
RESEARCH ARTICLE

Neuromorphic computing for content-based

image retrieval

Te-Yuan Liu, Ata MahjoubfarID*, Daniel Prusinski, Luis Stevens

Target Corporation, Sunnyvale, California, United States of America

* ata.mahjoubfar@target.com

Abstract

Neuromorphic computing mimics the neural activity of the brain through emulating spiking

neural networks. In numerous machine learning tasks, neuromorphic chips are expected to

provide superior solutions in terms of cost and power efficiency. Here, we explore the appli-

cation of Loihi, a neuromorphic computing chip developed by Intel, for the computer vision

task of image retrieval. We evaluated the functionalities and the performance metrics that

are critical in content-based visual search and recommender systems using deep-learning

embeddings. Our results show that the neuromorphic solution is about 2.5 times more

energy-efficient compared with an ARM Cortex-A72 CPU and 12.5 times more energy-

efficient compared with NVIDIA T4 GPU for inference by a lightweight convolutional neural

network when batch size is 1 while maintaining the same level of matching accuracy. The

study validates the potential of neuromorphic computing in low-power image retrieval, as a

complementary paradigm to the existing von Neumann architectures.

Introduction

Neuromorphic computing is a non-von Neumann computer architecture, aiming to obtain

ultra-high-efficiency machines for a diverse set of information processing tasks by mimicking

the temporal neural activity of the brain [1–3]. In neuromorphic computing, numerous spik-

ing signals carry information among computing units i.e. artificial neurons, synchronously or

asynchronously [4], forming a mesh-like, nonlinear dynamical system [5]. The information

can be encoded in the temporal characteristics of the signals, for example firing rates [6].

In this work, we implement and analyze a low-power computer vision model for visual

search engines and recommender systems that evaluate the visual similarity between a query

image and a database of product images. In conventional machine learning pipelines, this is

often performed by transfer learning using a deep convolutional neural network (CNN) [7]

pre-trained on a large-scale dataset e.g., ImageNet [8, 9] and fine-tuned on a domain-specific

image dataset e.g., DeepFashion2 for apparel [10]. The embeddings of the images are calcu-

lated by inferring the activation values of the last few layers of the neural network as visual fea-

tures [11–17]. The distances between embeddings of the query image and the database images

are used to find the nearest neighbors for the query image in the embeddings space, identifying

the most similar items visually [18].

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0264364 April 6, 2022 1 / 13

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Liu T-Y, Mahjoubfar A, Prusinski D,

Stevens L (2022) Neuromorphic computing for

content-based image retrieval. PLoS ONE 17(4):

e0264364. https://doi.org/10.1371/journal.

pone.0264364

Editor: Je Sen Teh, Universiti Sains Malaysia,

MALAYSIA

Received: October 22, 2021

Accepted: February 8, 2022

Published: April 6, 2022

Copyright: © 2022 Liu et al. This is an open access

article distributed under the terms of the Creative

Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in

any medium, provided the original author and

source are credited.

Data Availability Statement: All relevant data are

within the paper.

Funding: All authors contributed to this work while

employed at Target Corporation. The funder

provided support in the form of salaries for authors

T. L., A. M., D. P., and L. S. Only the authors had a

material role in the study design, data collection

and analysis, decision to publish, or preparation of

the manuscript. The specific roles of these authors

are articulated in the ‘author contributions’ section.

Competing interests: The specific roles of these

authors are articulated in the ‘author contributions’

https://orcid.org/0000-0001-5702-6760
https://doi.org/10.1371/journal.pone.0264364
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0264364&domain=pdf&date_stamp=2022-04-06
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0264364&domain=pdf&date_stamp=2022-04-06
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0264364&domain=pdf&date_stamp=2022-04-06
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0264364&domain=pdf&date_stamp=2022-04-06
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0264364&domain=pdf&date_stamp=2022-04-06
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0264364&domain=pdf&date_stamp=2022-04-06
https://doi.org/10.1371/journal.pone.0264364
https://doi.org/10.1371/journal.pone.0264364
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Here, we evaluate the same visual search and recommendation technique using embed-

dings generated by the neuromorphic neural networks. We train spiking convolutional neural

networks on a clothing-specific image classification dataset, Fashion-MNIST [19]. The trained

spiking neural networks are then used for extraction of features for the product images and the

query images. The embeddings will be based on the patterns of the temporal spikes, and simi-

lar to the conventional convolutional neural networks, they are used for finding nearest visual

neighbors of the query image among product images. Our results show considerable power

efficiency in finding the most visually similar products using neuromorphic chips and particu-

larly Loihi [20].

