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A B S T R A C T

Background: A risk haplotype in SLC16A11 characterized by alterations in fatty acid metabolism emerged as a genetic risk factor associated
with increased susceptibility to type 2 diabetes (T2D) in Mexican population. Its role on treatment responses is not well understood.
Objectives: We aimed to determine the impact of the risk haplotype on the metabolomic profile during a lifestyle intervention (LSI).
Methods: We recruited Mexican-mestizo individuals with �1 prediabetes criteria according to the American Diabetes Association with a
body mass index between 25 and 45 kg/m2. We conducted a 24-wk quasiexperimental LSI study for diabetes prevention. Here, we compared
longitudinal plasma liquid chromatography/mass spectrometry metabolomic changes between carriers and noncarriers. We analyzed the
association of risk haplotype with metabolites leveraging repeated assessments using multivariable-adjusted linear mixed models.
Results: Before the intervention, carriers (N ¼ 21) showed higher concentrations of hippurate, C16 carnitine, glycine, and cinnamoyl-
glycine. After 24 wk of LSI, carriers exhibited a deleterious metabolomic profile. This profile was characterized by increased concentrations
of hippurate, cinnamoglycine, xanthosine, N-acetylputrescine, L-acetylcarnitine, ceramide (d18:1/24:1), and decreased concentrations of
citrulline and phosphatidylethanolamine. These metabolites were associated with higher concentrations of total cholesterol, triglycerides,
and low density lipoprotein cholesterol. The effect of LSI on the risk haplotype was notably more pronounced in its impact on 2 metabolites:
methylmalonylcarnitine (β: �0.56; P-interaction ¼ 0.014) and betaine (β: �0.64; P-interaction ¼ 0.017). Interestingly, lower consumption
across visits of polyunsaturated (β: �0.038; P ¼ 0.017) fatty acids were associated with higher concentrations of methylmalonylcarnitine.
Covariates for adjustment across models included age, sex, genetic ancestry principal components, and body mass index.
Conclusions: Our study highlights the persistence of deleterious metabolomic patterns associated with the risk haplotype before and during
a 24-wk LSI. We also emphasize the potential regulatory role of polyunsaturated fatty acids on methylmalonylcarnitine concentrations
suggesting a route for improving interventions for individuals with high-genetic risk.
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Introduction

Type 2 diabetes mellitus (T2D) is a highly prevalent metabolic
disorder that implies significant challenges for health systems
worldwide [1]. It is estimated that ~537 million adults were
living with diabetes in 2021, and this number is projected to
increase to 783 million by 2045 [2]. Prediabetes, a precursor
stage to T2D, is characterized by elevated blood glucose con-
centrations that do not meet the diagnostic criteria for diabetes
but indicate increased risk of developing the T2D and cardio-
vascular morbidity [3–5]. Identifying effective strategies to
prevent or delay the progression from prediabetes to diabetes is
important to public health owing to its potential to reduce dis-
ease burden [4].

Genetic factors play a crucial role in the pathogenesis of T2D
and prediabetes. Over the past decade, genome-wide association
studies have led to the identification of numerous genetic loci
associated with diabetes risk [6,7]. In 2014, a haplotype in
SLC16A11 gene emerged as a genetic risk factor associated with
increased susceptibility to T2D in the Mexican population [8,9].
The SLC16A11 gene, located on chromosome 17, encodes a
proton-linked monocarboxylate transporter that plays a role in
glucose metabolism and insulin sensitivity [10–12]. The
disruption in the function of SLC16A11 in liver results in alter-
ations in lipid metabolites, including acylcarnitines, diac-
ylglycerols (DAGs), and triacylglycerols [10]. These metabolites
are related to fatty acid and lipid metabolism, which are linked
to elevated risk of T2D [13]. The liver accumulation of DAGs is
key abnormality of lipotoxicity. Furthermore, acylcarnitine’s
accumulation is associated with hepatic steatosis and changes in
AKT, a key regulator of energy utilization [14]. In addition,
SLC16A11 T2D risk variants disrupt oxygen-regulated SLC16A11
expression in human hepatocytes [15].

