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Abstract. Human plasma has been demonstrated to 
contain factors that induce the sequential expression 
of nonterminal and terminal adipocyte differentiation 
in 3T3 T mesenchymal stem cells. We now report the 
development of methods for the isolation of purified 
populations of nonterminally differentiated cells and 
terminally differentiated cells, and we show that it is 
possible to experimentally induce transition from the 
nonterminal to the terminal state of differentiation. 
With this model system it is therefore now possible to 
examine the biological and molecular processes associ- 
ated with the terminal event in differentiation, i.e., the 
irreversible loss of proliferative potential. In this re- 
gard, we demonstrate that transition from the nonter- 

minal to terminal state of differentiation is a complex 
metabolic process that consists of at least two steps 
and that this process can be triggered by pulse expo- 
sure to an inducer for ~12 h but that ~24-48 h is 
required for the process to be completed. The data 
also establish that induction of the terminal event in 
differentiation requires protein synthesis but not RNA 
and DNA synthesis. These and additional results sug- 
gest that loss of proliferative potential associated with 
the terminal event in cellular differentiation is a dis- 
tinct regulatory process, and we suggest that defects in 
this regulatory process may be of etiological signifi- 
cance in the pathogenesis of specific human diseases, 
especially cancer. 

T 
HE differentiation of most adult stem cells is associated 
with loss of proliferative capacity, i.e., terminal differ- 
entiation (27, 44). Epithelial stem cells have been 

clearly established to undergo terminal differentiation (49) as 
have hematopoietic, muscle, and neural cells (16). Even in 
differentiated hepatocytes and lymphocytes that retain the 
ability to divide (17, 23), loss of proliferative potential asso- 
ciated with the terminal event in differentiation has been 
documented; for example, lymphocytes can become termi- 
nally differentiated plasma cells (51). The process by which 
cells lose the ability to traverse the cell cycle and proliferate 
in association with induction of the terminal event in differ- 
entiation is an important physiological mechanism involved 
in tissue renewal and growth control. It may also represent a 
critical regulatory process that prevents the development of 
certain disease states, such as cancer (47). 

Previous attempts to study the process of terminal differ- 
entiation have used a variety of in vitro model systems. These 
have included myeloid and erythroleukemia cell lines (4, 6, 
29, 32), myoblast cell lines (25), and cultured epidermal cells 
(1 l, 42, 49, 52). Despite extensive analysis, the mechanisms 
that specifically control the terminal even in differentiation 
and loss of proliferative potential have not been established. 
This is so, because in the experimental systems used in 
previous studies, it has not been possible to clearly distinguish 
those processes associated with differentiation per se and those 

processes associated with loss of proliferative potential. We 
have therefore developed a model tissue culture system to 
study cells at nonterminal and terminal states of differentia- 
tion (18, 34, 35, 38, 41). 

This paper further characterizes cells at the nonterminal 
and terminal states of differentiation and describes methods 
to purify cells at these states. This paper also examines the 
biological mechanisms that mediate the terminal event in 
differentiation. The results establish that the transition from 
the nonterminal to terminal state of differentiation involves 
at least two biological steps that require 24-48 h to be com- 
pletely induced and that these processes can be blocked by 
protein synthesis inhibitors. These and additional data suggest 
that control of the terminal event in cellular differentiation 
represents a distinct regulatory process. 

Materials and Methods 

Cell Culture 

The BALB/c 3T3 T mesenchymal stem cell line (8) and clonal derivatives of 
these cells were used in all studies. Stock cultures were maintained in Duibccco's 
modified Eagle's medium (DME) ~ containing 10% heat-inactivated fetal calf 

1. Abbreviations used in this paper: CEPH, citrate eluate of barium-precipitated 
plasma at high pH; DME, Dulbecco's modified Eagle's medium; FCS, fetal calf 
serum; HP, hepadnized platelet-poor human plasma; MIX, methyl isobutyl 
xanthine; RA, retinoic acid; TCA, trichloroacetic acid; TPA, 12-O-tetradeca- 
noylphorbol- 13-acetate. 
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serum (FCS) at 37"C in a 5% CO2 atmosphere as previously described (18, 34, 
35, 38, 41). All stock cultures of cells were maintained at low density in 75- 
cm 2 flasks by passage with 0.1% trypsin and 1 mM EDTA in phosphate- 
buffered saline (PBS) when cells were <60% confluent. This procedure was 
used to prevent the cultural selection of cells that can grow at high cell densities 
and thereby express a "transformed" phenotype. Cell cultures were also period- 
ically assayed and proven to be free of mycoplasma contamination by the 
method of Chen (3). 

Preparation of Human Plasma and Human 
Plasma Fractions 
Preparation of human plasma and plasma fractions is described in more detail 
elsewhere (18). Briefly, platelet poor citrate anticoagulated plasma was obtained 
from normal volunteers by standard venipuncture or from patients undergoing 
plasmapheresis as therapy for autoimmune disorders. These plasma lots were 
frozen at -70°C. When needed, they were thawed at 4°C and centrifuged at 
1,000 g for 10 min at 4"C before use. Such whole human plasma specimens 
are designated HP. 