Methods

To explore applications of neuromorphic computing in image retrieval, we built and deployed

a spiking neural network (SNN) on Intel’s Loihi neuromorphic chip. Our image search pipe-

line is shown in Fig 1. Firstly, we convert a trained artificial neural network (ANN) into a spik-

ing neural network (SNN) and deploy it on Loihi chip. We then feed training and test images

into the SNN and probe the neurons of the layer before the output layer to get image embed-

dings. Finally, nearest neighbor search is employed on CPU cores to find the best matches in

the training dataset for each test image.

In the first step, we train different ANNs by minimizing the cross-entropy loss function for

the classification of the Fashion-MNIST dataset via backpropagation. Then, we convert the

ANNs into SNNs, compare the classification test accuracies of SNNs, and select the most accu-

rate SNN model. Suggested by Hunsberger and Eliasmith [21] and Sengupta et al. [22], we

reduce the feature map size using average pooling rather than max pooling, and employ drop-

out to regularize [23].

Note that there are two constraints on the neural network architectures that can be

deployed on Loihi chips. One constraint is that the synaptic memory, which stores neuron

weights per neuromorphic core is 128 KB. This indicates that the number of parameters asso-

ciated with neurons in a core is limited. The other constraint is the maximum fan-in of 4,096

per neuromorphic core, which means the input size of the neurons cannot exceed 4,096 [24].

These two constraints result in neural networks deployed on Loihi chip to have relatively slim

layers rather than wide layers.

Given an ANN, the conversion is done through building a SNN which has the same archi-

tecture as the ANN, but changing the neuron type to Leaky, Integrate and Fire (LIF) neuron

with soft-reset, which is a variant of Residual Membrane Potential (RMP) neuron proposed by

Han et al. [25]. Then, floating-point ANN parameters are scaled to integers and transplanted

to the SNN as Loihi chip executes operations with integer numbers. The spiking threshold of

each LIF neuron is determined at the same time as the parameter scaling, using a method pro-

vided by Loihi NxSDK [26]. The method of parameter scaling and threshold calculation is

shown in Algorithm 1 (For more details, see mapping spiking neural networks onto a many-

core neuromorphic architecture by Lin et al. [26]).

Algorithm 1 Parameter scaling and threshold calculation
Require: Normalized Input: input 2 [0, 1]N×H×W×C

1: WMAX = 2num_weight_bits−1 − 1, bMAX = 2num_bias_bits−1 − 1
2: slope = 1, param_percentile = 99.999, activation_percentile = 99.999
3: for snn_layer, ann_layer in zip(SNN.layers, ANN.layers) do
4: if snn_layer is input layer then
5: param_scale = WMAX
6: dvdt = input × param_scale
7: else
8: weight, bias = ann_layer.get_param()

PLOS ONE Neuromorphic computing for content-based image retrieval

PLOS ONE | https://doi.org/10.1371/journal.pone.0264364 April 6, 2022 2 / 13

section. The authors declare that no competing

interests exist. Our affiliation does not alter our

adherence to PLOS ONE policies on sharing data

and materials.

https://doi.org/10.1371/journal.pone.0264364


9: bias = bias × slope
10: weight_norm = percentile(abs(weight), param_percentile)
11: bias_norm = percentile(abs(bias), param_percentile)
12: weight ratio ¼ WMAX

weight norm ; bias ratio ¼
bMAX

bias norm

13: param_scale = min(weight_ratio, bias_ratio)

Fig 1. Pipeline of image retrieval by spiking neural network.

https://doi.org/10.1371/journal.pone.0264364.g001

PLOS ONE Neuromorphic computing for content-based image retrieval

PLOS ONE | https://doi.org/10.1371/journal.pone.0264364 April 6, 2022 3 / 13

https://doi.org/10.1371/journal.pone.0264364.g001
https://doi.org/10.1371/journal.pone.0264364


14: weight = int(weight × param_scale), bias = int(bias ×
param_scale)
15: snn_layer.set_param(weight, bias)
16: dvdt = ReLU(weight � spikerate + bias)
17: end if
18: threshold = int(percentile(dvdt, activation_percentile))
19: snn_layer.threshold = threshold
20: spikerate ¼ min dvdt

threshold ; 1
� �

21: slope ¼ slope� param scale
threshold

22: end for
Similar to the spike-norm algorithm proposed by Sengupta [22], a set of images are fed into

the network and the threshold at each layer is set to the maximum activation at that layer.

However, Loihi chip uses a rate-based simulation of SNN instead of doing the actual SNN for-

ward-pass to calculate the spiking thresholds.

In Algorithm 1, there are two important variables. One is named param_scale, which gives

the factor we use to scale the ANN parameters to integers to get the SNN parameters. The

other one is named threshold, which is the spiking threshold that decides the LIF neuron spik-

ing activity.

Algorithm 1 requires a batch of input images to tune the spiking threshold, and they are

represented as an N ×H ×W × C matrix with floating-point elements ranging between zero

and one; N for the number of images and H, W, C for the image’s height, width, and channel.