Research to date has not yet established the extent to which in
vitro associations are observed in human carriers of the
SLC16A11 risk variants. In humans, SLC16A11 has been associ-
ated with in early-onset T2D [16], decreased insulin action,
higher acute insulin secretory response to an intravenous glucose
bolus, higher alanine aminotransferase concentrations, and
increased BMI [8,11,17]. Additionally, an association was found
between this variant and the mild obesity diabetes sub-
phenotype, regardless of whether patients were homozygotes or
heterozygotes [18]. Mild obesity diabetes is characterized by
early onset of the disease, greater adiposity, and selective
response to metformin and sulfonylureas [19]. The genetic fac-
tors along with unhealthy lifestyles might be contributing to the
high prevalence of T2D and metabolic diseases in Hispanic in-
dividuals [20,21]. In Mexico, the prevalence of T2D has
increased substantially over the past 3 decades [22], and it is
significantly higher, estimated at 18%, in comparison with the
global average of 10.5% [23]. Lifestyle modifications, including
diet and physical activity changes and mobile applications [24],
have been shown to improve glycemic control, reduce body
weight, and decrease the risk of diabetes [25–27]. Moreover,
recent advancements such as high-throughput technologies,
including metabolomic analysis—the identification of interme-
diary molecules and metabolism byproducts [28], have facili-
tated the recognition of biological pathways potentially
impacted by both genetic variations and lifestyle factors [28,29].
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This progress opens up new avenues for refining interventions by
incorporating individual metabolic profiles [30,31]. To date, to
our knowledge, no studies have explored the metabolomic sig-
natures associated with the SLC16A11 risk haplotype in humans,
nor how these signatures might change in response to lifestyle
interventions (LSIs) in subjects at risk of T2D. In this study, we
aimed to identify the effect of SLC16A11 risk haplotype on
metabolomic signatures before and after a LSI in Mexican in-
dividuals with prediabetes.
Methods

Study population
Participants were recruited at the Unidad de Investigaci�on de

Enfermedades Metab�olicas within the Instituto Nacional de
Ciencias M�edicas y Nutrici�on Salvador Zubir�an in Mexico City.
The quasiexperimental LSI study took place from January 2017
to August 2018. Participants were subjects who responded to
social media advertisements. In both cohorts, inclusion criteria
for study subjects were as follows—Mexican mestizos with �1
prediabetes criteria according to the American Diabetes Associ-
ation [fasting glucose between 100 and 125 mg/dL, glycosylated
hemoglobin (HbA1c) between 5.7 and 6.4, and 2-h blood sugar
between 140 and 199 mg/dL after an oral load of 75 g of
glucose]; age range between 18 and 65 y; and overweight or
obesity (BMI ¼ 25.0–40 kg/m2). Exclusion criteria included any
condition that transiently alter glucose tolerance (i.e., preg-
nancy, chronic use of medications including medications to
reduce lipid and glucose concentrations) and participants who
did not attend their follow-up visits in the first 2 mo and with
>20% of missing data.

This study was approved by the ethics committee of the
Instituto Nacional de Ciencias M�edicas y Nutrici�on Salvador
Zubir�an. Written informed consent was obtained from each
participant. Research was conducted according to the tenets of
the Helsinki Declaration of Human Studies principles.
Life style intervention
The LSI of this study has been described previously [32]. In

brief, the study included 4 visits: screening, intervention,
follow-up, and final. For the screening visit, participants under-
went a 2-h oral glucose tolerance test (OGTT) using 75 g of
glucose. Anthropometric measures were performed in the
screening visit following standardized protocols. The LSI inter-
vention was implemented by individuals holding a bachelor’s
degree with �4 y of training in human nutrition and in a 1-y
clinical research rotation at the time of the study. These in-
dividuals were trained in dietary and anthropometric evaluation
and implementation of the nutritional care process [33]. This
intervention included a hypocaloric diet (500 kcal reduction of
daily energy expenditure), distributed as follows: 45% of the
total calorie daily intake of carbohydrates, 30% lipids, and 15%
from protein sources. Additionally, participants received
personalized physical activity recommendations to achieve
>150 min of moderate-intensity exercise per week. After 12 wk,
subjects attended a follow-up visit with the dietitian to reinforce
knowledge and goals. The final visit took place 24 wk after the
intervention visit, and all measurements were repeated,
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including anthropometric measurements, body composition
measurements, and OGTT. Adherence to the intervention was
assessed via participant self-report on every visit.
Questionnaires and calculations
Daily energy and macronutrient and micronutrient intakes in

