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Abstract 

Kidney disease, the ninth leading cause of death in the United States, has one of the poorest 
diagnostic efficiencies of only 10%1. Conventional diagnostic methods often rely on light 
microscopy analysis of 2D fixed tissue sections with limited molecular insight compared to 
omics studies. Targeting multiple features in a biopsy using molecular or chemical reagents can 
enhance molecular phenotyping but are limited by overlap of their spatial and chromatic 
properties, variations in quality of the products, limited multimodal nature and need additional 
tissue processing. To overcome these limitations and increase the breadth of molecular 
information available from tissue without an impact on routine diagnostic workup, we 
implemented label-free imaging modalities including stimulated Raman scattering (SRS) 
microscopy, second harmonic generation (SHG), and two photon fluorescence (TPF) into a 
single microscopy setup. We visualized and identified morphological, structural, lipidomic, and 
metabolic biomarkers of control and diabetic human kidney biopsy samples in 2D and 3D at a 
subcellular resolution. The label-free biomarkers, including collagen fiber morphology, 
mesangial-glomerular fractional volume, lipid saturation, redox status, and relative lipid and 
protein concentrations in the form of Stimulated Raman Histology (SRH), illustrate distinct 
features in kidney disease tissues not previously appreciated. The same tissue section can be 
used for routine diagnostic work up thus enhancing the power of cliniopathological insights 
obtainable without compromising already limited tissue. The additional multimodal biomarkers 
and metrics are broadly applicable and deepen our understanding of the progression of kidney 
diseases by integrating lipidomic, fibrotic, and metabolic data. 

Keywords: stimulated Raman scattering, two photon, second harmonic generation, kidney 
disease, lipid, collagen, mesangial fractional volume, biomarker, SRS, hyperspectral imaging 
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Graphical Abstract. Label-free indicators of diabetic nephropathies. 

Introduction 

With over 40% of diabetic patients developing diabetic kidney disease (DKD), the 
leading cause of chronic kidney disease (CKD)2, diabetes is one of the most significant risk 
factors in kidney-related mortality. It can affect renal tissue both morphologically and 
molecularly, altering redox balance, lipid metabolism, and collagen homeostasis. To afford the 
highest diagnostic power, multiplexing capability is often a prerequisite when considering any 
tool or pipeline. Conventional staining methods used for kidney biopsy include Hematoxylin and 
Eosin (H&E), methenamine silver, Masson’s trichrome staining, and immunofluorescence3. In 
practice, however, multiplexing capabilities are limited by the chroma of the stain or 
absorption/emission wavelengths of the fluorescent probe. Several washes in acids or alcohols 
may be required to re-color the sample with a different stain4,5, but this process can alter the 
native lipid distribution6 and affect future fluorescent staining. MALDI/MS based methods 
provide impressive label-free multiplexing capabilities but may entail professional matrix 
embedding, have limited subcellular spatial resolution, affect tissue integrity and cannot capture 
true 3D images. To circumvent these issues, adjacent sections of the tissue may be used, but 
may exhibit different morphologies, suffer from physical slicing deformations, and require larger 
biopsies from the patient putting constraints on already limited tissue. Studies have reported 
distinct glomerular7, tubulointerstitial2,8, and medullary9 changes in DKD. Therefore, there is a 
demand for whole slide imaging (WSI) to maintain the spatial context of any biomarkers.  

Morphological changes in DKD include an inflamed mesangial fractional volume 
[Vv(Mes/Glom)], defined herein as the fraction of glomerular volume occupied by tuft (including 
mesangial cells, capillary cells, and podocytes), and thicker collagen fibers in the glomerular 
basement membrane, interstitial matrix, and accumulation within the mesangium10–16. Studies 
also show that CKD tissues exhibit a larger Vv(Mes/Glom) due to mesangial expansion10–13,17. 
This phenomenon has also been linked to high density cholesterol dyslipidemia18–20. However, 
this volume ratio is often measured from cross sections of tissue using pixel density, point 
sample intercept (PSI), or lineal analysis13,21–23. In a biopsy, glomerular units are often found in 
different focal planes, which may complicate diagnoses by reducing the statistical power of the 
analysis. With sufficient sampling, variations within a patient sample become negligible24. 
Recently, a thorough evaluation of various glomerular estimation methods confirmed that 
different methods may misrepresent the true glomerular volume25, but presently there is no 
study that directly compares these with 3D imaging results26–30. Interestingly, mesangial 
expansion is relatively slow to develop and is reminiscent of advanced CKD, rather than only for 
DKD7,31. Could this be due to the large variance in Vv(Mes/Glom) measurements? A stimulated 
Raman scattering (SRS) microscopy image of the CH3 stretching region (2940 cm-1) shows a 
human kidney biopsy with glomeruli in various focal planes (Fig. S1a). This exemplary image 
illustrates how polar slices of glomeruli can have starkly contrasted mesangium-to-glomerulus 
area ratios. Serial slices just 10 µm apart can cause significant differences in this fractional 
volume (Fig. S1b). Therefore, a focus on a more inclusive field of view is critical to fully utilize 
precious biopsy samples.  
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Fig. 1: Design and capabilities of the label-free optical platform span targeted regions of interest to whole
slide imaging. a, Diagram of the label-free microscopy system showing the transmission detection of
stimulated Raman loss and epi detection of fluorescence emission and second harmonic generation. b,
Example images corresponding to each modality in 2D and 3D, along with their respective Jablonski
diagram. c, A whole slide image of a renal core biopsy from a patient diagnosed with Diabetic
Nephropathy (DN) imaged using the platform described in a. The image is the result of overlaying seven
discrete channels ascribed to saturated fatty acids (SRS at 2880cm-1), unsaturated fatty acids (SRS
3011cm-1), proteins (SRS 2940cm-1), lipids (SRS 2850cm-1), collagen (SHG at 1031nm/515nm), flavins
(TPF 860nm/515nm), and NAD(P)H (TPF 780nm/460nm). d, An unsupervised k-means clustering of the
multimodal WSI. e, A PCA-initialized, standardized t-SNE plot of the pixels in the multimodal image color
coded to the respective k-means cluster. Colors correspond to cluster identity 1-6. f, The stacked bar
graph shows the simplex-normalized average pixel intensity’s channel contribution in each cluster. Color
corresponds to discrete channel of the multimodal image stack. g, Regions of interest are selected along