Line 1 set the WMAX, bMAX, and line 2 set the slope, param_percentile, activation_percentile var-

iables. If we use 9 bits to represent SNN weights on Loihi chip, then the maximum weight

WMAX is 29−1 − 1 = 255. We set the maximum bias bMAX in the same way. The slope variable

shows the ratio between the SNN neuron output and the ANN neuron output at the current

layer and is initialized to one.

In line 3, we get snn_layer and its corresponding ann_layer. From line 4 to 6, if snn_layer is

the input layer which encodes input images into spike time series, we set param_scale to

WMAX and multiply input by param_scale to get the dvdt, which is the neuron membrane

potential increment rate. Note that dvdt here still has the shape of N ×H ×W × C as the input

layer only multiplies the input by a scalar.

From line 7 to 16, if the snn_layer is not the input layer, we have to scale the ANN parame-

ters and set the SNN parameters. In line 8, we get the ANN weight and bias from ann_layer.
Then in line 9, we multiply bias by slope to update bias with the scaling of the previous layer.

In line 10, we set weight_norm as one single value by getting a percentile value of abs(weight)
and do likewise to set bias_norm in line 11. Then in line 12, we set weight_ratio as the ratio

between WMAX and weight_norm to find out how many times we can scale up weight without

exceeding WMAX, and we do the same thing to calculate bias_ratio. In line 13, we compare

weight_ratio and bias_ratio to set the param_scale to the smaller value. In line 14 and 15, we

use param_scale to scale the ANN weight and bias, quantizing them to integers, and set them

as the parameters of snn_layer. In line 16, we calculate dvdt by simulating the ANN neuron

activation and the shape of dvdt becomes N × FH × FW × FC, where FH, FW, and FC stand for

the feature map’s height, width, and channel.

In line 18 and 19, we set the threshold of neurons at snn_layer to the quantized percentile

value of dvdt so there is one single threshold value for this layer. Then, in line 20, we calculate

the spikerate, an estimation of the spiking probability of neurons, as the output of snn_layer,
which has the same shape as dvdt. In line 21, we update slope by multiplying it with the ratio of

param_scale and threshold.

Now having a SNN at hand, we start feeding images into the network. For each image, we

probe the neurons of the layer before the output layer at the last execution time step to get the

PLOS ONE Neuromorphic computing for content-based image retrieval

PLOS ONE | https://doi.org/10.1371/journal.pone.0264364 April 6, 2022 4 / 13

https://doi.org/10.1371/journal.pone.0264364


neuron membrane potentials. The membrane potential vector is then the embedding of the

input image.

Our SNN takes images in the training and test sets as inputs and generates their embed-

dings. We see the training image embeddings as a corpus of image features. For each test

image, we apply nearest neighbor search using cosine similarity to find images in the corpus

that are the closest to the test image in the embedding space.

Results

We implemented and tested 3-layer, 4-layer, and 5-layer SNNs for classification of Fashion-

MNIST dataset. We selected Fashion-MNIST as our evaluation dataset because it is suitable

for benchmarking small-footprint computer vision models. Note that we use this dataset with-

out data augmentation in our experiments. The architectures analyzed are shown in Table 1.

In the architecture column, number of convolutional kernels (number of output channels) in

each layer are concatenated by hyphens. Note that the last architecture in Table 1 was not

deployable on the Loihi chip because the maximum fan-in was exceeded. The fourth architec-

ture in Table 1 scores the best classification test accuracy when converted to a SNN; this archi-

tecture is shown in Fig 2. It consists of three layers, including two convolutional layers and one

dense layer. We use this SNN architecture to conduct the rest of the experiments. The image

Table 1. Various CNN architectures and their performance.

Architecture ANN train accuracy (%) ANN validation accuracy (%) ANN test accuracy (%) SNN test accuracy (%)

4-8-10 85.03 85.37 83.96 83.73

8-16-10 89.11 88.43 87.41 86.98

16-32-10 89.41 88.72 87.85 87.41

32-64-10 93.99 90.68 90.07 90.01

4-8-16-10 87.47 87.20 86.16 86.02

8-16-32-10 90.43 89.03 88.40 76.54

16-32-64-10 90.36 89.25 87.91 87.85

32-64-128-10 93.37 90.08 89.43 88.18

4-8-16-32-10 89.14 88.57 87.87 87.49

8-16-32-64-10 92.11 90.20 89.51 84.19

16-32-64-128-10 94.27 90.60 89.76 85.79

32-64-128-256-10 93.38 90.78 90.21 N/A

https://doi.org/10.1371/journal.pone.0264364.t001

Fig 2. Architecture of our best SNN.

https://doi.org/10.1371/journal.pone.0264364.g002

PLOS ONE Neuromorphic computing for content-based image retrieval

PLOS ONE | https://doi.org/10.1371/journal.pone.0264364 April 6, 2022 5 / 13

https://doi.org/10.1371/journal.pone.0264364.t001
https://doi.org/10.1371/journal.pone.0264364.g002
https://doi.org/10.1371/journal.pone.0264364


embeddings are generated by flattening the output of the last convolutional layer from a 4 × 4

× 64 tensor to a 1024-dimensional vector.