Whole human plasma was processed to prepare a fraction that preferentially 
induces nonterminal differentiation. This fraction was designated CEPH. To 
prepare CEPH, the pH of citrate anticoagulated human plasma was adjusted 
to 8.6 using l N NaOH. Barium chloride (l M) was then added to a final 
concentration offl. 1 M and the pH was readjusted to 8.6 with l N NaOH. The 
suspension was stirred for 45 rain at 4°C and sedimented by centrifugation at 
4,600 g for 30 min. The barium citrate sediment was resuspended in one-third 
volume of 0.9% NaCI-0.02 M sodium citrate and mixed for 45 rain. This 
suspension was separated by centfifugation at 4,600 g for 30 rain. The super- 
natant fraction was designated CEPH, i.e., citrate eluate of barium-precipitated 
plasma at high pH. CEPH was extensively dialyzed against 6.5 mM sodium 
citrate, pH 7.4, before use. 

The preparation of CEPH that is devoid of terminal differentiation-inducing 
activity is difficult. Although specific lots of CEPH without terminal differen- 
tiation activity can be identified, many contain both nonterminal and terminal 
differentiation-inducing activity. To reduce the terminal differentiation-induc- 
ing activity in CEPH, one of two procedures was used. First, medium that 
contained CEPH was conditioned by culturing in the presence of adipocytes 
for 4 d followed by sedimentation of the conditioned medium that contained 
CEPH by centrifugation at 1,000 g for l0 rain. Second, CEPH was processed 
by heparin-agarose affinity chromatography (46). Affi-Gel heparin (Bio-Rad 
Laboratories, Richmond, CA) was first washed extensively in 10 mM Hepes- 
6.5 mM Na citrate (pH 7.4); citrate was included to complex calcium ions and 
thereby inhibits plasma clotting. CEPH, which had been dialyzed against the 
Hepes-citrate column buffer, was applied to the column at <2:1, vol/vol, CEPH 
vs. Affi-Gel heparin matrix. Elution with l0 mM Hepes-6.5 mM Na citrate 
(pH 7.4) was done at a flow rate of 10-20 ml/h. Once all nonheparin binding 
protein was washed through the column, i.e., the void volume that contains 
terminal differentiation-inducing activity, the bound protein was eluted with 
2.0 M NaCl, 3.0 M urea in l0 mM Hepes-6.5 raM Na citrate (pH 7.4). This 
material was dialyzed against 6.5 mM Na citrate (pH 7.4). "Processed CEPH" 
was typically devoid of significant terminal differentiation-inducing activity. 

Preparation of Pure Populations of Adipocytes 
Cells were induced to undergo nonterminal differentiation by culture in DME 
that contained fresh or "processed" 25% CEPH, heparin (30 U/ml), and l x 
10 -5 M biotin (DME/(EPH). Two different tissue culture microenvironments 
were used to achieve this response. In the first method, cells were grown in 
DME that contained 10% FCS until they reached ~5 x 103 cells/era 2. The 
cultures were then fed DME/CEPH twice at 4.d intervals. Purified adipocytes 
were prepared from these cultures on day 8. In the second method, cells 
cultured in DME that contained 10% FCS were removed from flasks using 
0. 1% EDTA in PBS. The dissociated cells were sedimented by centrifugation 
at 50 g for 5 rain, then resuspended in DME/CEPH. The cell suspension was 
plated onto bacteriological culture plates at ~5 x l03 cells/era 2. Adipocytes 
were purified from these cultures 5 d thereafter. 

To prepare purified adipocytes from the above specimens, the culture media 
was removed and the adherent cells were gently washed in situ twice in PBS; 
they were then detached by incubation in 0.1% EDTA in PBS (pH 7.4) for 5 
min at room temperature. Adipocytes were preferentially removed by hitting 
the side of the flask once or twice. The adipocyte suspension was very gently 
pipetted to dissociate small aggregates of cells, then layered onto a cushion of 
10% bovine serum albumin (BSA) in 0.2% EDTA/PBS, pH 7.4, at room 
temperature. The cells were centrifuged for l0 rain at 200 g at 23"(2. Cells at 
the PBS/BSA interface were removed and plated into standard tissue culture 
flasks in conditioned or processed 10-25% CEPH-containing media. Adipo- 

cytes were thereafter allowed to attach for 24 h before use. Such cultures 
contained 95-100% adipoc3rtes most of which will be shown below to represent 
nonterminally differentiated cells. Adipocyte differentiation was routinely 
quantitated by phase microscopy because we and others have established that 
there is an excellent correlation between such morphological assays and assays 
of various lipogenic enzyme activities (12, 13, 18). A cell was scored as an 
adipocyte when the cytoplasm contained numerous refractile lipid droplets. 

Proliferative Assays 
Two assays were used to quantitate the proliferative potential of purified 
adipocytes. First, incorporation of [3H]thymidine into trichloroacetic acid 
(TCA)-precipitable material was used as an assay for DNA synthesis. For these 
assays purified adipocytes were exposed to [3H]thymidine (1-5 uCi/ml) for 24- 
48 h in various media, then fixed and processed for autoradiography as 
previously described (18, 34, 35, 38, 41 ), Adipocytes with proliferative potential 
are defined as those cells that show radiolabeled nuclei. 

Second, colony formation assays were used to assess the abifity of adipocytes 
to divide and form colonies. For these assays pure populations of adipocytes 
were plated at low density onto standard tissue culture dishes in conditioned 
or processed CEPH-containing medium. After 24 h, DME that contained 30% 
FCS + 50 ug/ml insulin (some serum lots required added insulin for optimum 
mitngenic activity) was added to these cultures and the total number of cells 
that grew in each foci was assayed after l, 2, or 3 wk. Some such cultures were 
refed at 4-7-d intervals and some were not. Adipocytes with clonogenic 
potential are defined as those cells that attach to the plastic substrate and give 
rise to colonies. 