 
le 
of 
, 

ski 
tic 
en 
S 

ns 
he 
lor 
ar 
lor 
ng 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 29, 2024. ; https://doi.org/10.1101/2024.10.27.620507doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.27.620507
http://creativecommons.org/licenses/by-nc-nd/4.0/


the cortex-medulla axis and a full SRS hyperspectral image sweep (512x512 pixels) of the C-H stretching 
region is obtained at the same time. The mean SRS spectra and 1-sigma error bands are plotted for each 
region. h, Phasor plots of all pixels in the ROIs separate spectra based on phase and amplitude. The plot 
is duplicated, and color coded according to region. Scale bar is 700 µm, corresponding to the large WSI 
in a. DM, Dichroic Mirror; EOM, Electro-Optic Modulator; OB, Objective Lens; CO, Oil Condenser; SF, 
Stokes Filter; PD, Photodiode; SRL, Stimulated Raman Loss; SRS, Stimulated Raman Scattering; TPF, 
Two Photon Fluorescence; SHG, Second Harmonic Generation   

 

Biomolecular alterations in DKD include lipid dysregulation, proteinuria, or altered 
NAD(P)H and flavin levels. These features are not entirely disjointed from the morphological 
differences. Fibrogenesis is heavily influenced by endothelial cell function, particularly in 
peritubular microvessels32. In mice, the mitochondrial deacetylase, Sirtuin 3 (SIRT3), is not only 
a tight regulator of glucose and lipid metabolism, but a key metabolic programmer of renal 
fibrosis as well33. Kidney tissue has a relatively low level of fatty acid synthase, so much of the 
lipid metabolism is undertaken by the incorporation of exogenous lipids and the mitochondrial-
mediated breakdown of fatty acids. Dyslipidemia is frequently observed in nephrotic syndromes 
and kidney diseases and is often presented as elevated levels of low-density lipoprotein (LDL) 
cholesterol and decreased levels of high-density lipoprotein (HDL) cholesterol in sera34. 
Oxidative stress has been associated with both fibrosis and lipid peroxidation. As in previous 
study we used the normalized optical redox ratio (ORR) as an indicator of oxidative stress, 
which can be measured using the label-free two-photon autofluorescence imaging of NAD(P)H 
and flavins acquired at 460nm and 525nm, respectively35. 

In the following work, we leveraged second harmonic generation (SHG), stimulated 
Raman scattering (SRS), and two photon fluorescence (TPF) in a single microscopy platform 
(Fig. 1a-b) to generate a label free molecular indicators of diabetic kidney tissue pathology 
without additional usage of precious kidney tissue. Major macromolecular classes such as 
saturated and unsaturated fatty acids, proteins, collagen, flavins, and NAD(P)H are interrogated 
with high spatial resolution, and result in 5 major label-free biomarkers spanning the 
morphological and molecular space; lipid saturation, oxidative stress, protein/lipid ratio, 
interstitial collagen, and fractional glomerular volume. This platform is capable of multimodal 
whole sample (Fig. 1c-f)  or region-specific (Fig. 1g-h) imaging and analysis. A representative 
multimodal image of a control sample can be found in supplementary figure 2. Additionally, 
this platform can be executed in 3D up to a depth of 200 µm non-destructively, maintaining the 
flexibility to carry out other analyses downstream. In the following results section, we apply the 
multimodal imaging platform to identify morphological (including mesangial proliferation, 
collagen fiber anisotropy and thickness) and biochemical (including lipid accumulation, lipid 
saturation, and optical redox ratio) biomarkers in diabetic tissues, as well as discuss their 
impacts and significance in the current scientific landscape. 

Results and Discussion 

Unique Biomolecular Features of Diabetic Kidney Tissue 

Alterations in Lipid Subtypes  

Pathological variations in lipid subtypes, such as elevated cholesterol and an imbalance 
in quantities and qualities of sphingolipids, are often concomitant with other molecular and even 
morphological patterns in diabetic models36–38. Canonical biomarkers of diabetic nephropathy 
include mesangial expansion, nodular glomerulosclerosis, fibrotic extracellular matrix, ectopic 
lipid accumulation, and proteinuria (Fig. 2a). To examine changes of lipid subtypes within DKD 
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tissue, we performed Penalized Reference Matching SRS (PRM-SRS) hyperspectral imaging 
(Supplementary Fig. 3). PRM is a fast and robust method for generating relative quantitation 
for a variety of user-defined standard components, such as lipid subtypes, by determining the 
angle or similarity score between two n-dimensional vectors39. These vectors can be discrete 
embeddings or continuous Raman spectra. In this case, the pixels in a hyperspectral image 
(HSI) captured by SRS each represent a chemical spectrum. The spectra were compared to 
reference spectra of lipid subtypes that are measured separately. Selected lipid subtypes, 
including TAG, C12 ceramide, cholesterol, and esterified cholesterol, in control and DKD kidney 
samples were compared. The total lipid image, ascribed to the C-H2 symmetric stretching 
Raman peak at 2850cm-1, is displayed alongside the similarity score images for these lipid 
subtypes in both control and diabetic tissues (Fig. 2b-c). Pixel intensity corresponds to the 
similarity score, and diabetic core biopsies showed consistently higher similarity scores for each 
lipid subtype, indicating potentially higher relative concentrations of lipids. The spectra of pixels 
within the top 1% of similarity scores are plotted below the corresponding PRM-SRS images 
(Fig. 2d). While the normalized Raman spectra of control and diabetic tissues are very similar 
as a whole, the diabetic samples exhibit a larger standard deviation near the CH2 symmetric 
stretching region (2850cm-1). These findings suggest that diabetic samples may not only exhibit 
higher concentrations of select lipid subtypes, but that these discrepant lipidomic profiles may 
be spatially heterogeneous. 

