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Abstract
Pancreatic cancer remains one of themost intractable cancers, with a dismal prognosis reflected by a 5-year survival of ~6%.
Sinceearly disease symptomsare undefinedandspecific biomarkers are lacking, about 80%ofpatients presentwith advanced,
inoperable tumors that represent a daunting challenge. Despite many clinical trials, no single chemotherapy agent has been
reliablyassociatedwithobjective response ratesabove10%ormediansurvival longer than5 to7months.Althoughcombination
chemotherapy regimens have in recent years provided some improvement, overall survival (8-11 months) remains very poor.
There is therefore a critical need for novel therapies that can improve outcomes for pancreatic cancer patients. Here, we
present a summary of the current therapies used in the management of advanced pancreatic cancer and review novel
therapeutic strategies that target tumor biomarkers. We also describe our recent research using phosphatidylserine-
targeted saposin C–coupled dioleoylphosphatidylserine nanovesicles for imaging and therapy of pancreatic cancer.
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Introduction
Although it ranks as the 12th most frequent cancer worldwide,
pancreatic cancer is the 4th leading cause of cancer-related deaths and
carries the highest mortality rate (~94% at 5 years) of all major cancers
[1,2]. In the United States, where currently about 127 people are
diagnosed with pancreatic cancer and 108 die of the disease each day, a
recent analysis predicts that pancreatic cancer will become the second
leading cause of cancer deaths by 2030 [3,4]. Its most prevalent form at
diagnosis, pancreatic ductal adenocarcinoma (PDAC), is usually
asymptomatic in its early stages but progresses rapidly. Thus, the
majority of the pancreatic cancer cases are detected when the tumor has
already metastasized and about 70% of these patients die of the disease
in less than 1 year. A minority of patients, around 15% to 20%, are
eligible for potentially curative resection, and yet, in spite of adjuvant,
post-resection chemotherapy or chemoradiation, the 5-year survival for
these patients is only 20%, with death resulting from metastatic disease
and/or locoregional recurrences [5,6].
2015 The Authors. Published by Elsevier Inc. on behalf of Neoplasia Press, Inc. This
an open access article under the CC BY-NC-ND license (http://creativecommons.
rg/licenses/by-nc-nd/4.0/).
936-5233/15
ttp://dx.doi.org/10.1016/j.tranon.2015.03.011
Etiology and Pathogenesis of Pancreatic Cancer
The etiology of pancreatic cancer remains largely unknown. It is
believed that PDAC arises not from ductal cells but through a process
known as acinar to ductal metaplasia, in which mature acinar cells
transdifferentiate into ductal-like cells [7]. The risk increases with age
(N50 years), obesity, and type 2 diabetes. Smoking is the most
common risk factor, responsible for ~25% of PDAC cases [8,9].
Genetic predisposition, involved in 5% to 10% of cases, has been
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associated with several germline mutations in the BRCA2, STK11/
LKB1, p16/CDKN2A, andPRSS1 genes [10]. Inflammation, associated
with chronic pancreatitis (commonly triggered by heavy alcohol
consumption), also increases the risk of pancreatic cancer [11,12].
A signature molecular profile has emerged from genetic studies,

identifying activating mutations in the oncogene KRAS and
inactivating mutations in the tumor suppressors CDKN2A, TP53,
and SMAD4/DPC4, as the main drivers of pancreatic carcinogenesis
[13,14]. Analysis of early-, middle-, and late-stage disease samples
revealed that mutations in these genes arise sequentially and
contribute to increased malignancy [15]. Propelling the search for
novel therapies, further insights highlighting the complexity of PDAC
have come from genetic studies showing that advanced pancreatic
cancers contain an average of 63 genetic alterations, defining 12 core
signaling pathways represented in two thirds of all tumors analyzed
[13]. Another significant step forward was provided by a recent
analysis of clinical data sets and human pancreatic cancer cell lines,
which allowed the molecular characterization of three subtypes of
PDAC, namely, classic, quasimesenchymal, and exocrine-like, with
distinct progression rates and differential therapeutic responses [16].