both studies were assessed through a 24-h food recall at each
visit (baseline, intermediate, and final). Data were analyzed
using ESHA’s Food Processor Nutrition Analysis software.
HOMA-IR was computed as fasting glucose� fasting insulin/405
[34]. AUC was calculated using the formula using the OGTT
measurements of glucose or insulin: [AUC (mmol/L � min) ¼
1/2 � (measurement 0 min þ measurement 30 min) � 30 min
þ1/2� (measurement 30 minþmeasurement 60 min)� 30 min
þ1/2� (measurement 60minþmeasurement 90 min)� 30min
þ1/2 � (measurement 90 minþ measurement 120 min) � 30
min]. Incremental AUC was computed using the same formula
but subtracting baseline measurements from each time
measurement.
Biochemical and genotype analysis
Measurements were derived from serum samples from the

OGTT in both studies: glucose, insulin, and lipid profile were
analyzed with colorimetric enzymatic methods (Unicel DxC 600
Synchron Clinical System; Beckman Coulter). Insulin was
measured with chemiluminescence essay (Access 2; Beckman
Coulter). As for HbA1c, a 4-mL peripheral blood sample was
taken by venipuncture with standardized technique and
measured in the Variant II Turbo, BIORAD using HPLC. Samples
were genotyped for the SCL16A11 risk variants rs13342232
A>G and rs75493593 G>C, both as part of the haplotype,
including 4 missense and 1 silent variant (V113I, L187L, D127G,
G340S, and P443T). Genotyping was performed using the Quant
Studio 12K Flex Real-Time PCR platform from ThermoFisher
Scientific.
Genetic ancestry principal component calculation
and Hardy–Weinberg estimation

In both studies, we estimated global ancestry and corrected
for population stratification using a panel of 32 ancestry infor-
mative markers, which are highly informative of the major
ancestral components of Mexican mestizos. The correlation be-
tween the global ancestry proportions calculated using genome-
wide data and the panel of 32 ancestry informative markers is r2

¼ 0.972 [35].
Hardy–Weinberg equilibrium was assessed by computing the

allele frequencies of the population sample calculating the ex-
pected genotype frequencies using the Hardy–Weinberg equa-
tion: p2 þ 2pq þ q2 ¼ 1, where p is the frequency of one allele
and q is the frequency of the other allele. Compare the observed
and expected genotype frequencies using a χ2 test.
Metabolomic analysis
The plasmametabolomics profiling was performed before and

after the intervention in the Metabolomics Platform at the Broad
Institute of Massachusetts Institute of Technology and Harvard.
We used liquid chromatography tandem mass spectrometry (LC-
MS) that couples hydrophilic interaction liquid chromatography
3

with positive ion mode mass spectrometry (HILIC-pos) and that
has been described in detail previously [29]. Samples were taken
in 3 batches, and we did not detect any batch effect among the
metabolomic samples (Supplemental Figure 1). A total of 219
named metabolites were qualified for primary analyses (Sup-
plemental Table 1). To reduce noise in the profiling data, we
implemented a quality control (QC) pipeline (https://github.
com/broadinstitute/QC_metabolomics) and metabolite signals
with noisy trends were removed from the study. Missing data in
LC-MS analyses are often attributable to measurements falling
below the level of detection. The QC steps included the
following: normalization with internal standards and pooled
samples, removal of metabolites with >25% of missing values,
missing value imputation using half of the minimum value,
windsorization to �5 SD, log normalization, and z-score scaling.
A total of 15 metabolites (6.8%) showed a missing proportion of
>0 and were imputed, and 2 metabolites showed missing values
of >10%. The main the missing metabolites primarily reflect
external exposures, being associated with substances such as
paracetamol, valsartan, and nicotine (Supplemental Table 2). All
models were adjusted for age, sex, BMI, and 5 genetic principal
components (PCs). For sensitivity analysis, a restricted model
using only 2 genetic PCs was also evaluated to ensure 10 in-
dividuals per covariate, enhancing the statistical robustness of
our findings.
Statistical analysis
The baseline characteristics of the study population were