Cholesteryl ester accumulation may be associated with cell proliferation and cancer 
aggressiveness40, but due to relatively low levels of fatty acid synthase proteins in human 
kidney tissues, the lipid profiles may be unique. We compared the ratio of cholesterol to its 
enriched esterified form by dividing the corresponding similarity score images and plotting the 
pixel values (Fig. 2e).  These values may serve as an indicator for relative low-density 
lipoprotein (LDL) levels, and thus accumulation of free cholesterol41. Given reports of lipid 
droplet accumulation in diabetic kidney tissue37,42,43, it is reasonable to accept that slightly higher 
free cholesterol levels and lower enriched cholesteryl ester levels due to impaired cholesterol 
enrichment contribute to lipid accumulation in the kidney. Interestingly, we see that the 
glomerular and tubulointerstitial regions are inversely impacted in the diabetic sample with 
respect to the cholesterol esterification ratiometric result. Given the highly specialized roles of 
FTU’s such as the glomerulus, it is reasonable that these regions exhibit unique responses to 
dyslipidemia. Furthermore, glomeruli have been shown to participate in a complex network of 
activity within the kidney, and therefore underscore the necessity for spatial context44. These 
results warrant future studies to tie in functional discrepancies in diabetes, such as breakdown 
of filtration and reabsorption capacity, as well as the regional discrepancies in glomerular FTU’s. 
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Figure 2. Label-free lipid subtype visualization in situ using PRM-SRS depicts cholesterol enrichment in 
diabetic kidney samples. a, Illustrated are some of the pathological features observed in the glomerulus 
in diabetic nephropathy compared to a healthy glomerulus and potential link with high free cholesterol and 
low serum HDL caused by lack of HDL enrichment. b-c, SRS images of human kidney at the C-H2 
stretching peak (Left) and PRM-SRS images of reference-matched lipid subtypes of interest showing the 
spatial distribution of similarity scores at the same contrast level. d, HSI profile (Left) shows the Raman 
Spectra for all pixels in the HSI, with a red dashed line to indicate the 2850cm-1 image above. Spectra of 
the top 1% of similarity score pixels overlaid on the reference spectrum for each lipid subtype show confer 
PRM-SRS images. e, Ratiometric image of cholesterol and esterified cholesterol similarity scores show 
highest levels in eosinophilic bodies and within tubule epithelial cells, and not glomerular capillaries and 
podocytes. DKD tissues show higher relative free cholesterol in the tubulointerstital region, and lower 
relative free cholesterol in the glomeruli. This may be due to hyaline or protein in the glomerulus of DKD, 
leading to poorer reference matching of lipid subtypes in that region. Scale bar, 200 µm. Data presented 
are mean ± SD. 

 

Optical redox ratio and lipid saturation 

Since differences in lipid subtype levels may also affect lipid metabolism within the 
tissue, we captured two metabolic indicators: the normalized optical redox ratio (ORR) and the 
lipid saturation35,45

. The normalized optical redox ratio, defined herein as FAD/(NADH + FAD), 
can be obtained from TPF images of NADH and flavins such as riboflavins and FAD; and lipid 
saturation state, defined as unsaturated / ( saturated + unsaturated), can be derived from SRS 
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ratiometric images of saturated lipids at 2880 cm-1 and unsaturated lipid at 3011 cm-1 46,47. An 
example diabetic core biopsy showing both ratiometric image indicators is shown below, along 
with the average pixel intensity profile along its longitudinal axis (Fig. 3a), with glomerular 
regions of interest highlighted between the green dashed lines. Representative multimodal 
images are shown for both control and diabetic samples, along with stimulated Raman histology 
(SRH) images (Fig. 3b). The SRH images were generated by using two Raman wavenumbers 
at 2850 cm-1 (the CH2 stretch/lipid) and 2940 cm-1 (CH3 stretching/protein), respectively, 
according to previously published methods48–50. We observed both indicators are significantly 
lower in diabetic tissues (Fig. 3c-f). A lower normalized optical redox ratio may indicate less 
oxidation of fatty acids. A lower lipid saturation score suggests higher levels of saturated fats 
relatively to unsaturated fats, which can be typical of high fat diet and impaired HDL maturation. 
This is consistent with reports that increased ceramides, relatively stable fatty acids due to their 
higher degree of saturation, play a role in elevated reactive oxygen species (ROS) levels, and 
decreased desaturase (DEGS2)37,51.  

 