Current Treatment Strategies

Early-Stage Resectable PDAC
Complete surgical resection with negative surgical margins (R0

resection) is the only treatment that can potentially result in long-term
survival for some patients with early-stage pancreatic cancer (5-year
survival around 20%). However, only 15% to 20% of patients are
eligible for surgical resection, and many of these patients develop
recurrent and metastatic disease soon after resection. Several studies
have shown negative surgical margin and nodal status as important
prognostic factors. In fact, some studies have demonstrated similar
survival of early-stage PDAC patients who had positive surgical margins
and locally advanced unresectable PDAC patients treated with
chemoradiotherapy or chemotherapy only [17]. Adjuvant chemother-
apy improves the outcomes for these patients, as shown in the European
Charité Onkologie CONKO-001 trial where 368 patients were
randomly assigned to gemcitabine versus observation after surgical
resection. This study showed significant and persistent improvement in
overall survival with 6 months of gemcitabine therapy (21% vs 10%,
5-year survival and 12.2% vs 7.7%, 10-year survival) [18].
Neoadjuvant chemotherapy or chemoradiotherapy is gaining

popularity in an attempt to achieve R0 resection in more patients.
Phase I/II studies have demonstrated that neoadjuvant chemoradio-
therapy can be safely delivered to patients with localized pancreatic
cancer; however due to the lack of a surgery-alone arm, it is not clear if
this approach improves resectability or survival, and benefits are not
inferior to adjuvant therapy. Advancements in imaging and surgical
techniques have made the distinction between resectable and
unresectable locally advanced tumors somewhat blurry, and more
patients are classified as borderline resectable. Neoadjuvant therapy
may be especially useful in these patients, and clinical trial
participation is strongly encouraged in this group of patients to
determine the most appropriate preoperative therapy.

Unresectable Locally Advanced PDAC
For almost 40% of PDAC patients with unresectable non-metastatic

disease, there is no known best treatment strategy, and options include
radiotherapy, chemotherapy, or chemoradiotherapy [19].Most patients
undergo chemotherapy initially, with single agent gemcitabine still
considered standard treatment in this setting [20,21]. Many centers
however are using FOLFIRINOX, a combination of 5-fluorouracil
(5-FU), leucovorin, irinotecan, and oxaliplatin, for patients with
excellent performance status and normal liver function or gemcitabine
with nab-paclitaxel, citing higher response rates for these combination
chemotherapy regimens in the metastatic setting (10% with gemcita-
bine alone, 23% with gemcitabine plus nab-paclitaxel (albumin-bound
paclitaxel) i.e. GEM/NAB-P, and 32% with FOLFIRINOX), making
it more likely to convert these patients into resectable disease [22,23].
However, evidence from prospective trials in favor of this theory is still
lacking, and no randomized trials have been conducted comparing
neoadjuvant versus adjuvant therapy. Most patients will also undergo
chemoradiotherapy if no progression is noted on interval staging. Best
concomitant chemotherapy with external beam radiotherapy is also not
well established and could include infusional 5-FU, capecitabine, or
gemcitabine. Many centers are also evaluating stereotactic body
radiation as an alternative to conventional external beam radiotherapy.
Unfortunately, even with all these therapies, the prognosis, rate of
resection, and long-term survival remain dismal for patients who
initially have categorically unresectable tumors at diagnosis.

Metastatic PDAC
Pancreatic cancer is strikingly unresponsive to most conventional

chemotherapies [24]. The nucleoside analog gemcitabine
(2′,2′-difluorodeoxycytidine), adopted in the mid-1990s as first-line
chemotherapy, provides only modest survival benefits (b6 months) to
pancreatic cancer patients [25] and has been combined with many
other drugs, including cisplatin, [26,27] oxaliplatin [28,29],
irinotecan [21,30], exatecan [31], 5-FU [32], and pemetrexed [33],
in phase III trials without significant improvements [2]. Although
gemcitabine in combination with erlotinib (an inhibitor of the
epidermal growth factor receptor type 1) demonstrated a statistically
significant improvement in overall survival (6.2 vs 5.9 months) in a
phase III study, the difference was not clinically meaningful [34]. In
2011, FOLFIRINOX showed significant survival benefit (11.1 vs 6.8
months) compared with gemcitabine alone in a phase III study of
metastatic PDAC [22]. This trial also demonstrated a significant
increase in toxicity, limiting the use of FOLFIRINOX to patients
with good performance status [35]. Another phase III study evaluated
GEM/NAB-P versus gemcitabine alone in patients with untreated
metastatic pancreatic cancer after early studies showed promising
activity of this combination [23]. The combined chemotherapy
yielded a modest but significant survival benefit (8.5 vs 6.7 months),
and due to its milder toxicity, it may be a better option for older
patients with poorer performance status [36]. A recent network
meta-analysis of chemotherapy regimens for advanced pancreatic
cancer provided a comprehensive assessment of the efficacy and
tolerability of combined therapies versus gemcitabine alone [37].