presented with descriptive statistics. Quantitative variables were
reported as mean and SD for parametric variables and median
and IQR for nonparametric variables, and qualitative variables
were presented as frequencies and percentages. The difference
preintervention and postintervention was computed using Δs,
obtained by subtracting the baseline visit value from the final
visit value. Paired t tests or Wilcoxon tests were used, according
to variable’s distribution, for comparing baseline and post-
interventional values. To assess statistical distinctions between
SCL16A11 risk carriers and noncarriers, as well as between
treatments, t tests or Mann–Whitney U tests were applied in
accordance with the variable distribution. Fold-change was used
to visually represent changes preintervention and post-
intervention, calculated as follows: (posttreatment value/base-
line value) � 1. We used linear models to estimate baseline
metabolomic differences between carriers and noncarriers
adjusting for covariates: age, sex, BMI, and 5 genetic ancestry
PCs. The impact of the SLC16A11 risk haplotype on longitudinal
metabolomic profiles during treatment, as well as its effect
modification, was analyzed using linear mixed-effect models.
These analyses were performed with the lmer function from the
lme4 package in R, which is available at https://cran.r-project.
org/web/packages/lme4/index.html. The “visit” variable was
treated as a fixed effect, whereas “subject id” served as a random
effect within the linear mixed-effect models. These models were
adjusted for age, sex, BMI, and 5 genetic ancestry PCs. We also
conducted a sensitivity analysis using only 2 PCs, along with age,
sex, and BMI, resulting in 5 covariates. This approach was
adopted to adhere to avoid exceeding the number of covariates
per sample [36]. All analyses were conducted using R package
version 4.0.0.

https://github.com/broadinstitute/QC_metabolomics
https://github.com/broadinstitute/QC_metabolomics
https://cran.r-project.org/web/packages/lme4/index.html
https://cran.r-project.org/web/packages/lme4/index.html
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Results

A total of 52 individuals who met the inclusion criteria and
had both metabolomic and genomic data were included in the
analysis. The subsample was comparable with the original
sample [32] in terms of age, sex, BMI, fasting glucose, and HbA1c
concentrations.

At baseline, we did not observe significant differences in
clinical parameters between carriers and noncarriers (Table 1).
After 24 wk, LSI was effective in reducing weight, waist
circumference, body fat, fasting glucose, and HbA1c and in
increasing insulin sensitivity as has been previously described
[32]. Additionally, stratification by genotype did not reveal
significant differences in changes in clinical parameters resulting
from the intervention (Supplemental Table 3).
Metabolomic profile differences before and after the
intervention

We studied the metabolomic profile before and after the LSI
intervention. LSI was effective in reducing C14 carnitine, PS/
P36, inosine, thyroxine, myristoleic acid, and niacinamide
abundances, which resulted in changes in the taurine and
hypotaurine metabolism pathway. These changes are compatible
with biomarkers of protein consumption, particularly, lower red
meat and animal fats and higher seafood and vegetables as
previously described [32].
TABLE 1
Baseline characteristics of study participants by genotype: quasiexperimen

Variable All participants, N ¼ 521 Carriers

Genotype, n (%)
Noncarrier homozygous 31 (59.6) 0 (0.0)
Heterozygous 16 (30.8) 16 (76.2
Carrier homozygous 5 (9.6) 5 (23.8)

Age (y) 51.94 (11.06) 51.24 (1
Gender, n (%)
Female 36 (69.2%) 16 (76.2
Male 16 (30.8%) 5 (23.8%

BMI (kg/m2) 30.02 (4.01) 30.36 (4
Fasting glucose (mg/dL) 98.25 (9.05) 99.95 (8
Glucose 30 min (mg/dL) 159.24 (28.11) 165.05 (
Glucose 120 min (mg/dL) 128.02 (29.74) 135.33 (
Log fasting insulin 2.15 (0.55) 2.10 (0.
Log insulin 30 min 4.11 (0.68) 4.11 (0.
Log insulin 120 min 4.21 (0.76) 4.20 (0.
Hemoglobin A1c (%) 5.89 (0.25) 5.92 (0.
Log Matsuda �0.07 (0.59) �0.06 (0
HOMA-IR 2.45 (1.50) 2.38 (1.
Log triglycerides 4.86 (0.62) 4.96 (0.
Total cholesterol (mg/dL) 192.50 (37.08) 193.19 (
LDL-C (mg/dL) 118.43 (31.10) 116.91 (
ApoB (mg/dL) 113.39 (21.94) 114.02 (
GGT (IU/L) 22.02 (17.26) 20.00 (1
AST (IU/L) 27.48 (24.90) 32.55 (3
ALT (IU/L) 26.67 (19.28) 31.05 (2