Figure 3. Diabetic glomeruli have an imbalance in redox ratio and lipid saturation. a, Core biopsies from 
diabetic patient along the cortical-medullary axis shows consistencies and differences between the optical 
redox ratio and degree of lipid saturation. Intensity profiles are plotted along this axis by ignoring 
background pixels and normalized by setting the areas under each curve equal to each other. b, 
Glomerular subregion images using SRS and TPF multimodal imaging, along with simple SRH 
processing. Note the mesangiolysis, marked by red blood cell stasis and regions of irregular matrix 
texture, in the diabetic glomerulus. c, Normalized optical redox ratio as a measure of oxidative stress and 
metabolism in healthy and diabetic glomeruli. d, Quantitative image analysis of ORR in glomeruli, n=9. e, 
Ratiometric images of lipid saturation in healthy and diabetic glomeruli. f, Quantitative image analysis of 
lipid saturation in glomeruli (n=9). Scale bar, 100 µm. Data presented are mean ± SD. ****P < 0.0001. 
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In tissues such as the heart, liver, and kidneys, a lower redox ratio has been found to 
correlate with disease states such as diabetes. In diabetes, the reduced forms of pyridine 
nucleotides such as NADH and NADPH were elevated52. This appears counter-intuitive 
because a greater pool of NAD(P)H reductive potential suggests less oxidative stress, yet the 
opposite is observed. However, a shift toward utilizing anaerobic pathways to generate energy 
and thus away from oxidative phosphorylation could explain this paradox. Furthermore, It has 
been oberved that NADPH oxidase (NOX) activity is elevated in fibrosis showing a link between 
oxidative stress and fibrosis53. Likewise, a decrease in flavins such as riboflavins, flavin 
mononucleotide (FMN), flavin monooxygenase (FMO), and flavin adenine dinucleotide (FAD), 
could also account for a lower ORR. In diabetic retinopathy, for example, a flavin deficiency 
hampers the production of glutathione, a primary antioxidant defense54. These observations 
support our SRS methods are able to observe oxidative stress in diabetic glomeruli, as indicated 
by lower ORR and higher degree of lipid saturation . 

Morphological Features of DKD 

3D Imaging for Estimating Mesangial Fractional Volume in DKD 

Metabolic alterations and the chemical microenvironment have a dynamic interplay, but 
prolonged dyslipidemia often results in irreversible structural damage55,56. One of the most 
widely used morphological analysis methods involves histopathological staining and inspection 
with light microscopy. Here we generated SRH images, which presents a more familiar 
semantic visualization of pathologies using multiple Raman features at once. Custom lookup 
tables (LUTs) were applied to these channels and blended in MATLAB to reveal subcellular 
morphologies in a remarkably similar manner to that seen in conventional H&E- stained images 
of tissue sections (Fig. 4a-b).  

This method was extended to 3D volumetric scanning of glomeruli to analyze the 
structure of these functional tissue units (Fig. 4c-d). While studies have delved into the capillary 
network of glomeruli using scanning electron microscopy (SEM)57, most reports examine these 
structures in 2D using light microscopy and PSI analysis. These methods underestimate 
mesangial volume by as much as 30% relative to 3D reconstruction methods27. Since SRS and 
TPF microscopies in our imaging platform are highly localized multiphoton processes, a 200 µm 
thick sample could acquire glomerular images at many focal planes by simply adjusting the 
height of the objective lens, as shown in Fig. 4e. Nuclei of glomeruli and tubules were 
segmented in 3D images and then counted (Fig. 4f). This enables quantitative assessment of  
cell number within subregions of FTUs such as the mesangium in disease states such as DKD. 

Glomeruli are somewhat spherical tissue structures with a diameter of roughly 200 µm58. 
A 200 µm thick 3D image of a cortex sample might yield whole glomeruli, or more likely 
encompass several hemispheres or many medial cross sections as a 2D laminar slice with all 
glomeruli at the same focal plane. By optically sectioning 3D glomeruli, we capture more 
accurate morphological measurements and mitigate the impact of polar slices on statistical 
power (Fig. 4g-h). These slices were interpolated to a volume using ImageJ and MeshMixer 
(Fig. 4i). Only glomeruli with at least one hemisphere in the kidney biopsy volume, or with a 
distance of at least 100 µm between the largest and smallest cross-sectional area, were 
retained.  

When estimating the glomerular tuft factional volume Vv(Mes/Glom), we are including 
the mesangium to include the mesangial cells and matrix, capillary endothelial cells, and 
podocytes, and consider the glomerulus to include the entirety of the renal corpuscle, including 
the Bowman’s space and the parietal epithelium. After identification and isolation of glomeruli, 
as described above, these glomerular and mesangial definitions allow for convenient 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 29, 2024. ; https://doi.org/10.1101/2024.10.27.620507doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.27.620507
http://creativecommons.org/licenses/by-nc-nd/4.0/


morphological masking. Specifically, the entire glomerulus can be segmented using opening-
closing structuring element operations, as well as size and shape filters described in the
methods section below. The mesangium can be segmented by intersecting the glomerulus
mask with the SRS image of protein to remove any bowman’s space background
(Supplementary Fig. S5). The volume fraction is then a simple calculation of summing the
number of pixels within each mask at each slice and dividing the result. We show that diabetic
glomeruli have a significantly greater mesangial fractional volume than control, and support
previous findings of underestimated volume fractions using 2D methods (Fig. 4j) 22,23. 

Figure 4. Label-free capabilities of SRH shows the rapid pseudo-coloring via linearly mixing protein and
lipid SRS images of (a) large human kidney ROI and small subcellular resolution (b) in which nucleoli are
visible. (c) Confocal scanning in the Z-direction can produce 3D pseudo-colored SRH images. (d)
Orthogonal projections of (C). (e) SRS and TPF images of lipids, protein, and nuclei juxtaposed to the
same image slice of the 3D stack shows that multiple visualization schema are possible. (f) Glomerular
volumes can be segmented to inform the number of nuclei within the glomerulus and in the surrounding
tubule cortex. Scale bar, 200 µm. (g) A schematic depicting the process of obtaining confocal image
planes of glomeruli with at least a hemisphere within the imaging volume. Image planes between the
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maximum cross-sectional area and the vanishing point are retained. (h) Example of a few image planes
of a glomerulus with the mesangium (cyan) and total glomerulus (magenta) overlaid on the CH3 stretching
images. (i) The image planes are used to reconstruct volumes in ImageJ and MeshMixer. (j) Summary of
glomerular factional volume [Vv(Mes/Glom)] between control samples and DKD samples shows that
mean DKD glomeruli have significantly higher mesangial volume fractions compared to control specimens
(n = 4 for each group). Data presented are mean ± SD.  **P < 0.01. 