The SNN layer partition on a Loihi chip is shown in Fig 3. There are 128 neuromorphic

cores on a Loihi chip in 8 rows with 16 cores a row. We can see each layer occupies certain

number of the neuromorphic cores [26]. Our best performing SNN (Fig 2) is relatively com-

pact, so the number of cores occupied is small compared with the number of cores available

on a Loihi chip.

SNN has an intrinsic execution time parameter, called number of time steps, which is used

to define how many discrete time slots are given to the network to process information during

inference. It is intuitive that the more time steps we give our SNN to process the information,

the higher performance we get, but the runtime is also larger. This tradeoff between perfor-

mance and number of time steps is shown in Fig 4. We can see that performance metrics sky-

rocket between 4 time steps and 16 time steps and then plateau, showing that using 16 time

steps is enough to achieve certain degree of performance. The error bars indicate the negligible

variations among five independently trained networks, displaying reproducibility of our

results.

The relation between the runtime and the number of time steps is shown in Fig 5. As we

gradually increase the number of time steps, the runtime scales up almost linearly. However,

the runtime is independent of the number of time steps for small numbers, e.g., 4 or 8 time

steps because the overhead takes up the majority of the runtime.

The performance comparison between the selected SNN and its ANN counterpart is shown

in Table 2. Note that the number in the parentheses next to the model type is the number of

time steps used per example during SNN inference. The ANN and SNN have the same net-

work architecture but different neuron types and parameters. We can see that the SNN using

128 time steps have accuracies very close to the ANN, indicating that the SNN is capable of

achieving comparable performance with its ANN counterpart. Using fewer time steps, e.g., 16

time steps, our SNN suffers a classification accuracy degradation, but the gap is smaller than

5%. However, the top-1 and top-3 accuracies of the SNN with 16 time steps is still very close to

the ANN. This means that the SNN with 16 time steps per inference generates reasonable

embeddings, suitable for the image retrieval task.

Several examples of the SNN image retrieval are shown in Fig 6. The first column shows

query images, each from a class in the dataset. The next three columns present three

Fig 3. SNN layer distribution on Loihi chip.

https://doi.org/10.1371/journal.pone.0264364.g003

PLOS ONE Neuromorphic computing for content-based image retrieval

PLOS ONE | https://doi.org/10.1371/journal.pone.0264364 April 6, 2022 6 / 13

https://doi.org/10.1371/journal.pone.0264364.g003
https://doi.org/10.1371/journal.pone.0264364


randomly-selected images from the corpus with the same class label as the query images. The

next three columns demonstrate the top-three images selected by image search from the cor-

pus using the ANN-generated image embeddings. The last three columns show the top-three

images selected from the corpus using the SNN-generated image embeddings. It is obvious

that image retrieval results, either using ANN or SNN, are visually closer to the query images

compared with the randomly-selected images from the corpus. Again, our SNN implemented

on the Loihi chip demonstrates comparable performance with the ANN.

The neural network inference latency (forward-pass runtime per example) comparison

between the selected SNN and its ANN counterpart is shown in Table 3. Note that the Loihi

could not support batch sizes larger than one at the time of the experiments. We can see

that when the batch size equals one, the SNN on Loihi using 16 time steps has approximately

13.8x/11.3x longer runtime than the ANNs on Xeon/i7 CPUs, 3.8x longer than the ANN on

ARM CPU, and 2.3x/2.5x longer than the ANNs on V100/T4 GPUs. The difference is even

more dramatic if we use larger batch sizes for inference on the CPUs or GPUs. It is obvious

that the SNNs on Loihi chip do not have an advantage in terms of the inference latencies. Sev-

eral time steps that take an SNN to converge to its results leads to long execution times. Reduc-

ing the runtime is a direction where we look forward the neuromorphic hardware to improve

upon.