Dedifferentiation Assays 
As an additional assay to distinguish cells at the nonterminal and terminal 
states of differentiation, we evaluated their ability to lose the differentiated 
phenotype when treated for 3 d with one oftbe following agents: retinoic acid 
(RA), l0 /~g/ml; 12-O-tetradeeanoylphorbol-13-acetate (TPA), 100 ng/ml; 
methyl isobutyl xanthine (MIX), 5 x l0 -4 M; FCS, 10-30%; tumor growth 
factor, 30%; epidermal growth factor, 10-100 ng/ml; or dibutyryl cAMP, l x 
l0 -3 M. In this regard, we previously reported (15) that nonterminally differ- 
entiated adipocytes can be induced to lose their differentiated phenotype by 
some of these reagents, whereas terminally differentiated cells cannot. A cell 
was considered to have lost the adipocyte phenotype when it contained no or 
very few small lipid droplets. The biological characteristics of adipocytes and 
of cells that have been induced to lose the adipocyte phenotype have been 
described in detail elsewhere (15). The terms "loss of the differentiated pheno- 
type" and "dedifferentiation" are used similarly in this paper because we have 
recently established that adipocytes that are induced to lose the fat cell pheno- 
type can subsequently be induced to differentiate into another cell type, i.e., 
into macrophages (42a). 

Protein and RNA Synthesis 
The effects of chemical inhibitors of protein synthesis were estimated by 
measurement of the uptake of [aH]methionine into TCA-precipitable material 
following the method described by Levenson and Housman (21). Briefly, 
cultures were incubated for 6 h in the presence or absence of cycloheximide (5 
#g/ml) or puromycin (10 uM), then cultured in methionine-free DME that 
contained dialyzed HP, an appropriate dose of inhibitor, and [3H]methionine 
(5 vCi/ml). Cells were harvested after 1-, 2-, and 3-h intervals by treatment 
with 0.1 M NaOH for 30 min at 37"(?. The protein was precipitated by addition 
of an equal volume of 10% TCA; BSA 050 ug/ml) was used as carder. The 
precipitate was fdtered and counted. In the absence of inhibitor the uptake of 
material into TCA-precipitable material was essentially linear over the time 
period examined. 

RNA synthesis was estimated by measurement of the incorporation of 
[3H]ufidine into TCA-precipitable material in the presence and absence of 
specific inhibitors, including a-amanitin (10 ~g/ml) (45) or cordycepin (5 ~g/ 
ml) (22). After appropriate treatment, cultures were fed [3H]uridine (25 #Ci/ 
ml) for 3 h. Cultures were then rinsed twice with cold PISS and cells were 
treated with 1 ml of 10% TCA. Yeast RNA (1 #g/ml) was added as carrier. 
The precipitate was filtered and counted. 

Results 

Tissue Culture Model System 
The 3T3 T mesenchymal stem cell system is a well-character- 
ized model to study mechanisms for the control of cellular 
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Figure 1. Model for the integrated control of 3T3 T mesenchymal 
stem cell proliferation and differentiation. It illustrates that before 
differentiation 3T3 T cells must fn'st growth arrest in the G~ phase of 
the cell cycle at a distinct state designated GD (arrow 1). Cells at Go 
can remain quiescent, reinitiate proliferation (arrow 5), or undergo 
differentiation. If differentiation occurs, it involves both nonterminal 
(arrow 2) and terminal phases (arrow 3). Cells at the nonterminally 
differentiated state (GD,) can remain quiescent, be induced to lose 
the adipocyte phenotype (arrow 4), reinitiate proliferation (arrow 5), 
or undergo the terminal event in differentiation (arrow 3). The model 
also illustrates the existence of other restriction points in the G~ phase 
of the cell cycle--more specifically, the growth factor--dependent 
restriction point (Gs/c) and the nutrient deficiency-induced restric- 
tion point (GN). 

differentiation. Fig. 1 presents a schematic model that illus- 
trates the steps involved in control of cellular differentiation 
and proliferation in this cell type. The model shows that there 
are three distinct steps involved in adipocyte differentiation 
in 3T3 T cells. In the first step, ceils growth arrest at a distinct 
predifferentiation state in the G~ phase of the cell cycle; this 
state is designated Go. In the second step, cells express the 
differentiated phenotype but retain proliferative potential. 
These cells are defined as being at the nonterminal Go, state 
of differentiation. In the final step, cells lose proliferation 
potential and enter the terminal differentiation state desig- 
nated TD. This paper focuses on the transition from the GD. 
state to the TD state (18, 34, 35, 38, 41). 

Characterization o f  Purified Adipocytes 

Previous studies suggested that adipocytes that develop during 
culture in heparinized DME that contains CEPH, as above, 
are primarily nonterminally differentiated (41) because they 
retain their ability to reinitiate proliferation and/or to lose the 
differentiated phenotype. To quantitatively study the process 
of  terminal differentiation, we developed a gradient method 
to isolate essentially pure populations of nonterminally differ- 
entiated adipocytes. The morphology of these adipocytes is 
shown in Fig. 2A. In such cultures 95-100% of the cells 
exhibited adipocyte morphology, i.e., the ceils contained mul- 
tiple large cytoplasmic lipid droplets. It has been shown 
elsewhere that such cells also exhibit high levels of enzymes 
associated with lipid metabolism (12, 13, 18). 