 

The same samples were also analyzed by using a 2D single plane that mimics traditional
methods, and by using each glomerulus’ maximal cross section within the volumes,
respectively. Table 1 compares the mesangial fractional volume estimated using these two 2D
methods and that using 3D hemisphere. 2D single plane measurements were calculated using
the ratio of pixels in the mesangium to the entire glomerulus in a single plane view, like
traditional methods. 2D max individual measurements were taken from a 3D image of each
glomerulus, selecting for the plane with the largest cross-sectional area, and using this to
calculate the ratio of pixels. 3D hemisphere measurements were taken from 3D images of
glomeruli with either a defined polar and local maximum cross-section, or those with at least 100
µm contained within the 3D image volume. 

 

Table 1. Comparison of Vv(Mes/Glom) measurement by different methods.  

Interestingly, compared with control, the DKD samples exhibited a smaller variance
between glomeruli in the 2D methods. This observation was in tandem with a lower incidence of
polar cross sections showing a very small Vv(Mes/Glom). The lowest variance in measurements
came from the 3D hemispherical method, which discarded several glomeruli based on the
criteria previously described. Although volume measurements are more sensitive to small
changes in radii than area measurements due to their cubed dimension, if only hemispheres are
collected and analyzed, the variance within the population is mitigated, while the variance
across populations, such as control and diabetic, can be comparatively more significant.
However, greater precision may also come at the cost of longer imaging times even when
restricted to glomerular FTU’s. Although 2D histology may be faster, they are susceptible to
physical slicing deformations. More accurate glomerular measurements can be achieved using
multiple sections, but this entails more sample preparation and co-registration30. For these
reasons, optical sectioning via lightsheet fluorescence microscopy (LSFM) may be best suited
for high throughput, contextual, glomerular measurements44. 

 

Rapid Glomeruli Segmentation and Analysis using AI and SRH 

Stimulated Raman Histology (SRH) has had a transformative impact on label-free
imaging technology because it allows for tissue characterization using data from multiple
Raman images in a familiar color scheme. To leverage histology’s seamless integration of
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spatial morphology and chemical specificity, we performed SRH on multiple control and diabetic 
patient samples and tested a popular convolutional neural network, called DenseNet, used in 
many artificial intelligence (AI) imaging applications. The goals were to determine whether label-
free imaging affords the rapid identification of glomeruli, and whether glomeruli can be 
distinguished as being control or diabetic.  

Using a fine-tuned SRH pipeline to generate realistic histological images for H&E and 
PAS (Supplementary Fig. 6), we tested DenseNet performance using the HALO AI platform 
(IndicaLabs). Both SRH and stained adjacent sections performed well in DenseNet 
segmentation of glomeruli (Fig. 5a), demonstrating that images collected with a label-free 
approach function just as well as ground-truth staining for this purpose. This is significant 
because glomeruli are major target FTU’s in the diagnosis of diabetic nephropathy, rapidly 
accomplishing this without the use of staining reagents can allow for multiplexed analysis on the 
same tissue slice. 

After glomeruli were identified, they were automatically segmented (Fig. 5b) and fed into 
a training dataset for use in the DenseNet201 implementation in MATLAB (Fig. 5c). This 
network consists of Dense Blocks, comprised of composite functions that batch normalize, filter, 
and convolve features from the image, and Transition Blocks, comprised of a convolution and 
pooling layer to down-sample features for efficient computation. With only 5 Epochs of 25 
iterations each, 80 diabetic glomeruli and 100 control glomeruli reached a classification 
accuracy of 98% (Fig. 5d). Using the 10% reserved set from each group, along with resampling 
of the original training dataset, glomeruli were distinguishable between control and diabetic 
origination with an accuracy of over 97% (Fig. 5e). 

We employed DenseNet due to its common use, its underlying integration of residual 
network architecture robustness and the visual acuity of InceptionNet59,60. With off-the-shelf 
tools such as HALO AI and MATLAB, its implementation was straightforward. New tools are 
continually developed with the focus on meaningful histological feature extraction, such as 
HistoLens, which was demonstrated on renal histology images61. Furthermore, we felt that a 
neural network, which has an implicit goal of mimicking human interpretation, was the 
appropriate benchmarking tool for SRH, which has an implicit goal of recreating familiar color 
semantics. 
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Figure 5. Neural Network detects and classifies  glomeruli using only Stimulated Raman Histology. a, 
Adjacent kidney sections from the control group were imaged using label-free SRH and ground-truth 
histological staining for both H&E and PAS. Images were imported into the HALO AI platform by 
IndicaLabs and single glomeruli were manually annotated in each image. In all cases, SRH efficiently 
detected glomeruli just as well as histologically stained samples. b, 16 representative images of glomeruli 
were cropped from various patient samples in both control and diabetic groups. c, The network 
architecture of DenseNet201 is briefly explained using the MATLAB R2024a release implementation. d, 
The DenseNet201 network was trained using 5 Epochs, with 25 iterations per Epoch using a single Nvidia 
RTX 4080 and took less than 15 minutes. e, The cross validation matrix shows an accuracy of 0.9762, 
sensitivity of 1, specificity of 0.9583, and precision of 0.9474, resulting in an F1 score of 97.22%. Scale 
bar: 250 μm. H&E: Hematoxylin and Eosin, PAS: Periodic Acid Schiff, SRH: Stimulated Raman Histology,  

Spatial Renal Fibrosis Analysis 

Amount of renal fibrosis is a morphological indicator of chronic kidney disease and can 
be assessed using trichrome staining and fluorescent probes for both collagen and collagen 
binding protein14. Spatial analysis of collagen in-situ can be analyzed by area covered by 
collagen fluorescence and manually-measured fiber thicknesses using correlative SHG and 
TEM62–65. However other collagen characteristics that can provide insights into pathologic 
fibrosis include fiber orientation, strength, and relative density. Anisotropy analysis, also referred 
to as Histogram of Oriented Gradients (HOG) extraction, is one way of capturing these data66,67. 
We quantified type 1-3 collagen fiber angles from SHG images using the same Stokes beam 
(1031nm) from the SRS imaging. Without using any stains or other labels, we highlighted 
distinct regions of highly oriented fibers in the interstitium (Supplementary Fig. 7a-b). Here we 
binned the image into smaller areas to capture finer detail (Supplementary Fig. 7c), and 
thresholds for SHG intensity or anisotropy (Supplementary Fig. 7d). Anisotropy analysis 
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separated kidney cortex from medulla and ensures that comparative regions are compared 
between control and diabetic samples. 

