytogenetic abnormalities in 42 rhabdo-

myosarcoma: a United Kingdom Cancer

Cytogenetics Group Study. Med Pediatr On-
col. 2001; 36: 259–67.

23. Koufos A, Hansen MF, Copeland NG,
et al. Loss of heterozygosity in three

embryonal tumours suggests a common
pathogenetic mechanism. Nature. 1985;

316: 330–4.
24. Scrable H, Cavenee W, Ghavimi F, et al. A

model for embryonal rhabdomyosarcoma

tumorigenesis that involves genome

imprinting. Proc Natl Acad Sci USA. 1989;

86: 7480–4.
25. Scrable HJ, Witte DP, Lampkin BC, et al.

Chromosomal localization of the human

rhabdomyosarcoma locus by mitotic

recombination mapping. Nature. 1987;
329: 645–7.

26. Loh WE, Scrable HJ, Livanos E, et al.
Human chromosome 11 contains two dif-
ferent growth suppressor genes for embry-

1386 ª 2012 The Authors

Journal of Cellular and Molecular Medicine ª 2012 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd



onal rhabdomyosarcoma. Proc Natl Acad
Sci USA. 1992; 89: 1755–9.

27. Anderson J, Gordon A, McManus A,
et al. Disruption of imprinted genes at

chromosome region 11p15.5 in paediat-
ric rhabdomyosarcoma. Neoplasia. 1999;

1: 340–8.
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