To determine whether purified adipocytes were indeed 
nonterminally differentiated and to further characterize such 
cells, assays were done to evaluate their response to a variety 
of agents that either induce proliferation or loss of the differ- 
entiated phenotype. Fig. 2, B and C illustrates representative 

adipocytes that were induced either to proliferate in the 
presence of 30% FCS _+ 50 #g/ml insulin or to dedifferentiate 
in the presence of 1-5 x 10 --4 M MIX. More specifically, 
Table I shows that -80% of the purified adipocytes are nonter- 
minally differentiated because they can be induced to lose the 
adipocyte when treated with MIX and because they can be 
induced to undergo clonal proliferation. If  the kinetics of 
clonal proliferation are evaluated it is evident that at least 8 
d are required to observe a maximum donogenic response 
(Fig. 3). In this regard, it is also possible to evaluate the 
proliferative potential of adipocytes by another assay, that is, 
via pulse labeling with a mitogen and [3H]thymidine for 48 h 
followed by autoradiographic assays. When this assay is used, 
lower proliferative responses are detected because >48 h is 
required for all Go, ceils to enter the "S" phase of the cell 
cycle (Table I). Despite this fact, autoradiographic assays 
provide a valuable assay to evaluate the relative proliferative 
potential of different cell populations. 

A variety of other agents were tested for their ability to 
induce proliferation of cells at the Go, state as assayed by the 
autoradiographic method. The following agents were tested 
at the indicated dosage and the proliferative response is given 
in parenthesis: 10 ng/ml epidermal growth factor (35 % ); 100 
ng/ml TPA (17%); 30% tumor growth factor (12%); 10 tzg/ 
ml RA (6%); 10 -3 M dibutyryl cAMP (<1%); and 3 x 10 -4 
M MIX (<1%). These results represent the mean results of 
two experiments. Although RA, dbeAMP, and MIX do not 
induce a significant mitogenic response in Go, cells, they do 
induce dedifferentiation. In this regard, the following data 
were obtained. RA (10 #g/ml) induced 41% dedifferentiation; 
dibutyryl cAMP (10 -3 M) induced 76% dedifferentiation; and 
MIX (3 x 10 -4 M) induced 82% dedifferentiation (compare 
Table I). These data therefore establish that gradient purified 
adipocytes are nonterminally differentiated. 

Induction o f  the Terminal Event in 
Adipocyte Differentiation 

To determine if purified nonterminally differentiated adipo- 
cytes could be induced to undergo the terminal event in 
differentiation, they were incubated in DME that contained 

Table I. Evidence That Gradient Purified Adipocytes Derived 
from Culture in Medium Containing the Human Plasma 
Fraction CEPH Are Nonterminally Differentiated 

Proliferative response Dedifferentiation 
response 

Loss of the differ- 
Clonogenic entiated phenc~ 

Treatment Labeled nuclei potential type 

% % % 

None _<1 - 1  _<1 
FCS + insulin 35-50 65-80 - -  
MIX - -  - -  75-85 

Adipocytes were isolated after culture in DME/CEPH on tissue culture flasks 
for 8 d. The adipocytes were purified on a BSA gradient and were replated in 
conditioned DME/CEPH for 24 h. All such cultures were >95% adipoeytes. 
Thereafter the cells were assayed for their ability to incorporate [3H]thymidine 
into DNA or to proliferate in clonogenic assays when cultured in 30% FCS + 
50 ~g/'ml insulin; insulin was added only to certain lots of serum which required 
it for maximum mitogenic effect. Assays were also done to determine whether 
such cells could be induced to lose the adipoeyte phenotype by treatment with 
MIX (3 x 10 -4 M). The data summarize the results of >25 experiments. 
Although some variability was evident in this extensive group of studies, the 
results always fell within the indicated ranges. 
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Figure 2. Morphology of purified 
nonterminally differentiated adi- 
pocytes and similar cells induced 
to proliferate or to lose the differ- 
entiated phenotypc. (A) Phase mi- 
crographs of nonterminally differ- 
entiated adipocytes cultured in 
DME/CEPH and then purified on 
a BSA gradient. The field shown is 
representative of all cultures 
wherein >95% of the cells show 
large refractile lipid droplets char- 
actefistic of the adipocyte mor- 
phology. (B) Bright field micro- 
graphs of toluidine blue-stained 
autoradiographs. Purified nonter- 
minaUy differentiated adipocytes 
were cultured in 30% FCS + 50 
~g/ml insufin and [3H]thymidine 
for 48 h, then fixed and processed 
for autoradiography. Cells that ex- 
hibit large lipid droplets also show 
black-labeled nuclei (arrows). (C) 
Phase micrographs of purified 
nonterminally differentiated adi- 
pocytes that were exposed to MIX 
for 72 h to induce loss of the dif- 
ferentiated phenotype. Such cells 
show decreased numbers and sizes 
oflipid droplets and assume a fiat- 
tened morphology characteristic of 
the undifferentiated cell. Bars, 0.05 
m i l l .  

whole HP for various intervals (HP contains terminal differ- 
entiation-inducing factors) and they were then assayed for 
their ability to proliferate or undergo dedifferentiation. Stud- 
ies were also done to evaluate the characteristics of  adipocytes 
that were initially induced to undergo terminal differentiation 
in medium that contained whole plasma. The later experi- 
ments were technically difficultnbecause such cells did not 
form a discrete band on BSA gradients and they also showed 
a very low plating efficiency. 