The comparison of the average power consumptions between the SNNs and the ANNs is

shown in Table 4. With the batch size set to one, the SNN with 16 time steps uses 217.0x/24.0x

less power than the ANNs on Xeon/i7 CPUs, 9.3x less than the ANN on ARM CPU, and

40.8x/31.3x less than the ANNs on V100/T4 GPU. This is where neuromorphic hardware

Fig 4. Tradeoff between performance metrics and number of time steps.

https://doi.org/10.1371/journal.pone.0264364.g004

PLOS ONE Neuromorphic computing for content-based image retrieval

PLOS ONE | https://doi.org/10.1371/journal.pone.0264364 April 6, 2022 7 / 13

https://doi.org/10.1371/journal.pone.0264364.g004
https://doi.org/10.1371/journal.pone.0264364


starts to shine as it consumes way less power than the conventional hardware. Utilizing the

temporal sparsity of SNN appropriately, we believe the neuromorphic hardware can further

reduce its power consumption. Another thing that we can observe from Table 4 is that the

static (idle) power dominates the power consumption of the Loihi chip.

We measured the total energy used per inference (forward pass) reported in Table 5. These

results can also be estimated by combining the results of Tables 3 and 4. As summarized in

Table 5, with the batch size set to one, the energy consumption of SNN with 16 time steps is

15.6x/3.2x less than the ANNs on Xeon/i7 CPUs, 2.5x less than the ANN on ARM CPU, and

17.5x/12.5x less than the ANNs on V100/T4 GPUs per inference. This proves the benefits of

the neuromorphic hardware in the low energy-budget applications of machine learning, par-

ticularly lightweight image search engines and visual recommender systems. It is apparent that

when large batch sizes are used, CPUs and GPUs consume less energy per example. However,

there are many use cases where inference is executed in small batches, and they are the targets

for neuromorphic hardware in the current stage.

Fig 5. Tradeoff between runtime and number of time steps.

https://doi.org/10.1371/journal.pone.0264364.g005

Table 2. Test accuracies.

Model type Classification accuracy (%) Top-1 accuracy (%) Top-3 accuracy (%)

ANN 90.07 87.49 94.55

SNN (16) 85.05 85.55 93.56

SNN (128) 90.01 86.58 93.93

https://doi.org/10.1371/journal.pone.0264364.t002

PLOS ONE Neuromorphic computing for content-based image retrieval

PLOS ONE | https://doi.org/10.1371/journal.pone.0264364 April 6, 2022 8 / 13

https://doi.org/10.1371/journal.pone.0264364.g005
https://doi.org/10.1371/journal.pone.0264364.t002
https://doi.org/10.1371/journal.pone.0264364


Another observation is that the energy consumption for a small number of time steps does

not scale linearly. For example, the energy consumption per inference for 128 time steps is

only 4.0 times larger than 16 time steps (Table 5). This is due to the constant portion of the

energy needed for running each inference, which does not change by the number of time

steps.

We use energy probes provided by Loihi NxSDK to perform the power and energy mea-

surements of the Loihi chips. For the CPUs, we use Intelligent Platform Management Interface

(IPMI) and the system profiler information to measure the power consumption and then, we

integrate the power readings over time to get the energy consumption. For the GPUs, we use

Fig 6. Examples of the image retrieval by the artificial (ANN) and spiking (SNN) neural networks.

https://doi.org/10.1371/journal.pone.0264364.g006

Table 3. Inference latency.

Model type Batch size Hardware Runtime per example (ms)

ANN 1 Intel Xeon CPU (Gold 6148) 0.216

ANN 262144 Intel Xeon CPU (Gold 6148) 0.0073

ANN 1 Intel CPU (i7-8750H) 0.2634

ANN 128 Intel CPU (i7-8750H) 0.013

ANN 1 ARM CPU (Cortex-A72) 0.778

ANN 2048 ARM CPU (Cortex-A72) 0.356

ANN 1 NVIDIA GPU (V100) 1.296

ANN 4096 NVIDIA GPU (V100) 0.0075

ANN 1 NVIDIA GPU (T4) 1.204

ANN 4096 NVIDIA GPU (T4) 0.010

SNN (16) 1 Loihi chip (neuromorphic cores) 2.984

SNN (128) 1 Loihi chip (neuromorphic cores) 11.976

https://doi.org/10.1371/journal.pone.0264364.t003

PLOS ONE Neuromorphic computing for content-based image retrieval

PLOS ONE | https://doi.org/10.1371/journal.pone.0264364 April 6, 2022 9 / 13

https://doi.org/10.1371/journal.pone.0264364.g006
https://doi.org/10.1371/journal.pone.0264364.t003
https://doi.org/10.1371/journal.pone.0264364


NVIDIA System Management Interface (nvidia-smi) [27] to measure the power consumption

and again, we integrate the power readings to get the energy consumption.

Discussion

Our results confirm the energy efficiency of the Loihi neuromorphic chip. However, we

noticed that the inference latency becomes impractically large when a network of Loihi chips

are used. We ponder this is due to the interchip communication latencies. Nowadays in many

applications, deep neural networks models with millions of parameters and billions of inter-

mediate activations are used. Neuromorphic chips need to scale up, possibly by increasing the

number of neuromorphic cores and on-chip memory, to support these applications in future.