Molecular Targets for Pancreatic Cancer Therapy
On the basis of our increasing knowledge of the genetic and molecular
alterations in pancreatic cancer, numerous trials combining gemci-
tabine and one or more tumor-targeted agents are currently under
way [38]. These efforts are largely driven by preclinical data generated
in animal models, including heterotopic and orthotopic human
pancreatic cancer xenografts as well as genetically engineered mouse
models that closely resemble the molecular alterations encountered in
the clinic [39,40]. Among the latter, the most enticing target is the



Figure 1. PS levels and cytotoxic effects of SapC-DOPS on human pancreatic cancer cells. (A) Measurement of PS exposure levels
(annexin V binding assay) in human, untransformed pancreatic ductal epithelium (HPDE), and pancreatic cancer cell lines. (B) Microscopy
images of untreated and SapC-DOPS–treated cells show preferential killing of high surface PS cancer cells. (C) Cell viability using the
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay shows increased killing ability of SapC-DOPS toward human pancreatic
cancer cells with high surface PS.
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KRAS oncogene, a critical driver of tumorigenesis that is mutated
in ~95% of pancreatic cancers [41–43]. Thirty years after this
realization, however, attempts to target activating, mutant KRAS
proteins have been largely unsuccessful [20,44]. New approaches have
focused instead on targeting RAS effector pathways such as RAF →
mitogen-activated protein kinase kinase→ extracellular signal-regulated
kinase and phosphatidylinositol 3-kinase → AKT, with synergistic
antitumor effects observed upon simultaneous inhibition of these
pathways in human cell lines and pancreatic cancer mouse models [45].
Recent studies also advanced potential therapies that target gene
transcription mediated by the proto-oncogene c-Myc [46] and
mitochondrial respiration in stem cells resistant to KRas ablation [47].

Tumor Stroma
Advanced pancreatic tumors have a dense, fibrotic, hypovascular

stroma with low cellularity and pro-inflammatory infiltrating cells
(i.e., desmoplastic reaction) that contributes to tumor progression and
reduces therapeutic success by hampering the penetration of drugs
[48,49]. In recent years, several studies sought to target the cellular
components (pancreatic stellate cells, fibroblasts, and immune cells)
of the desmoplastic matrix and their tumor-promoting molecular
mediators, such as cytokines, growth factors, and metalloproteases
(MMPs) [50]. Two animal model studies in particular shed light on
the importance of the PDAC stroma in the resistance to antitumor
therapies. The first, conducted in a genetically engineered mouse
model, showed that inhibition of the Hedgehog signaling pathway,
involved in tumor-stromal crosstalk, depleted the tumor stroma,
restored vascularity, enhanced delivery of gemcitabine, and produced
a modest extension in survival, although the stromal reaction
ultimately returned [51]. Unfortunately, a clinical trial prompted
by this research was stopped before conclusion due to better responses
in the control arm. The second preclinical study tested gemcitabine
with enzymatic therapy to degrade hyaluronic acid, a main
determinant of the barrier properties of PDAC stroma; this treatment
normalized interstitial pressure and vascularization and doubled
survival in mice [52]. MMPs play a fundamental role in tumor stroma
remodeling and promotion of tumor growth [53,54]. Building on
promising preclinical data, anti-MMP therapies using marismat and
BAY-12-9566 were tested in clinical trials without positive results
[48]. Likewise, attempts to block angiogenesis, a critical mechanism
facilitating the expansion of most solid tumors, also yielded
disappointing results in clinical trials [55–57]. However, animal
studies suggest that novel antiangiogenic therapies targeting the
C-X-C chemokine receptor type 2 may prove beneficial [58].

Tumor Immunity and Inflammation
Inflammation and immunosuppression collaborate to create a