Table II shows that nonterminally differentiated adipocytes 
maintained in DME/CEPH retain their ability to respond to 
mitogenic and dedifferentiation-promoting agents, while cells 
cultured in DME/HP  lose responsiveness to these agents. 
More specifically, cells in DME/CEPH retain the ability to 
undergo DNA synthesis when treated with serum __. insulin 
and they also retain the ability to lose the adipocyte phenotype 
when treated with MIX. By contrast, cells treated with HP 
show an 89% reduction in proliferative potential and a 78% 
reduction in responsiveness to MIX. 

The differences in proliferative response between nonter- 

minally and terminally differentiated adipocytes detected by 
48-h pulse exposure in [3H]thymidine could reflect differences 
in the time required for cells at the two stages to enter the cell 
cycle rather than a qualitative difference in their proliferative 
potential. This is so because, as discussed above, many adi- 
pocytes require >48 h to enter into DNA synthesis after 
mitogenic stimulation. Clonogenic assays were therefore also 
done. Purified nonterminally differentiated adipocytes were 
plated at low density, i.e., 100-500 cells/dish, and allowed to 
attach to DME/CEPH for 1 d. They were then exposed to 
DME/CEPH or DME/HP  for 12 d and thereafter refed DME/  
30% FCS _.+ 50 t~g/ml insulin for an additional 12 d. Colony 
number and size was then determined. 

The results in Fig. 4 show that ~80% of  nonterminally 
differentiated adipocytes formed colonies when cultured in 
DME/30% FCS _+ 50 #g/ml insulin and the vast majority of  
these consisted of  at least 128 cells. In contrast, cells incubated 
in DME/HP  to induce terminal differentiation showed a 
markedly reduced elonogenic capacity. In fact, >80% of  such 
cells showed no proliferative response and the remainder gave 
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Figure 3. Clonal proliferation assay of nonterminally differentiated 
adipocytes induced by 30% FCS ± 50 ,g /ml  insulin. Purified adipo- 
cytes prepared on BSA gradients (see Materials and Methods) after 
culture in DME/CEPH for 8 d were plated at low (clonal) densities 
in conditioned DME/CEPH for 24 h to facilitate attachment. They 
were then refed 30% FCS ± 50 ,g /ml  insulin. At the indicated times 
thereafter the number  of cells at each colony was counted. The total 
number of loci remained essentially constant. The figure shows that 
the majority of purified, differentiated cells reside at the G. ,  state and 
not the terminal differentiation state. The data represent the results 
of a typical experiment; each data point is the mean of duplicate 
specimens. Comparable ~sults were obtained in more than five 
experiments. 

Table II. Induction of the Terminal Event in Differentiation 
of Nonterminally Differentiated Adipocytes by Whole HP 

Specimen designation 

Dedifferentiation Proliferation response response 

Terminal 
differentia- Terminal 
tion differentia- 

Labeled (loss of re- Loss of tion (loss 
adipo- sponsive- pheno- of respon- 
cytes hess) type siveness) 
% % % % 

Control cells 36 - -  83 - -  
Cells in DME/CEPH 34 5 79 5 

(4 d) 
Cells in DME/HP (4 d) 4 89 18 78 

Purified populations of adipocytes were prepared from cells induced to differ- 
entiate by culture in DME/CEPH. The cells were then fed DME/CEPH or 
DME/HP and incubated therein for 4 d. The proliferative responsiveness of 
the cells was then determined by stimulation with 30% FCS + 50 t~g/ml insulin 
and [SH]thymidine for 48 h followed by autoradiography. To measure the 
ability of these cells to dedifferentiate, MIX (3 x 10 4 M) was added to cultures 
for 72 li. The morphology of treated and untreated cultures was then assessed. 
In this assay, terminal differentiation was calculated as the percent loss of 
responsiveness, i.e., response in control - response in treated/response in 
control x 100. 

rise to relatively small colonies. These data provide strong 
evidence that nonterminally differentiated adipocytes can be 
purified and can subsequently be induced to undergo the 
terminal event in differentiation. This is true even though 
nonterminally differentiated and terminally differentiation 
cells show a comparable morphology (Fig. 5). 
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Figure 4. Relative clonogenic potential of nonterminally and termi- 
nally differentiated adipocytes. Purified, nonterminally differentiated 
adipocytes (>98%) were prepared on BSA gradients after culture in 
DME/CEPH for 8 d. They were then plated at low (clonal) densities 
in conditioned DME/CEPH for 24 h to facilitate attachment. There- 
after they were refed fresh heparinized DME that contained either 
25% CEPH or HP for 12 d. The cultures were next fed DME that 
contained 30% FCS ± 50 t~g/ml insulin for an additional 12 d at 
which time the colonies were counted. In this regard, the total number  
of colonies per plate remained constant during this interval. 

Biological Processes Involved in the Terminal Event 
in Differentiation 

To determine whether induction of the terminal event in 
differentiation is a simple or complex process, nonterminally 
differentiated adipocytes were refed either DME/CEPH or 
DME/HP and at sequential times thereafter the cells were 
tested for their ability to respond to various agents. Fig. 6A 
shows the proliferative response of cells to 30% FCS +_ insulin. 
Cells cultured in DME/CEPH for as long as 8 d responded to 
30% FCS with DNA synthesis, although the mitogenic re- 
sponse to serum decreased slightly with time. In contrast, cells 
cultured in DME/HP lose their ability to enter DNA synthesis 
within 4-6 d. 

Dedifferentiation assays were also done to evaluate the 
complexity of the process of terminal differentiation. Fig. 6 B 
shows the effect of MIX. Cells maintained in DME/CEPH 
retain their ability to dedifferentiate when treated with MIX, 
whereas essentially all cells cultured in DME/HP lost this 
response within 10-14 d. Fig. 6C, however, shows a distinctly 
different result in that adipocytes maintained in either DME/ 
CEPH or DME/HP both lose responsiveness to RNA treat- 
ment over an 8-10-d interval. Similar results were obtained 
with two- to fivefold higher concentrations of RA. 