The energy efficiency obtained by the Loihi chip in our experiments is owing to two factors.

First, the model parameters are stored in the local memory of the neuromorphic cores, mini-

mizing the energy cost of the data transfer to the shared memory. Second, the neuromorphic

cores are optimized for specialized functionalities; this efficiency is very similar to that of other

specialized accelerators e.g., graphical processing units (GPUs). The typical ANN-to-SNN con-

version methods, including Algorithm 1 used here, do not capitalize on temporal sparsity,

Table 4. Inference power consumption.

Model type Batch size Hardware Static power (W) Dynamic power (W) Total power (W)

ANN 1 Intel Xeon CPU (Gold 6148) 196 19.1 215.1

ANN 262144 Intel Xeon CPU (Gold 6148) 196 44.189 240.189

ANN 1 Intel CPU (i7-8750H) 22 1.805 23.805

ANN 128 Intel CPU (i7-8750H) 22 5.633 27.633

ANN 1 ARM CPU (Cortex-A72) 0.142 9.082 9.224

ANN 2048 ARM CPU (Cortex-A72) 0.142 2.698 2.84

ANN 1 NVIDIA GPU (V100) 24 16.441 40.441

ANN 4096 NVIDIA GPU (V100) 24 20.511 44.511

ANN 1 NVIDIA GPU (T4) 17 14.049 31.049

ANN 4096 NVIDIA GPU (T4) 17 18.228 35.228

SNN (16) 1 Loihi chip (neuromorphic cores) 0.946 0.044 0.991

SNN (128) 1 Loihi chip (neuromorphic cores) 0.952 0.064 1.016

https://doi.org/10.1371/journal.pone.0264364.t004

Table 5. Inference energy consumption.

Model type Batch size Hardware Energy per example (mJ) Energy per example (relative)

ANN 1 Intel Xeon CPU (Gold 6148) 46.787 15.6x

ANN 262144 Intel Xeon CPU (Gold 6148) 1.753 0.585x

ANN 1 Intel CPU (i7-8750H) 9.522 3.178x

ANN 128 Intel CPU (i7-8750H) 0.316 0.105x

ANN 1 ARM CPU (Cortex-A72) 7.379 2.463x

ANN 2048 ARM CPU (Cortex-A72) 1.02 0.34x

ANN 1 NVIDIA GPU (V100) 52.399 17.5x

ANN 4096 NVIDIA GPU (V100) 0.337 0.112x

ANN 1 NVIDIA GPU (T4) 37.399 12.5x

ANN 4096 NVIDIA GPU (T4) 0.366 0.12x

SNN (16) 1 Loihi chip (neuromorphic cores) 2.996 1x

SNN (128) 1 Loihi chip (neuromorphic cores) 12.17 4.0x

https://doi.org/10.1371/journal.pone.0264364.t005

PLOS ONE Neuromorphic computing for content-based image retrieval

PLOS ONE | https://doi.org/10.1371/journal.pone.0264364 April 6, 2022 10 / 13

https://doi.org/10.1371/journal.pone.0264364.t004
https://doi.org/10.1371/journal.pone.0264364.t005
https://doi.org/10.1371/journal.pone.0264364


possible on the neuromorphic processors, as in the brain. So, designing better training and

conversion algorithms to employ temporally sparse signals for neuromorphic machine learn-

ing is a promising future direction.

Finally, it is worthwhile to emphasize that to implement the complete image retrieval pipe-

line, we performed the nearest neighbor search on the host CPU cores. It is possible to carry

out an approximate k-nearest neighbors algorithm on the neuromorphic chips [28], but we

believe that the CPU cores are largely needed for some stages of a machine learning pipeline.

Thus, the role of neuromorphic computing is to improve the performance of special tasks and

supplement the general-purpose processors.

Conclusion

We studied the application of the Loihi chip, a neuromorphic computing hardware developed

by Intel, in image retrieval. Our results show that the generation of the deep learning embed-

dings by spiking neural networks for lightweight convolutional neural networks is about 2.5

times more energy-efficient compared with a CPU and 12.5 times more energy-efficient com-

pared with a GPU. We confirm the long-term potential of neuromorphic computing in

machine learning, not as a replacement for the predominant von Neumann architecture, but

as accelerated coprocessors.

Acknowledgments

We would like to thank Hari Govind, Ramesh Subramonian, and Charles Leu at Target and

Andreas Wild at Intel for helpful suggestions and constructive comments. We are also grateful

of the Intel Neuromorphic Research Community for giving us access to the Loihi chips.

Author Contributions

Conceptualization: Ata Mahjoubfar, Luis Stevens.

Data curation: Te-Yuan Liu, Ata Mahjoubfar.

