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Abstract: Airborne light detection and ranging (LiDAR) scanning is a commonly used technology for
representing the topographic terrain. As LiDAR point clouds include all surface features present in
the terrain, one of the key elements for generating a digital terrain model (DTM) is the separation of
the ground points. In this study, we intended to reveal the efficiency of different denoising approaches
and an easy-to-use ground point classification technique in a floodplain with fluvial forms. We
analyzed a point cloud from the perspective of the efficiency of noise reduction, parametrizing a
ground point classifier (cloth simulation filter, CSF), interpolation methods and resolutions. Noise
filtering resulted a wide range of point numbers in the models, and the number of points had moderate
correlation with the mean accuracies (r = −0.65, p < 0.05), indicating that greater numbers of points
had larger errors. The smallest differences belonged to the neighborhood-based noise filtering and
the larger cloth size (5) and the smaller threshold value (0.2). The most accurate model was generated
with the natural neighbor interpolation with the cloth size of 5 and the threshold of 0.2. These results
can serve as a guide for researchers using point clouds when considering the steps of data preparation,
classification, or interpolation in a flat terrain.

Keywords: floodplain; noise filtering; interpolation; cloth simulation filter (CSF)

1. Introduction

Digital terrain models (DTMs) are effective and important tools of environmental investigations,
engineering, and planning [1–3]. DTMs are often used for the management of natural risks, e.g.,
assessments of inundation exposure or volcanic active areas, especially if these areas are populated
and involve infrastructure [4–6] There are several ways to produce these models, such as interpolating
surfaces from surveyed field data or vectorized contours of maps and using the principles of stereo
photogrammetry (airborne and satellite), SfM (structure from motion) technique; the most dynamically
developing technique is the application of airborne LiDAR/ALS (LiDAR—light detection and ranging;
ALS—airborne laser scanning), which provides a three-dimensional point cloud stored in binary LAS
(LiDAR archive standard) format [7–15]. The ALS technique has the potential to collect multilayer
data including the ground points if laser beams can reach the bare earth: emitted beams have echoes
(reflections or discrete returns) from the top of the objects as the “first echo” and from the ground as
the “last echo”, and of course there are internal echoes as well [16,17]. However, the last echoes do
not always reach the ground; consequently, generated terrain models can have a bias [18]. In spite
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of the difficulties, there could be several ways to filter out the noise and the ground points of a
three-dimensional point cloud before DTM generation; therefore, the final results can be improved and
can be used for most purposes.

Noise is considered to consist of outliers which have different characteristics than the neighboring
points, i.e., supposing a locally planar area (i.e., kernel window) defined by the average distance from a
center or considering its k neighbors, when outlying points fall outside it. Noise filtering can be based
on principal component analysis [19], neighborhood distance [20,21], or distance from surface [22].

Ground point filtering is also a crucial point of data preparation [13]. Several types of filtering
algorithms have been developed for the extraction of ground points automatically. Some algorithms
also apply the kernel approach and compare points to their neighbors (binning) assuming that the
minimum values of the kernel window represent the ground [23] or that slopes cannot exceed a given
angle value within the kernel [24]. Besides the fixed kernel windows, other robust methods exist,
including the iterative multiscale spline, which was developed directly for densely forested areas [25].
Furthermore, [26] used a progressive morphology, [27] used a segmentation-based robust interpolation,
and [28] used a combination of a multilevel adaptive filter (MAF) with morphological reconstruction
and a thin plate spline (TPS) interpolation algorithm for the classification procedure to extract more
precisely the bare earth. In addition, nowadays, there is an increasing number of easy-to-use algorithms
which are implemented in freely available software to help for the users with the filtering process. For
example, [29] has promoted a new method, the cloth simulation filter (CSF), implemented in many
open-source software, e.g., Python [30] and CloudCompare [31], which extracts ground points by
simulating a physical process in which a virtual cloth covers the inverted point cloud. Its advantages
are that it can be used for various landscapes and the parameters are easy to set.

Floodplains represent a complex environment as they are important from the perspective of flood
management, agricultural production, and nature conservation [32–34]. An accurate DTM can be
exploited to delineate trajectories of moving water during high and retreating floods, to find appropriate
places for ploughing or animal grazing, to identify environmental conditions which provide good
habitats for valuable species, or even to help with the detection of heavy metal hotspots [2,4,35–38].
However, the most important locations of floodplains are usually impervious places with dense
vegetation combined with permanent or periodical water cover (swales, oxbow lakes, peats, or
marshes) [39]. Accordingly, field surveys cannot be effective; furthermore, photogrammetry also
has problems due to the vegetation cover and its ability to produce only a digital surface model
(DSM) [40,41]. The ALS technique is also limited, as beams do not always reach the ground due to
dense vegetation, and water cover on the landforms will absorb the emitted light. Accordingly, point
clouds always have a bias in a complex environment where the vegetation and/or the topography
impede the penetration of laser beams to the ground. However, despite these issues, this is the most
effective method of data collection in these areas [42,43], and pre- and postprocessing and different
classification procedures can mitigate the errors [44].