Finally, the data in Fig. 6D show an even more complex 
response when cells cultured in DME/CEPH and DME/HP 
were treated with TPA. Purified nonterminally differentiated 
cells initially showed minimal responsiveness to TPA; how- 
ever, cells maintained in DME/CEPH gradually became more 
responsive to TPA and on day 9, >60% of the cells could be 
induced to lose the adipocyte phenotype in response to TPA. 
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Figure 5. Phase micrographs of nonterminally and terminally differ- 
entiated cells. (A) Nonterminally differentiated, purified adipocytes 
were cultured in DME/CEPH for 8 d before analysis. Such cells 
exhibit multiple intracellular lipid droplets. (B) Terminally differen- 
tiated, purified adipocytes were fed DME/HP for 8 d before analysis, 
and these cells also exhibit large lipid droplets. Although terminally 
differentiated adipocytes, such as those illustrated in Fig. 5 B, usually 
contain larger lipid droplets than nonterminally differentiated cells, 
this is not an absolute characteristic. In some experiments both Go, 
and terminal differentiation cells show a "signet ring" appearance. 
Bar, 0.05 ram. 

Adipocytes cultured in DME/HP also initially lost the adi- 
pocyte phenotype when exposed to TPA; however, continued 
culture in DME/HP for longer periods (6-9 d) resulted in loss 
of TPA responsiveness. 

In summary, immediately after their isolation, nontermi- 
nally differentiated adipocytes are responsive to FCS _ insu- 
lin, RA, and MIX, but are relatively unresponsive to TPA 
treatment. Nonterminally differentiated adipocytes cultured 
in DME/CEPH for longer intervals retain responsiveness to 
treatment with FCS _ insulin and MIX, gain responsiveness 
to treatment with TPA, and lose responsiveness to treatment 
with RA. By contrast, cells cultured in HP lose the ability to 
respond to all of these agents over a 4-6 d period. These 

experiments suggest that transition from a nonterminal to 
terminal state of differentiation involves at least two metabolic 
steps as illustrated in Fig. 7. 

Effects o f  a Pulse Exposure of  Nonterminally 
Differentiated Cells to Human 
Plasma-containing Medium 

The data presented in Fig. 6 and our previous studies (18, 41) 
suggest that the terminal event in differentiation requires an 
interval of 4-6 d to be fully expressed. The following experi- 
ments were done to determine whether the continued pres- 
ence of HP was required for induction of the terminal event 
in differentiation or whether the process could be initiated 
after a brief exposure to HP. For this study, cultures of purified 
nonterminally differentiated adipocytes were exposed to 
DME/HP for varying lengths of time, the HP was then 
removed by rinsing the cultures repeatedly in PBS, and the 
cells were then cultured for an additional 4 d in DME/CEPH. 
Such cells were then assayed to determine the interval of 
exposure to an inducer that is required for transition from a 
nonterminal to terminal state of differentiation. Terminal 
differentiation in these assays was measured by loss of mito- 
genic responsiveness to 30% FCS + insulin and by loss of 
MIX-induced dedifferentiation responses. 

Fig. 8 presents the results of these experiments. Exposure 
of nonterminally differentiated adipocytes to DME/HP for 
1-6 h induced ~50% of the cells to undergo the terminal 
event in differentiation 4 d thereafter. Exposure of nonter- 
minally differentiated adipocytes to HP-containing medium 
for 12-24 h caused -75% of the cells to undergo the terminal 
event in differentiation 3 d thereafter. Finally, if nontermi- 
nally differentiated cells were exposed to HP-containing me- 
dium for _>48 h, maximum terminal differentiation was ob- 
served 2 d later. Therefore, although transition from a non- 
terminal to a terminal state of differentiation requires ~4 d 
to be completely expressed, a 12-24-h pulse exposure to HP- 
containing medium is sufficient to trigger the terminal event 
in the differentiation of many of the cells. Additional dose- 
response experiments (not shown) established that the con- 
centration of HP in the medium that is required to induce 
the terminal event in differentiation is _>5 %; therefore residual 
HP that might be bound to cells probably does not account 
for the induction of the terminal event in differentiation in 
pulse-treated cells. 

Effects of  metabolic Inhibitors on the Induction of  the 
Terminal Event in Differentiation 
To determine whether specific metabolic inhibitors modulate 
expression of the terminal event in differentiation, purified 
nonterminally differentiated adipocytes were exposed to 
DME/HP in the presence or absence of drugs for a 24-h 
interval after which time the cultures were rinsed extensively 
and refed DME/CEPH. 4 d thereafter the cells were assayed 
to determine if the terminal event in differentiation had 
occurred. These assays measured the cells' responses to MIX 
or 30% FCS _+ insulin treatment as described above. As 
designed, these studies specifically assayed whether protein or 
RNA synthesis are required during the initiation phase of 
terminal differentiation, i.e., the first 24 h. This experimental 
design represented the only feasible approach using most 
metabolic inhibitors because longer exposure of cells to these 
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Figure 6. Biological processes associated with the terminal event in differentiation. For all experiments, nonterminally differentiated adipocytes 
were purified from cultures incubated with DME/CEPH for 8 d at the time indicated by the asterisk (*). The purified adipocytes were then 
replated in conditioned DME/CEPH to facilitate attachment. After 24 h, the cultures were then fed heparinized DME that contained either 
CEPH or HP at the time indicated by the mows. At various times thereafter cultures were exposed to different gents for the periods indicated 
by the solid bars. The cultures were assessed either autoradiographically in proliferation assays or morphologically for loss of differentiation 
assays at the end of the period. Data are presented as differentiation response as explained in A-D below. (A) Response of purified adipocytes 
cultured in medium that contained CEPH or HP, then subsequently treated with 30% FCS +_ 50 #g/ml insulin. The data were derived from 
autoradiographic assays of thymidine incorporation. The differentiation response is expressed as the percentage of cells that did not incorporate 
[3H]thymidine. (B, C, and D) Response of purified adipocytes cultured in medium that contained CEPH or HP, then treated with 3 x 10 -4 M 
MIX (B), 10/~M RA (C), and 100 ng/ml TPA (D) for 72 h. The data were derived from morphological analysis of the percent adipocytes 
before and after treatment. The differentiation response is expressed as the percent of cells that did not lose the adipocyte phenotype. 