Formal analysis: Te-Yuan Liu, Ata Mahjoubfar.

Investigation: Te-Yuan Liu, Ata Mahjoubfar, Luis Stevens.

Methodology: Te-Yuan Liu, Ata Mahjoubfar, Daniel Prusinski.

Project administration: Ata Mahjoubfar, Luis Stevens.

Resources: Te-Yuan Liu, Daniel Prusinski, Luis Stevens.

Software: Te-Yuan Liu, Ata Mahjoubfar.

Supervision: Ata Mahjoubfar, Luis Stevens.

Validation: Te-Yuan Liu, Ata Mahjoubfar, Daniel Prusinski, Luis Stevens.

Visualization: Te-Yuan Liu, Ata Mahjoubfar.

Writing – original draft: Te-Yuan Liu, Ata Mahjoubfar, Daniel Prusinski, Luis Stevens.

Writing – review & editing: Te-Yuan Liu, Ata Mahjoubfar, Daniel Prusinski, Luis Stevens.

References
1. James CD, Aimone JB, Miner NE, Vineyard CM, Rothganger FH, Carlson KD, et al. A historical survey

of algorithms and hardware architectures for neural-inspired and neuromorphic computing applications.

PLOS ONE Neuromorphic computing for content-based image retrieval

PLOS ONE | https://doi.org/10.1371/journal.pone.0264364 April 6, 2022 11 / 13

https://doi.org/10.1371/journal.pone.0264364


Biologically Inspired Cognitive Architectures. 2017; 19:49–64. https://doi.org/10.1016/j.bica.2016.11.

002

2. Wunderlich T, Kungl AF, Müller E, Hartel A, Stradmann Y, Aamir SA, et al. Demonstrating advantages

of neuromorphic computation: a pilot study. Frontiers in Neuroscience. 2019; 13:260. https://doi.org/10.

3389/fnins.2019.00260 PMID: 30971881

3. Cauwenberghs G. Neuromorphic learning VLSI systems: A survey. In: Neuromorphic systems engi-

neering. Springer; 1998. p. 381–408.

4. Schuman CD, Potok TE, Patton RM, Birdwell JD, Dean ME, Rose GS, et al. A survey of neuromorphic

computing and neural networks in hardware. arXiv preprint arXiv:170506963. 2017;.

5. Neckar A, Fok S, Benjamin BV, Stewart TC, Oza NN, Voelker AR, et al. Braindrop: A mixed-signal neu-

romorphic architecture with a dynamical systems-based programming model. Proceedings of the IEEE.

2018; 107(1):144–164. https://doi.org/10.1109/JPROC.2018.2881432

6. Ponulak F, Kasinski A. Introduction to spiking neural networks: Information processing, learning and

applications. Acta neurobiologiae experimentalis. 2011; 71(4):409–433. PMID: 22237491

7. LeCun Y, Bengio Y, Hinton G. Deep learning. nature. 2015; 521(7553):436–444. https://doi.org/10.

1038/nature14539 PMID: 26017442

8. Deng J, Dong W, Socher R, Li LJ, Li K, Fei-Fei L. Imagenet: A large-scale hierarchical image database.

In: 2009 IEEE conference on computer vision and pattern recognition. Ieee; 2009. p. 248–255.

9. Kornblith S, Shlens J, Le QV. Do better imagenet models transfer better? In: Proceedings of the IEEE/

CVF Conference on Computer Vision and Pattern Recognition; 2019. p. 2661–2671.

10. Ge Y, Zhang R, Wang X, Tang X, Luo P. DeepFashion2: A Versatile Benchmark for Detection, Pose

Estimation, Segmentation and Re-Identification of Clothing Images. In: Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition; 2019. p. 5337–5345.

11. Babenko A, Slesarev A, Chigorin A, Lempitsky V. Neural codes for image retrieval. In: European confer-

ence on computer vision. Springer; 2014. p. 584–599.

12. Chen CL, Mahjoubfar A, Tai LC, Blaby IK, Huang A, Niazi KR, et al. Deep learning in label-free cell clas-

sification. Scientific reports. 2016; 6(1):1–16. https://doi.org/10.1038/srep21471 PMID: 26975219

13. Gordo A, Almazán J, Revaud J, Larlus D. Deep image retrieval: Learning global representations for

image search. In: European conference on computer vision. Springer; 2016. p. 241–257.