Abbreviations: ALT, alanine transaminase; ApoB, apolipoprotein B; AST, a
vention study, HOMA-IR, Homeostasis Model Assestment for Insulin Resist
1 n (%); mean (SD); median (IQR)
2 Pearson χ2 test; Welch 2-sample t test.
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Metabolomic profile differences between carriers
and noncarriers at baseline

When we contrasted metabolomic profiles of carriers and
noncarriers at baseline, carriers demonstrated distinct abun-
dances of carnitines, α-amino acids, and purines than noncarriers
(Figure 1). Analysis indicated significant differences in metabo-
lite abundances between carriers and noncarriers (Supplemental
Table 4). Specifically, carriers displayed higher concentrations of
hippurate (β: 0.59; P ¼ 0.016), C16 carnitine (β: 0.60; P ¼
0.028), glycine (β: 0.56; P ¼ 0.046), and cinnamoylglycine (β:
0.61; P ¼ 0.017). Conversely, they exhibited lower concentra-
tions of glutarylcarnitine (C5-DC carnitine; β: �0.66; P ¼ 0.028)
and N-α-acetylarginine (β: �0.68; P ¼ 0.020). These changes
correspond to a 1-SD increment in the genetic variant’s effect,
compared with noncarriers adjusted for age, sex, BMI, and 5
genetic PCs.

In the full sample, some of these metabolites exhibited asso-
ciations with a deleterious metabolic profile. Specifically, lower
concentrations of baseline glutarylcarnitine were found to
correlate with higher concentrations of postprandial insulin at
120 min (β: �0.42; P ¼ 0.0025). Additionally, glycine abun-
dances were positively correlated with HbA1c concentrations (β:
0.33; P¼ 0.022), whereas cinnamoylglycine was associated with
elevated total cholesterol (β: 0.43; P ¼ 0.010) and HDL choles-
terol (β: 0.34; P ¼ 0.030). Furthermore, the metabolites
distinctive between carriers and noncarriers demonstrated sig-
nificant associations with dietary factors. Specifically, higher
tal LSI study.

, n ¼ 21 (40.4%)1 Noncarriers, n ¼ 31 (59.6%)1 P2

<0.001
31 (100.0)

) 0 (0.0)
0 (0.0)

2.32) 52.42 (10.30) 0.719
0.556

%) 20 (64.5%)
) 11 (35.5%)
.21) 29.79 (3.93) 0.627
.78) 97.10 (9.19) 0.265
23.68) 155.17 (30.56) 0.200
26.72) 123.06 (31.06) 0.135
56) 2.18 (0.54) 0.620
80) 4.10 (0.61) 0.956
72) 4.21 (0.80) 0.960
29) 5.86 (0.23) 0.475
.58) �0.08 (0.61) 0.901
58) 2.50 (1.46) 0.790
61) 4.81 (0.55) 0.711
39.14) 192.03 (36.28) 0.915
28.99) 119.45 (32.88) 0.771
18.74) 112.90 (24.55) 0.877
0.60) 23.43 (20.76) 0.443
8.68) 24.10 (6.15) 0.344
4.97) 23.71 (13.92) 0.231

spartate transaminase; GGT, γ-glutamyl transferase; LSI, lifestyle inter-
ance, LDL-C, low density lipoprotein choleserol.



FIGURE 1. Significant metabolomic differences at baseline between SLC16A11 carriers and noncarriers. The plot displays the metabolites that
show significant differences in abundance (P < 0.05) between the 2 groups. Each point on the plot represents the mean and the bars the SE of the
residuals from a linear regression model. The model was adjusted for age, sex, BMI, and 5 principal components.
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intake of PUFAs exhibited correlations with lower abundances of
glutarylcarnitine (β:�0.15; P¼ 0.038) and higher abundances of
acetylgalactosamine (β: 0.18; P ¼ 0.004). Additionally, lower
total lipid consumption (%) (β:�0.02; P¼ 0.008) and SFA intake
(β: �0.35; P ¼ 0.018) showed correlations with N-α-acetylargi-
nine concentrations.
Longitudinal metabolomic differences between
carriers and noncarriers