agents resulted in significant cytotoxicity. The results of  these 
studies are presented in Table III. 

The effects of  the protein synthesis inhibitors, cyclohexi- 
mide and puromycin, on induction of  the terminal event in 
differentiation were examined first (Table III). Both drugs 
inhibited induction of  the terminal event in differentiation at 
concentrations that also inhibited 70-80% of  protein synthesis 
as determined by measurement of  the uptake of  [3SS]methio- 
nine into TCA-precipitable materiai. More specifically, these 
two protein synthesis inhibitors blocked induction of  the 
terminal event in differentiation by 70-87%. 

Similar studies were next done with a-amanitin, which 
inhibits -70% of  the activity of  RNA polymerase I (45), and 
cordycepin, which inhibits polyadenylation of  mRNA (22). 
The data in Table III show that neither cordycepin nor a- 
amanitin inhibited induction of  the terminal event in differ- 
entiation. In this regard, it was demonstrated that neither of  
these drugs was cytotoxic. 

Discussion 

Nonterminal and terminal states of  differentiation have been 
established to exist in 3T3 T adipocytes. In this paper, we 
report the development of  methods to isolate purified popu- 

lations of  nonterrninally differentiated cells and show that 
these cells can be maintained at this nonterminal state of 
differentiation for longer than 1 wk. We also demonstrate that 
nonterminally differentiated cells can be induced to undergo 
the terminal event in differentiation when they are incubated 
in medium that contains whole HP. Transition between these 
two states is shown to involve a complex metabolic process 
that consists of  at least two substrates that can be distinguished 
by the demonstration of  differential responsiveness to agents 
that include RA, TPA, and MIX. 

Induction of  the terminal event in differentiation is shown 
to be triggered by short-term exposure of  nonterminally dif- 
ferentiated cells to HP even though the terminally differen- 
tiated phenotype was not fully expressed for 4 d thereafter. 
Finally, induction of  the terminal event in differentiation is 
shown to be blocked by drugs that inhibit protein synthesis 
but that it is unaffected by two drugs that affect mRNA 
synthesis or processing. These results suggest that synthesis of 
specific proteins may be associated with the induction of  the 
terminal event in differentiation. In this regard, results to be 
published elsewhere establish that modulation in the expres- 
sion of  only eight major polypeptides occurs during the tran- 
sition from the nonterminal to the terminal state of  adipocyte 
differentiation. 
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These observations clearly demonstrate that in the 3T3 T 
mesenchymal stem cell system, expression of the differen- 
tiated phenotype and loss of proliferative potential are sepa- 
rately controlled processes and that expression of the differ- 
entiated phenotype is not sufficient to induce loss of prolif- 
erative potential. That is, a separate and specific control 
process must be required to induce the irreversible loss of 
proliferative potential that occurs in association with the 
induction of the terminal event in differentiation. We have 
identified and purified a 20,000-fold human plasma protein 
that regulates the terminal event in differentiation and we 
have designated this protein as aproliferin (Wier, M. L., and 

differentiation (9, 14). Contrary to this proposal, our data 
show that nonterminally differentiated adipocytes retain their 
ability to lose the differentiated phenotype and to reinitiate 
proliferation for extended intervals. In fact, we showed that 
~80% of such cells can undergo elonal proliferation. In this 
regard, we have also recently reported the isolation of clones 
of 3T3 T mesenchymal stem cells that are selectively defective 
in their ability to undergo the terminal event in differentiated 
(47). Other theories of terminal differentiation have also 
suggested that loss of proliferative potential results from an 
inhibitory effect of differentiation gene products on DNA 