14. Mahjoubfar A, Churkin DV, Barland S, Broderick N, Turitsyn SK, Jalali B. Time stretch and its applica-

tions. Nature Photonics. 2017; 11(6):341. https://doi.org/10.1038/nphoton.2017.76

15. Gordo A, Almazan J, Revaud J, Larlus D. End-to-end learning of deep visual representations for image

retrieval. International Journal of Computer Vision. 2017; 124(2):237–254. https://doi.org/10.1007/

s11263-017-1016-8

16. Li Y, Mahjoubfar A, Chen CL, Niazi KR, Pei L, Jalali B. Deep cytometry: deep learning with real-time

inference in cell sorting and flow cytometry. Scientific reports. 2019; 9(1):1–12. https://doi.org/10.1038/

s41598-019-47193-6 PMID: 31366998

17. Noh H, Araujo A, Sim J, Weyand T, Han B. Large-scale image retrieval with attentive deep local fea-

tures. In: Proceedings of the IEEE international conference on computer vision; 2017. p. 3456–3465.

18. Cao Y, Long M, Wang J, Liu S. Deep visual-semantic quantization for efficient image retrieval. In: Pro-

ceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2017. p. 1328–1337.

19. Xiao H, Rasul K, Vollgraf R. Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learn-

ing Algorithms. arXiv:1708.07747. 2017.

20. Davies M, Srinivasa N, Lin TH, Chinya G, Joshi P, Lines A, et al. Loihi: A Neuromorphic Manycore Pro-

cessor with On-Chip Learning. IEEE Micro. 2018;PP:1–1.

21. Hunsberger E, Eliasmith C. Training spiking deep networks for neuromorphic hardware. arXiv preprint

arXiv:161105141. 2016.

22. Sengupta A, Ye Y, Wang R, Liu C, Roy K. Going deeper in spiking neural networks: VGG and residual

architectures. Frontiers in neuroscience. 2019; 13. https://doi.org/10.3389/fnins.2019.00095 PMID:

30899212

23. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent

neural networks from overfitting. The journal of machine learning research. 2014; 15(1):1929–1958.

24. Rajendran B, Sebastian A, Schmuker M, Srinivasa N, Eleftheriou E. Low-power neuromorphic hard-

ware for signal processing applications: A review of architectural and system-level design approaches.

IEEE Signal Processing Magazine. 2019; 36(6):97–110. https://doi.org/10.1109/MSP.2019.2933719

25. Han B, Srinivasan G, Roy K. RMP-SNN: Residual Membrane Potential Neuron for Enabling Deeper

High-Accuracy and Low-Latency Spiking Neural Network. In: Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition; 2020.

PLOS ONE Neuromorphic computing for content-based image retrieval

PLOS ONE | https://doi.org/10.1371/journal.pone.0264364 April 6, 2022 12 / 13

https://doi.org/10.1016/j.bica.2016.11.002
https://doi.org/10.1016/j.bica.2016.11.002
https://doi.org/10.3389/fnins.2019.00260
https://doi.org/10.3389/fnins.2019.00260
http://www.ncbi.nlm.nih.gov/pubmed/30971881
https://doi.org/10.1109/JPROC.2018.2881432
http://www.ncbi.nlm.nih.gov/pubmed/22237491
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
http://www.ncbi.nlm.nih.gov/pubmed/26017442
https://doi.org/10.1038/srep21471
http://www.ncbi.nlm.nih.gov/pubmed/26975219
https://doi.org/10.1038/nphoton.2017.76
https://doi.org/10.1007/s11263-017-1016-8
https://doi.org/10.1007/s11263-017-1016-8
https://doi.org/10.1038/s41598-019-47193-6
https://doi.org/10.1038/s41598-019-47193-6
http://www.ncbi.nlm.nih.gov/pubmed/31366998
https://doi.org/10.3389/fnins.2019.00095
http://www.ncbi.nlm.nih.gov/pubmed/30899212
https://doi.org/10.1109/MSP.2019.2933719
https://doi.org/10.1371/journal.pone.0264364


26. Lin CK, Wild A, Chinya GN, Lin TH, Davies M, Wang H. Mapping spiking neural networks onto a many-

core neuromorphic architecture. ACM SIGPLAN Notices. 2018; 53(4):78–89. https://doi.org/10.1145/

3296979.3192371

27. NVIDIA System Management Interface; 2021. Available from: https://developer.nvidia.com/nvidia-

system-management-interface.

28. Frady EP, Orchard G, Florey D, Imam N, Liu R, Mishra J, et al. Neuromorphic Nearest Neighbor Search

Using Intel’s Pohoiki Springs. In: Proceedings of the Neuro-inspired Computational Elements Work-

shop; 2020. p. 1–10.

PLOS ONE Neuromorphic computing for content-based image retrieval

PLOS ONE | https://doi.org/10.1371/journal.pone.0264364 April 6, 2022 13 / 13

https://doi.org/10.1145/3296979.3192371
https://doi.org/10.1145/3296979.3192371
https://developer.nvidia.com/nvidia-system-management-interface
https://developer.nvidia.com/nvidia-system-management-interface
https://doi.org/10.1371/journal.pone.0264364