permissive environment for tumor growth [50,59]. Highlighting the
role of immunosuppression in pancreatic cancer, preclinical studies
showed that ablation of KRAS-driven granulocyte-macrophage
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Figure 2. In vivo imaging of pancreatic cancer xenografts with fluorescently labeled SapC-DOPS. (A) Optical imaging of mice bearing
subcutaneous pancreatic tumors (MiaPaCa-2 human cancer cells) after injection (i.v.) with SapC-DOPS–CVM (mice 1 and 2),
non-complexed SapC plus fluorescently labeled DOPS (mouse 4), DOPS-CVM (mouse 5), and phosphate-buffered saline (PBS; mouse 6).
Mouse 3 bore no tumor and was injected with PBS. Mice 1 to 3 were imaged at 24 hours and mice 4 to 6 at 48 hours after tail vein
injection. Transient accumulation in liver was also observed, although it dissipated by 24 hours, while SapC-DOPS–CVM fluorescence
persisted for up to 4 days. (B) Tumor bioluminescence (left) and optical imaging (SapC-DOPS–CVM; right) of mice bearing orthotopic
pancreatic tumors induced by implantation of luciferase-expressing human pancreatic cancer cfPac1-Luc3 cells. Note specific tumor
targeting by SapC-DOPS–CVM 48 hours after tail vein injection. A control mouse (non-tumor; PBS injected) is shown on the right.
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colony-stimulating factor production reduced myeloid cell infiltra-
tion, unleashing T cell (CD8+)–dependent immune responses and
causing tumor growth arrest [60,61]. Further efforts to evoke intrinsic
antitumor responses are exemplified by the development of an
α-enolase DNA vaccine, which halted tumor progression by
activating humoral and cellular responses [62], and vaccination
with Listeria monocytes engineered to express Kras(G12D) after
depletion of regulatory T cells, which triggered T cell–dependent
cytotoxicity and blocked tumor progression at early stages [63].
Tumor-associated macrophages are another relevant therapeutic
target, since they contribute to gemcitabine resistance by upregulating
cytidine deaminase, the enzyme that metabolizes gemcitabine,
rendering it inactive [64]. In a small study of patients with inoperable
PDAC, administration of an agonist CD40 antibody in combination
with gemcitabine caused tumor regression in some patients [65].
Modeling this study in mice showed that pancreatic tumor-associated
macrophages became activated on CD40 antibody ligation and
elicited T cell–independent antitumor actions leading to a tumor
regression rate (~30%) that reproduced that in human patients [66].
Other appealing therapeutic targets are the signaling hubs represented
by the Stat3 and nuclear factor kappa-light-chain-enhancer of
activated B cells pathways, which determine the release of
proinflammatory cytokines such as tumor necrosis factor alpha and
interleukins 6 and 1 [50].
Phosphatidylserine-Targeted Imaging and Therapy
of Pancreatic Cancer with SapC-DOPS Nanovesicles

Phosphatidylserine (PS) is an anionic phospholipid with important
structural and signaling properties [67]. In animal cell membranes, it
localizes in the internal aspect of the cell membrane, but it is
externalized on induction of apoptosis and at sites of injury, where it
stimulates hemostasis and activates the complement cascade [68,69].
Notably, viable cancer cells and tumor-associated vascular cells
usually present elevated levels of PS on the surface of their membranes
[70,71]. It is not clear whether this is advantageous for tumor cells,
although evidence seems to indicate that tumor immunity and
metastatic potential may be counteracted and favored, respectively, by
increased surface PS levels [72]. In the last decade, our group and
others have worked to exploit this distinctive feature of cancer cells to
develop PS-targeted therapies. What follows is a summary of our
work using PS-binding lipid-protein nanovesicles for imaging and
treatment of pancreatic cancer.

Saposin C (SapC) is a small, thermostable lysosomal protein that
binds to PS and acts as a co-factor in the activation of acid
β-glucosidase, acid sphingomyelinase, and acid β-galactosylcerami-
dase [73,74]; the catalytic action of these enzymes results in the
formation of ceramide, a well-established pro-apoptotic mediator
[75]. Given the strong affinity of SapC toward PS, and its role
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Figure 3. In vivo antitumor actions of SapC-DOPS on pancreatic cancer mouse models. Tumor size measurements in subcutaneous
xenografts of MiaPaCa-2 cells (A) or Panc-1 cells (B). After tumor establishment, mice were treated with SapC-DOPS or PBS through tail
vein injections as described in detail in [77]. (C) Kaplan-Meier survival curves of mice bearing orthotopic pancreatic tumors (human
cfPac1-Luc3 cells) treated with PBS or SapC-DOPS as described in [77]. SapC-DOPS treatment reduced the growth of s.c. tumors and
eliminated pancreatic tumors in four of six mice. (D) Hypothetical mechanism mediating the selective targeting and toxicity exerted by
SapC-DOPS against cancer cells [77].
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in lysosomal hydrolase activation, we hypothesized that SapC-
containing nanovesicles may be useful agents to selectively target and
kill tumor cells. To this end, we combined recombinant human SapC
and dioleoylphosphatidylserine (DOPS) to generate stably assembled
proteoliposomal nanovesicles (SapC-DOPS) [76] and tested their
targeting and antitumor capabilities against pancreatic cancer cells
[77]. We first examined the correlation between PS levels and the
antitumor efficacy of SapC-DOPS in a panel of eight human
pancreatic cancer cell lines. As shown for glioblastoma [78] and lung
cancer cells [79], a higher killing capacity (i.e., lower half maximal
inhibitory concentration; IC50) was observed for high PS-expressing
cells (Figure 1). To evaluate the tumor-targeting potential of
SapC-DOPS, we attached a far-red, lipophilic, fluorescent dye
(CellVue Maroon, CVM) and analyzed the biodistribution of
SapC-DOPS–CVM in subcutaneous and orthotopic xenografts of
human pancreatic cancer cells in nude mice. As shown in Figure 2,
specific tumor fluorescence was observed in both models after
intravenous injection of SapC-DOPS–CVM. The PS selectivity of
SapC-DOPS was confirmed by showing that blocking surface PS
residues in cancer cells before subcutaneous implantation abolished
targeting by CVM-labeled nanovesicles [77]. The antitumor actions
of SapC-DOPS were evaluated in mouse models of pancreatic cancer
(Figure 3, A–C). These experiments showed that SapC-DOPS
treatment significantly suppressed subcutaneous tumor growth and
eradicated orthotopic tumors in four of six mice with pancreatic
xenografts.Molecular studies suggested that caspase-mediated apoptosis is
involved in SapC-DOPS cytotoxicity against pancreatic cancer cells
(Figure 3D) [77].