Next, we tested whether metabolomic differences by geno-
type were consistent across the 2 visits. We identified, 8 me-
tabolites for which differences between carriers and noncarriers
were consistent across visits (Figure 2; Supplemental Table 5).
Hippurate and cinnamoylglycine consistently exhibited higher
abundances among carriers. In contrast, a group of lipids
demonstrated varying abundances: ceramide (d18:1/24:1) and
L-acetylcarnitine (C2 carnitine) were found in higher concen-
trations in carriers, whereas phosphatidylethanolamine (PE) (P-
5

36:4)/PE(O-36:5) showed lower abundances in carriers
compared with noncarriers. These lipids are known for their role
in regulating metabolic health, specifically in the transportation
of fatty acids [13]. In our sample, these metabolites demon-
strated longitudinal associations with glucose and lipid traits.
For example, ceramide (d18:1/24:1) exhibited a strong correla-
tion with elevated concentrations of total cholesterol (β: 0.42; P
¼ 7.8 � e�10), LDL cholesterol (β: 0.34; P ¼ 0.003), apolipo-
protein B (β: 0.29; P ¼ 0.003), and triglycerides (β: 0.19; P ¼
0.02).

Moreover, the pattern observed in carriers of lower concen-
trations of PE(P-36:4)/PE(O-36:5) also correlated with higher
concentrations of triglycerides (β: �0.18; P ¼ 0.017), apolipo-
protein B (β: �0.22; P ¼ 0.042), and postprandial glucose con-
centrations at 120 min (β: �0.17; P ¼ 0.043). Interestingly, we
observed protein consumption might be correlated with PE(P-
36:4)/PE(O-36:5) concentrations (β: �0.17; P ¼ 0.043). Addi-
tionally, for citrulline, the lower profile observed in carriers
correlated with a deleterious glucose profile, as evidenced by its



FIGURE 2. The plot displays longitudinal metabolite abundances differences between SLC16A11 carriers and noncarriers (P < 0.05). The plot
shows the mean values and SEs for each group across visits (baseline and final).
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association with higher fasting glucose (β:�0.23; P¼ 0.016) and
postprandial glucose concentrations at 120 min (β: �0.25; P ¼
0.026) (Figure 3).

Finally, we assessed whether the effect of the risk genotype
influenced significant changes on metabolite concentrations
across visits. We observed drastic changes in betaine (N,N,N-
trimethylglycine) concentrations between carriers and non-
carriers across visits. Carriers exhibited higher abundances at
baseline, which significantly decreased by the final visit,
whereas noncarriers displayed opposite trajectories (β-interac-
tion: �0.46; P-interaction ¼ 0.034). Moreover, changes in
methylmalonylcarnitine (C3-DC-CH3-carnitine) were also
observed across visits. Although both carriers and noncarriers
exhibited a reduction in methylmalonylcarnitine concentrations
after 24 wk of LSI, carriers displayed a more pronounced change
(β-interaction: �0.38; P-interaction ¼ 0.035), highlighting the
distinctive impact of the intervention in carriers (Figure 4;
Supplemental Table 6). Changes in betaine and methyl-
malonylcarnitine concentrations may also correlate with
changes in glucose profile. This is supported by the association
observed between higher concentrations of betaine and re-
ductions in fasting glucose (β: �0.27; P ¼ 0.009), and fasting (β:
�0.18; P ¼ 0.04) and postprandial (β: �0.24; P ¼ 0.01) insulin.
Similarly, higher concentrations of methylmalonylcarnitine also
displayed associations with lower concentrations of glucose at
120 min (β: �0.23; P ¼ 0.01) (Figure 5).

The changes in LSI that resulted in metabolic changes might
be correlated with modifications in lipid profile consumption.
Carriers who increased fat consumption experienced a decrease
in postprandial glucose at 120 min (β-interaction ¼ �0.54; P-
interaction ¼ 0.009). To further explore the sources of these
changes, we analyzed the associations with various types of fatty
6

acid intake. We initially observed that higher baseline concen-
trations of MUFA (β: �0.022; P ¼ 0.005), PUFA (β: �0.016; P ¼
0.0006), and total lipids (β: �0.005; P ¼ 0.007) were associated
with lower concentrations of methylmalonylcarnitine at the final
visit. However, these associations became nonsignificant after
the exclusion of 3 outlier individuals. Nonetheless, a consistent
relationship was noted with the average intake of PUFAs, as
measured across three 24-h recalls (at baseline, intermediate,
and final visits), which was still associated with lower concen-
trations of methylmalonylcarnitine (β: �0.038; P ¼ 0.017)
(Figure 6). These findings indicate a consistent inverse rela-
tionship between the intake of PUFAs and lipid concentrations
and methylmalonylcarnitine concentrations. This suggests that
unsaturated fatty acids could serve as potential therapeutic tar-
gets in carriers of the SLC16A11 risk haplotype to regulate
methylmalonylcarnitine concentrations.