To rapidly retrieve fiber thickness measurements throughout the sample, whole-slide 
SHG images were transformed into distance maps in which pixel intensity corresponds to 
distance to background (Supplementary Fig. 8). The regional maxima of this distance map 
correspond to the radii of collagen fibers. This measurement corroborates more manual metrics 
such as using the polar vector angles to orient perpendicular intensity profiles and capturing the 
full-width-half-maximum of the result. Plotting these measurements in a third dimension (also 
commonly known as a 2.5D image) shows that for both a diabetic and control tissue section 
along the cortical-medullary axis there are thicker collagen fiber diameters near the medulla 
side, as well as spikes in fiber thickness near glomeruli (highlighted by green arrows), vessels 
and arteries (Fig 6a). Utilizing this method to measure the whole tissue slide, we found that that 
the collagen fibers in the diabetic samples are nearly 25% thicker than the control samples, in 
addition to exhibiting higher SHG intensity (Fig. 6b). Interestingly, there was distinct local 
anisotropy near glomeruli especially in cases of glomerulosclerosis, vascular hyalinosis, and 
interstitial fibrosis. Separating the SHG images into glomerular subunits using Voronoi 
tessellations (Supplementary Fig 5o) allows us to plot the density of collagen fiber thickness 
measurements with respect to their distances from the center of the nearest glomerulus (Fig. 
6c). Using anisotropy analysis, we automatically discount any medullary collagen that may be 
included near some glomeruli. Our results show that diabetic samples have thicker collagen 
fibers farther away from glomeruli.  

This underscores the significance of spatial context in biology, as there have been 
recent strides in understanding the origin and progression of renal fibrosis68–70. Glomeruli and 
medullary thick ascending limbs are found throughout the tissue, and both are particularly 
susceptible to injury. Likewise, pericytes are found in both the cortex and medulla, and may be 
the most significant progenitors of collagen-producing myofibroblasts in the kidney70. 
Considering mesangial cells of glomeruli are known to be pericyte-like, it is prudent to know 
when and where these injuries take place, as well as finding dimensions that can discriminate 
diabetic pathologies. 
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Figure 6. Spatial collagen analysis of human kidney biopsies using SHG imaging. a, Spatially-mapped 
fiber thickness of representative SHG images of control and diabetic biopsies along the cortical-medullary 
axis. Both samples have distinguishably thicker collagen fibers towards the medulla side, as well as 
peaks of fiber thicknesses in the cortex near glomeruli (marked with green arrows), vessels, and arteries. 
b, The mean fiber thickness of all fibers, as well as the mean SHG intensity for both control and diabetic 
samples show significantly higher levels in diabetic samples. n=4 tissue slides per group. c, 2D contour 
plots show the density of collagen fiber thickness measurements versus distance from the nearest 
glomerulus center in control and diabetic samples (n=20 glomeruli per group). Representative SHG 
images of glomeruli are shown to illustrate how fiber thickness tends to diminish further away from the 
glomerulus. Error bars represent one standard error of the mean. Data presented are mean ± SD. **P < 
0.01. 

Conclusion 

Our multimodal imaging and analyses methods enable visualizing morphological 
manifestations and responses to biomolecular changes at a subcellular level without destroying 
or wasting tissue. From a single microscopy setup, several analyses have been generated to 
illustrate both structural and biomolecular markers of control and diabetic kidney disease tissue.  
These include 3D quantification of glomerular mesangium, spatial collagen fiber thickness, 
optical redox ratio, and lipid saturation. Additionally, we leveraged a custom SRH pipeline and 
AI to automatically detect and classify glomeruli as either control or diabetic without using any 
staining reagents. We also demonstrated that this platform  preserves the native orientation of 
the tissues by avoiding excessive physical slicing and allows for more representative volumetric 
data of the mesangial volume fraction.  

This study is the first label-free multimodal imaging analysis of structural and molecular 
biomarkers in diabetic kidney disease, highlighting the potential of a single microscopy setup to 
dissect a multiplexed dataset while conserving tissue samples, and to inspire new research into 
the connection between dyslipidemia and kidney disease. Notably, we address preliminary 
results that indicate elevated lipid saturation and lower relative esterified cholesterol with 
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respect to free cholesterol, as well as relatively higher NAD[P]H and lower flavin levels in 
diabetic samples. Potential future targets for analysis thus include mitochondrial dysfunction and 
transcriptional changes in co-factor enzyme production. 

Future studies may iterate on these first demonstrations. For example, 3D digital 
histology may benefit from further segmentation of cell types, not just nuclei in certain regions. 
Additional stains can also improve diagnostic power and fully leverage the label-free 
hyperspectral imaging platform. These stains can be further improved using cycle generative 
adversarial networks (cycle GANs) to make these SRH images appear more standardized so 
that a database can be established71. It should be noted that SHG of collagen only visualizes 
type 1-3 collagen due to their non-centrosymmetric structure, and thickness measurements and 
SHG signal intensity depend on fiber orientation and position relative to the focal volume. Since 
collagen fibrosis is tightly regulated by lipid metabolism and oxidative stress, future studies are 
necessary to determine the extent to which the SHG intensity and collagen anisotropy may 
predict other nephropathies such as lipid subtype differences, normalized optical redox ratio, 
and mesangial fractional volume.  