Other investigators have also exploited the ubiquitous expression of
PS in tumor cells and tumor vasculature to design and test the
tumor-targeting and therapeutic efficacy of anti-PS antibodies. For
instance, a recent study used liposomes functionalized with a
PS-targeted human monoclonal antibody that contained both a
near-infrared dye and superparamagnetic iron oxide nanoparticles to
perform selective, bimodal (magnetic resonance and optical) imaging
of breast cancer xenografts [80]. Interestingly, another study has
shown that anti-PS antibodies can elicit immune antitumor responses
by converting myeloid-derived suppressive cells into tumoricidal M1
macrophages or dendritic cells capable of engaging cytotoxic T cell–
dependent cytotoxicity [81]. Preclinical studies showed good
targeting efficacy of PS-directed antibodies in several tumor models
[82–86]. In orthotopic mouse models of pancreatic cancer, Beck et al.
showed that gemcitabine plus the PS-targeting antibody 3G4 had
additive antitumor activity and significantly reduced metastases [87].
PS-targeted antibodies have shown, so far, modest therapeutic effciacy
in clinical trials [88,89]. A randomized, open-label phase II trial
evaluated an anti-PS antibody, bavituximab, plus gemcitabine versus
gemcitabine alone in patients with advanced PDAC. The combined
regimen was well tolerated and showed moderate activity with 28%
tumor response rate versus 13% in the gemcitabine arm. Median
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survival was 5.6 months versus 5.2 months for the control arm (hazard
ratio = 0.75) [90].

Conclusions
Pancreatic cancer is a devastating disease for which there are no
effective therapies. While concerted efforts to reduce risk factors such
as obesity and tobacco and alcohol abuse are clearly paramount to
prevent pancreatic cancer, its incidence is only expected to increase
with a larger aging population sustained by constant medical
advances. Two factors contribute to the high mortality of pancreatic
cancer: the difficulty in early detection, due to unspecific
symptomatology and a lack of robust biomarkers, and the resistance
of advanced tumors to conventional chemotoxic agents and radiation
therapy. Targeted therapies are poised to revolutionize cancer
treatment by providing increasing efficacy while avoiding or reducing
the adverse side effects characteristic of conventional cancer
treatments. A formidable challenge, however, is presented by the
complex nature of most tumors, in which multiple redundant and
compensatory mechanisms virtually guarantee that tumor eradication
cannot be achieved by silencing any individual molecule or signaling
pathway. Rather, strategies that target broadly expressed tumor-specific
antigens, while concurrently triggering tumor autolysis, may provide a
breakthrough in the treatment of pancreatic and other cancers.
Our recent work has shown that PS targeting and tumor toxicity

can be effectively achieved in mouse models of pancreatic cancer with
PS-targeted nanovesicles [77]. Preclinical studies from our laboratory
have also shown the potential of PS-targeted SapC-DOPS nanove-
sicles as imaging and therapeutic agents in a number of primary and
metastatic tumors [76,78,91–95]. Importantly, the affinity of SapC
for PS is greatly enhanced at acidic pH [96,97], a condition
encountered in the majority of solid tumors that is known to
stimulate drug resistance and create a propitious environment for
tumor stem cells [78,79,98]. This evidence, along with the favorable
safety profile of SapC-DOPS [76], strongly supports testing its
applicability as a diagnostic and therapeutic agent for pancreatic
cancer patients in clinical studies [99].
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