R. E. Scott, manuscript submitted for publication). 100 
These observations require that previously proposed con- Ill 

cepts for the control of terminal cellular differentiation be ,~ * 
modified. For example, it has been suggested that a single ~ f * 
early event in the differentiation process programs cells to E 
subsequently lose proliferative potential in association with ~ 80  
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Figure 8. Kinetics of the induction of the terminal event in adipocyte 
Figure 7. Model to illustrate the two biological steps involved in the differentiation. Purified nonterminally differentiated adipoeytes were 
transition from the nonterminal to terminal state of differentiation, incubated in medium that contained HP for 1, 3, 6, 12, 24, 48, or 96 
This model represents a focal expansion of the model presented in h. They were then rinsed and recultured in DME/CEPH, a medium 
Fig. 1 specifically involving the later stages in the GD/GD,/TD tom- that does not induce terminal differentiation for an additional interval 
plex. It shows that cells at the first substage of Go, can be induced to until the total duration of the experiment was 96 h. The cultures were 
lose the differentiated phenotype when treated with RA and MIX but then treated with 3 x 10 "~ M MIX (O) or were fed medium that 
not with TPA. By contrast, cells at the second substate of Go, can be contained 30% FCS + 50 #g/ml insulin (@) as described previously. 
induced to lose the differentiated phenotype when treated with MIX The data are presented as the relative percent terminal differentiation 
and TPA but not with RA. Cells at both substrates are at Gv, and wherein the absolute extent of terminal differentiation observed in 
nonterminally differentiated because they can both be induced to cells incubated in DME/HP for 96 h or longer was defined as 100% 
undergo proliferative responses when treated with FCS ± insulin. By response. The data show that pulse exposure of nonterminally differ- 
contrast, cells at the terminally differentiated state are not responsive entiated adipocytes to HP for 24 h was adequate to induce a near 
to any of these agents, maximum terminal differentiation response. 

Table III. Effect of Metabolic Inhibitors on Induction of the Terminal Event in Differentiation 

Inhibition of precursor Proliferation response 
uptake Dcdifferentiation response 

Inhibition of Loss of differ- Inhibition of ter- 
Differentiation-promoting terminal dif- entiated phe- minal differen- 
culture medium Drug [3H]Methionine [aH]Uridine Labeled nuclei ferentiation notype tiation 

% % % % % % 

DME/CEPH None - -  - -  36 - -  85 - -  
DME/HP None __ m 6 - -  18 - -  
DME/I-IP Cycloheximide 68 - -  27 70 76 87 
DME/HP Puromycin 82 ~ 27 70 73 82 
DME/HP a-Amanitin - -  66 6 0 - -  - -  
DME/HP Cordycepin - -  ~ 0 0 - -  - -  

The experimental procedures for cell preparation and to assay proliferation (30% FCS =e 50 ~,/ml insulin) and differentiation (3 × 10 -4 M MIX) responses were 
described previously. The concentrations of the drugs that were used are: cycloheximide, 5 ~g,/ml; puromycin, 1 mM; a-amanitin, 10 #g/ml; and cordycepin, 5 ~,/ 
mL 
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synthesis, cellular proliferation, and cell division (5, 19, 30). 
In the 3T3 T mesenchymal stem cell system this cannot hold 
true because a stable nonterminally differentiated state dearly 
exists and it can be maintained. 

The possibility that our results on 3T3 T mescnchymal 
stem cells are not representative of other cell types can also 
easily be dismissed. Although it is true that 3T3 T mesenchy- 
mal stem cells are not completely normal (18, 34, 35, 38, 41) 
and may not express all normal differentiation control mech- 
anisms, there is abundant additional evidence from both in 
vivo and in vitro studies for the existence of a comparable 
nonterminal state of differentiation in many cell types and 
their regulated transition to a state of terminal differentiation. 
For example, in vitro studies on myoblasts have shown that 
even after they have withdrawn from the cell cycle and have 
begun to express myosin they can be induced to reenter the 
cell cycle when exposed to growth media (7). A reversible 
differentiated state has also been identified in mast cells (53), 
melanoma cells (1), erythroleukemia cells exposed to hemin 
(4, 6), neuroblastoma cells exposed to butyrate (10), and 
human epithelial cells (20, 48, 50). Furthermore, variants of 
erythroleukemia (24) and rat myoblast (26) cell lines have 
been identified which differentiate but do not lose proliferative 
potential under selected culture conditions. These results sug- 
gest that the GD,-like state may be an important phase in the 
in vitro differentiation of many cell types. 

In vivo studies on cardiac myocytes and neuroblasts during 
development also suggest that many cells that are terminally 
differentiated in an adult animal pass through a nonterminal 
phase during development (28, 31). Finally, in vivo studies of 
lymphocytes and liver, Schwann, and smooth muscle cells 
suggest that cells can be maintained in a nonterminally dif- 
ferentiated state for extended periods even in adult tissues 
before terminal differentiation (2, 17, 23, 33). 

While all such observations have provided evidence for the 
existence of a nonterminally differentiated state and the tran- 
sition of such cells to a subsequent terminal state of differen- 
tiation, the 3T3 T mesenchymal stem cell system is the only 
one in which it has been possible to rigorously control and 
study the transition from the nonterminal to terminal states 
of differentiation. Most important, this model provides an 
excellent system to characterize physiological proteins and 
other agents that may induce the terminal event in differen- 
tiation and to characterize the metabolic processes that occur 
during the terminal event in cellular differentiation. 

Characterization of the biological and molecular mecha- 
nisms that irreversibly restrict a cell's proliferative potential 
is also of potentially great biological and pathological signifi- 
cance especially as it relates to the mechanisms of carcinogen- 
esis. Although the overwhelming majority of publications 
concerning the pathobiology of carcinogenesis have focused 
on analysis of the role of growth factors and oncogenes that 
are associated with activation of proliferative responses, it is 
equally important to consider the possibility that carcinogen- 
esis results in significant part from the expression of defects 
in regulatory mechanisms that suppress aberrant cellular pro- 
liferation. That is, an early stage in carcinogenesis could be 
associated with loss of proliferation suppressor mechanisms 
associated with the terminal event in differentiation rather 
than with the activation of positive regulators of proliferation. 
The results of our previous studies (36, 37, 39, 40, 47) and 

those of other investigators (32, 42, 43, 52) support this 
possibility. 
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