Materials and Methods 

Kidney Biopsy Preparation 

Human kidney samples were obtained from The Kidney Translational Research Center (KTRC) 
at the Washington University School of Medicine in St. Louis under an approved IRB protocol. 
Samples used for 2D imaging were fixed using 4% PFA or formalin and after washing were 
preserved as paraffin embeeded tissue blocks prior to sectioning at 7 microns. Samples used 
for 3D imaging were fresh frozen and stored at -80 degC in OCT until sliced with a sliding 
microtome (HM 450, Epredia) at 200 µm and cleared using 8M urea for 48 hours at room 
temperature. Samples were submerged in 1ug/mL Hoechst 33342 (Thermofisher) for 15 
minutes to stain nuclei for co-localization verification. Samples were imaged between 1mm thick 
glass slides and number 1.5 thickness cover glass (Erie Scientific).  

3D Microscopy 

An upright laser-scanning microscope (DIY multiphoton, Olympus) with a 25x water objective 
(XLPLN, WMP2, 1.05 NA, Olympus) was applied for near-IR throughput. Synchronized pulsed 
pump beam (tunable 720–990 nm wavelength, 5–6 ps pulse width, and 80 MHz repetition rate) 
and Stokes (wavelength at 1032nm, 6 ps pulse width, and 80MHz repetition rate) were supplied 
by a picoEmerald system (Applied Physics & Electronics) and coupled into the microscope. The 
pump and Stokes beams were collected in transmission by a high NA oil condenser (1.4 NA). A 
high O.D. shortpass filter (950nm, Thorlabs) was used that would completely block the Stokes 
beam and transmit the pump beam only onto a Si photodiode for detecting the stimulated 
Raman loss signal. The output current from the photodiode was terminated, filtered, and 
demodulated in X with a zero phase shift by a lock-in amplifier (HF2LI, Zurich Instruments) at 
20MHz. The demodulated signal was fed into the FV3000 software module FV-OSR (Olympus) 
to form the image during laser scanning. All SRS images were obtained with a pixel dwell time 
40 µs and a time constant of 30 µs. Laser power incident on the sample is approximately 
40mW.  

Second Harmonic Generation (SHG) was used to capture type 1-3 collagen images. The 
1031nm stokes laser described above, with 300mW and a dwell time of 10us per pixel, was 
used with 5-frame averaging. Backscattered SHG signals were filtered using 465nm filter. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 29, 2024. ; https://doi.org/10.1101/2024.10.27.620507doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.27.620507
http://creativecommons.org/licenses/by-nc-nd/4.0/


NADH and Flavin autofluorescence images were captured using the 800nm pump beam with 
350mW and a pixel dwell time of 10us/px with 5-frame averaging. Backscattered signals were 
filtered using a dual filter cube of 460nm and 515nm. All wide-view tile-stitching and confocal z-
scanning was controlled by the Fluoview software (Olympus). 

 

Data Analysis 

PRM-SRS Lipid Subtyping 

PRM-SRS was conducted according to previously published methods72. Briefly, pure lipid 
subtypes such as those shown in supplementary figure S1 were spectroscopically analyzed 
using spontaneous Raman scattering. These spectra were used as reference spectra. SRS HSI 
had each pixel scored using cosine similarity in the CH stretching region at multiple offsets. 
Similarity scores were had a corresponding penalty that varied according to the offset to 
account for non-linear, lensing, or other non-standardized equipment effects. Resulting images 
contain pixels with simplex-normalized similarity scores, whose intensity corresponds to the 
relative similarity of that pixel’s spectrum to the reference spectrum. These relative intensities 
are interpreted as relative concentrations.  

Stimulated Raman Histology 

Stimulated Raman histology was performed following published protocol73 for linear RGB 
blending. Briefly, custom lookup tables were applied to the protein (2940cm-1) and lipid 
(2850cm-1) Raman images and blended in the RGB color space using either MATLAB or 
ImageJ. For clarity, RGB histogram specifications were applied to slightly adjust the final 
result74. For 3D representations, the opacity of white interstitium was achieved using a sigmoidal 
transfer function in the MATLAB VolumeViewer alphamap field. Fine-tuned SRH images were 
generated by analyzing ground-truth samples stained with reagents after hyperspectral SRS 
acquisition of the same samples. For H&E pseudocoloring, which is comprised of two main 
colors, a blue-purple nuclei stain (Hematoxylin), and a pink interstitial stain (Eosin). These 
colors can be easily segmented in the L*a*b* color space to generate ground truth masks. The 
protein (2940 cm-1) and lipid (2850 cm-1) SRS images from the hyperspectral stack are unmixed 
using previously published methods75. Of note, three Raman peaks of interest comprise the 
majority of the variance: 2850 cm-1, 2880 cm-1, and 2940 cm-1. Nuclei were segmented from the 
ratiometric result by thresholding pixels with the highest lipid to protein ratio. The nucleic mask 
is then de-speckled, closed, and hole-filled using standard ImageJ binary functions. Custom 
LUTs are applied to the unmixed protein and lipid images and blended together in the RGB 
space in a similar fashion to other studies 73,76. To ensure the nuclei and background have 
enough contrast, the pixels within these masks have their L* decreased and increased, 
respectively, and their b* chromacity slightly decreased. Finally, RGB histogram normalization 
may be applied to ensure clarity and consistency 74. For the PAS SRH implementation, the 
stained ground truth images were preprocessed by enhancing contrast (raising the lower 
threshold by 10% and decreasing the upper threshold by 10%), and increasing the blue 
channel’s chroma and saturation by 10% each. This is done to provide a greater separation 
between the nuclei counterstain and the PAS aldehyde chroma. Once the image is converted to 
the L*a*b* color space, the PAS can be readily analyzed. Unlike the Eosin, which stains almost 
everything the same color, and can then be scaled in brightness proportionally with the Raman 
intensity, the hue and chroma of the PAS stain is more of a gradient. Period acid first oxidizes 
glycol groups found on saccharides in glycoproteins and mucin such as in basement 
membranes. The aldehyde product can then bind with Schiff’s reagent, and upon the release of 
a sulfonic group in washing steps, a reddish hue develops. The chroma of this hue is redder 
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where the concentration of Schiff’s reagent is higher, however it unfortunately doesn’t scale 
linearly with Raman intensity. In the L*a*b* space, the areas with higher PAS staining correlate 
logarithmically with the difference between a* and b* chroma. It should be noted that other color 
spaces such as Hue Saturation Value (HSV) may also be used, however the L*a*b* space was 
implemented because Cartesian coordinates are easily interpretable with Raman intensity, and 
the histological stains employed are well suited to the a* and b* chromaticity representation. 
These axes measure green-magenta, and blue-yellow opponent colors, respectively. The 
chroma becomes redder with positive increasing a*, and bluer with negative decreasing b*. For 
images with another color gamut, a different segmentation method may be necessary. Unlike 
the more common RGB and CMYK color-spaces, the L*a*b* color-space is device independent. 
This offers advantages in color normalization methods to standardize datasets and establish 
uniform stain-augmentation in the future – a critical consideration for co-registration of spatial 
molecular imaging modalities. 