Discussion

In this study, we investigated the effect of the SCL16A11 risk
haplotype on the metabolomic profile before and after 24 wk of
LSI intervention, the most cost-effective treatment for T2D pre-
vention. In this report, we found that carriers displayed a dele-
terious metabolomic profile across the 2 visits, characterized by
the higher concentrations of hippurate, cinnamoglycine, xan-
thosine, N-acetlyputrescine, L-acetylcarnitine, and ceramide
(d18:1/24:1) and lower concentrations of citrulline and pPE(P-
36:4)/PE(O-36:5). The effect of LSI on the risk haplotype was
notably more pronounced in its impact on 2 metabolites: meth-
ylmalonylcarnitine and betaine.

In our study, the metabolomic profile found in carriers was
largely concordant to the one described previously by Rusu et al.



FIGURE 3. Metabolites associated with differences in abundance
across visits in individuals with the SLC16A11 risk haplotype
compared with noncarriers and their relationship with glucose and
lipid traits. *Metabolites with statistically significant differences (P <

0.05). The plot displays scaled estimates from a linear mixed model
regression that has been adjusted for age, sex, and BMI.

FIGURE 5. Associations of metabolites with significant change across
visits and their association with metabolic traits. The plot shows scaled
estimates from a regression analysis, adjusted for age, sex, BMI, and 5
genetic principal components.
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[10]. These in vitro results demonstrated that disrupting
SLC16A11 expression in human hepatocytes using
small-interfering RNAs induced significant metabolic changes.
Specifically, there were elevated concentrations of intracellular
acylcarnitines, DAGs, and triacylglycerols compared with cells
treated with negative-control small-interfering RNAs. These
findings indicate a deleterious metabolomic profile in SLC16A11
carriers, marked by altered cellular fatty acid and lipid meta-
bolism. Among the 8 metabolites identified in our study as
differing between carriers and noncarriers, 5 were also found to
be among the 350 metabolites analyzed by Rusu et al. [10]:
notably, higher concentrations of hippurate, citrulline,
FIGURE 4. Significant interactions (P < 0.05) between the SLC16A11 risk h
levels. The plot presents the mean values for each group at both the baseline
change over time in relation to the genetic risk haplotype.
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L-acetylcarnitine, ceramide (d18:1/24:1), and pPE(P-36:4)/
PE(O-36:5). The accumulation of acylcarnitines is indicative of
decreased β-oxidation of fatty acids within the mitochondria.
Such an accumulation has been associated with hepatic steatosis
and alterations in AKT, a crucial regulator of energy utilization.
Furthermore, large epidemiologic studies have established
acylcarnitines as markers for the onset of T2D [13,37,38].
Additionally, the tissue accumulation of DAGs is a central ab-
normality contributing to lipotoxicity, the predominant theory
explaining insulin resistance in liver and muscle tissues. DAGs
facilitate the PKCε-mediated phosphorylation of Thr1160 on the
insulin receptor, which subsequently inhibits its tyrosine kinase
activity, disrupting insulin signaling. These biochemical
aplotype and the timing of the visits (baseline and final) on metabolite
and final visits, providing a clear comparison of how metabolite levels



FIGURE 6. Associations between the consumption of polyunsaturated, monounsaturated, and total fats at baseline and the concentrations of
methylmalonylcarnitine measured at the final visit. The plot shows regression estimates, depicted with their corresponding CIs (indicated by gray
shading), adjusted for age, sex, BMI, and 5 genetic principal components.
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pathways may underpin the heightened T2D risk observed in
SLC16A11 carriers.

The concentrations of betaine and methylmalonylcarnitine,
which changed over visits, have been found to increase in vitro
in hepatocytes. Betaine is a gut microbiome derivate osmolytes,
and its concentration in plasma is in part dependent on dietary
intake [39]. Betaine plays a key role in the synthesis of choline,
an essential metabolite that has been associated with the risk of
T2D [38,39]. In the liver, betaine serves as a methyl donor in a
reaction catalyzed by betaine homocysteine methyltransferase,
which converts homocysteine to methionine, a precursor of the
universal methyl donor S-adenosylmethionine, with an essential
role in several methylation processes [39,40]. By decreasing
S-adenosylmethionine availability, betaine deficiency may
decrease phosphatidylcholine synthesis, promote hepatic stea-
tosis, and modify VLDL synthesis and secretion [40,41]. Betaine
was shown to be inversely associated with triglycerides and
phospholipid transfer protein activity, suggesting that low
betaine concentrations may alter liver fat accumulation and
lipid/lipoprotein metabolism [42]. In our study, we observed a
trend of negative correlation between betaine concentrations
and fasting triglycerides (β: 0.018; P ¼ 0.06). Moreover, lower
plasma betaine concentrations have been reported in subjects
with metabolic syndrome, T2D, nonalcoholic fatty liver disease,
and nonalcoholic steatohepatitis and may also predict the future
development of T2D [39–42]. Our results showed a decrease in
8

betaine concentrations in carriers over time. This behavior might
suggest an additional aspect of the deleterious metabolic profile
of SLC16A11, as lower betaine concentrations may alter meta-
bolic traits and lead to the accumulation of lipids, consistent with
the phenotype observed in the in vitro hepatocytes.

Methylmalonylcarnitine exhibited varying concentrations
between carriers and noncarriers across the 2 visits. Previous
studies have observed an association between acylcarnitines
concentrations and T2D [38,43], cardiovascular disease, and
stroke alone in participants at high risk of cardiovascular disease
[44]. Elevated concentrations of long-chain acylcarnitines in
serum or plasma serve as markers of incomplete fatty acid
oxidation and disruptions in carbohydrate and lipid metabolism
[13], as evidenced by their association with postprandial glucose
concentrations in our study. It is hypothesized that the increased
intracellular presence of long-chain acylcarnitines acts as a
feedback mechanism for insulin action [37], potentially indi-
cating enhanced postprandial fatty acid utilization. Moreover,
carnitine is endogenously synthesized: the majority is obtained
from the diet [45]. Our results show that higher consumption of
unsaturated fatty acids was associated with lower concentrations
of methylmalonylcarnitine. Serum carnitine concentration is
lower in vegetarians and in patients on parenteral diet than that
in omnivores, suggesting that serum carnitine is a potential
marker of meat intake [46]. The dietary changes related to the
reduction of red meat consumption and an increment of protein
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sources and sea food observed in our study sample [32] can be
leading to the reduction of methylmalonylcarnitine in SLC16A11
gene carriers. Additionally, the apparent specificity of our find-
ings for this particular carnitine compound could be attributed to
insufficient statistical power, as other carnitines exhibited
similar trends but did not achieve statistical significance.

This study has several strengths, first, the utilization of a
longitudinal design with a robust statistical approach enabled us
to evaluate causal associations in changes in metabolomic profile
and treatment responses under the most cost-effective inter-
vention to prevent T2D. Additionally, the adjustment for
important covariates, such as population substructure, enabled
us to draw more reliable conclusions. We acknowledge several
limitations in our study. First, the sample size may have con-
strained our statistical power to detect significant differences in
various outcomes. Second, the absence of replication in an
external sample limits the generalizability of our findings.
Finally, our metabolomic analysis used a single LC-MS method
targeting ~200 metabolites, potentially restricting the identifi-
cation of additional metabolites. Future investigations should
prioritize cohorts with larger sample sizes and extended follow-
up durations to explore additional outcomes, such as the inci-
dence of T2D.

Our results sheds light on potential pathways of individual’s
response to common and cost-effective treatments such as LSI to
reduce T2D risk, highlighting a promising application of
personalized nutrition approaches anchored in genetics to pre-
vent T2D. By identifying metabolomic biomarkers, particularly
carnitines and their modulators, this study elucidates a targeted
mechanism of action of LSIs. Future studies are needed to
replicate these associations and expand to longer follow-ups. If
replicated and expanded, the implementation of these results
may significantly contribute to alleviating the disease burden of
T2D within the Mexican population and contribute to the efforts
in improving the effectiveness of the interventions in individuals
with prediabetes.
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