Morphological Segmentation of Glomeruli from SHG 

SHG images were analyzed using MATLAB. The collagen SHG signal is first morphologically 
filtered using a top-hat background subtraction with a disk structuring element of radius at least 
twice the largest visible fiber diameter. The result is median filtered to smooth small gaps, and 
then both dilated (to serve as a gradient mask) and inverted. The inverted image is eroded and 
reconstructed and is then used to find objects using regional maxima, corresponding to 
glomeruli and tubules. The resulting image undergoes a series of opening and closing to solidify 
the objects. An optional iteration can be applied to detect any missing objects by merging the 
result with the gradient image and repeating the last step. Finally, the object masks are dilated 
until they reach the gradient wireframe or intersect with another object mask. Code 
demonstrating this process is available on the Shi Lab Github account.  

3D Glomerular Tuft Volume Fraction 

The CH3 Raman shift (2940cm-1) was used for the 3D image analysis of glomeruli because of its 
high intensity and optimal contrast. Glomeruli were manually identified and the planes between 
their maximal cross-sectional area and vanishing point were analyzed. The thickness of the 
glomerulus is the distance between those focus planes. The radius of the glomerulus is the 
average distance from the centroid of the glomerulus to the edge of the outer layer of the 
Bowman’s capsule at the plane with the maximum cross-sectional area. If no maximum cross-
sectional area could be defined (i.e. the plane with the largest area occurs at the first or last 
plane of the 3D image) then the radius is assumed to be 100 microns. Those glomeruli that 
showed thicknesses of less than 90 percent of their respective radii were discarded. These may 
have been due to the region being a polar slice (less than a hemisphere), or the glomerulus not 
fully contained within the imaging volume, respectively.  
Auxiliary analysis using the maximum cross-sectional area plane for the volume fraction 
estimation was also performed. For these measurements, only glomeruli clipped at the edges of 
the image were discarded, just as with the traditional 2D method. 

Glomeruli Segmentation 

Single plane hyperspectral SRS images of human kidney were acquired along with the collagen 
SHG images. The SRS hyperspectral image was projected to 2D using maximum intensity 
projection (MIP) for ease of viewing. The collagen SHG image was transformed into a mask by 
maximizing the contrast and closing gaps manually using the pen tool in ImageJ. The muscle 
MorphoLibJ plugin was used to generate a segmentation of the collagen mask, which was then 
intersected with the MIP image and thresholded to remove the empty spaces such as those 
between tubules. Pixels within the segmented regions correspond to a datum, which were then 
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k-means clustered initialized with 3 clusters. Segments were pseudo-colored by cluster identity 
using lookup tables for visualization. Glomeruli were also segmented using HALO AI 
(IndicaLabs) using a DenseNet 2.0 model. After importing the stained and SRH images, manual 
segmentation of example glomeruli and tubulointerstitium are drawn. Then, a bounding box is 
drawn to indicate the analytical region containing both glomeruli and cortex tubulointerstitium to 
be analyzed. Green and red masks appear within this bounding box to indicate structures of 
interest. 

Collagen Anisotropy 

Collagen fiber direction and anisotropy, along with total collagen fiber signal, was extracted into 
80um x 80um regional bins using a bespoke MATLAB code. Details of the methods are 
published elsewhere 77. In brief, the method applies a 2D discrete Fourier transform (DFT)–
based algorithm to the SHG images and features a novel integrated periodicity plus smooth 
image decomposition to correct DFT edge discontinuity artefacts, minimizing the loss of 
peripheral image information that limits more commonly used DFT methods. Collagen fiber 
thickness measurements were achieved by transforming whole-slide SHG images into distance 
maps in which pixel intensity values correspond to its distance to the nearest background pixel 
using the bwdist function in MATLAB. Local Maxima were recorded and multiplied by 2, since 
the pixel distance is half the thickness. Background subtraction was done using a flatfield 
correction and top-hat filter in MATLAB with a disk morphological structuring element.  

Statistical Analysis 

A total of 2 DKD samples, and 3 control samples were used in this study. For lipid subtype, 
collagen anisotropy, and optical redox ratio calculations, 3 regions of interest were obtained 
from each sample. For glomerular volume fraction calculations, 4 representative hemispherical 
glomeruli were used in each group. A simple student’s t-test was used for all measures of 
significance.   
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