The floodplain of a typical meandering river is usually characterized by concave or convex shapes,
i.e., deeper or higher terrains with specific characteristics known as swales and point bar series [45,46].
Swales are shallow concave forms often covered with herbaceous (e.g., reed) or aquatic vegetation (e.g.,
common duckweed) [47]. Point bars are the antonyms of swales; they have a convex shape and are
higher. In the floodplain of a medium-sized river, the height differences are relatively small (1–5 m),
but a swale–point bar series usually has a relative difference of 0.5–1 m. This small relief highlights the
main problem of the surveys: a small error has relevant consequences in the final terrain model and in
all the extracted secondary information. Therefore, digital terrain modeling is a great challenge in
this flat environment as small errors are conspicuous and fluvial forms become distorted. Common
methods which fit for hilly and mountainous areas can fail, and postprocessing (e.g., filtering of the
DTM itself, sink fill) can be misleading, diminishing real phenomena (even the forms themselves).

In this study, we aimed to reveal the efficiency of different denoising approaches and the
fine-tuning of CSF as a ground point classification technique. We intended to conduct LAS data
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processing in open-source environment and to use the most widespread algorithms. Although there
are several research studies presenting details and suggestions concerning the best practice to generate
DTMs [13,48,49], there has been no comprehensive analysis of how the multiple factors of noise filtering,
ground point classification, interpolation techniques, DTM resolution, and fluvial geomorphology
together influence the accuracy of the models. Finding the DTM the most precisely reflects the
terrain characteristics is crucial in such a flat environment where even a centimeter-scale error can
change the topography and therefore change the determination of the waterflow direction (flood risk
management), sediment accumulation (floodplain land use management) or the identification of fluvial
forms. In this work, our aim was to evaluate and quantify the differences of point cloud classification
algorithms and to compare the resulting DTMs. As ALS provides a high density of information about
the terrain, deterministic interpolation methods were used and compared here. Our hypotheses were
the following: (1) ground points have a significant effect on the generated DTMs, and filtering methods
decrease the errors to a relevant degree; (2) ground point identification is highly dependent on the cloth
size and the threshold parameters of CSF; (3) interpolation techniques and the grid size can enhance or
smooth the errors of the DTMs; (4) different morphological forms, in our case swales and point bars,
have a significant effect on ground point density.

2. Study Area and Topographic Characterization

The study area is situated near to the town of Rakamaz, in NE Hungary (the coordinates of
its corners are as follows: upper left 48◦7’6.8226” N 21◦26’37.1286” E, upper right 48◦7’6.3942” N
21◦28’24.8376” E, lower right 48◦6’48.0528” N 21◦28’24.672” E, lower left 48◦6’48.4806” N 21◦26’
36.9702” E), in the floodplain of the Tisza River (Figure 1a). It covers approximately 1 km2 and is
characterized by point bar and swale series (Figure 1b, Figure 2a), which has remained as a consequence
of the continuous lateral movement of the former Tisza River bed. It was selected due to its diverse
environment. The widths of these landforms are various, mostly ranging between 10 and 30 m, but
there are some narrower ones (3–5 m), and some are really well spread, with a width of more than
one hundred meters. Differences in terrain height in most of the cases are less than one meter (0.3–1
m) between the point bars and swales situated next to each other. The different morphology of the
two landforms—point bars are positive, swales are negative forms—cause essential discrepancies:
e.g., the ground water level is closer to the surface in the swales due to their concave shapes, and also
precipitation and snowmelt run off from the concave form and gather here (Figure 1b). Besides, they
have differences in their granulometric composition, with swales having finer sediments that also slow
down the infiltration of the water [46]. All these features provide a higher percentage of moisture in
swales, which support denser vegetation (that in some cases becomes impervious) and afford good
conditions for aquatic vegetation (reed, sedge, etc.). In contrast, the vegetation density of point bars is
relatively sparse compared to swales, except when they lie in a relatively lower part of the floodplain,
because in this case their surface can be also covered by dense reeds. In Figure 2b,c, we highlight the
pattern of the vegetation as it is shown in a portion of the 3D view of a point bar and swale series.
The density of the vegetation points is higher and that of the ground points is lower in the case of the
swales. In our previous work [50] we also quantified this fact.

The permanent and temporary water surface, the sedge-marsh and reeds, and the pastures and
grazing lands make up the landscape mosaic of the study area and provide valuable habitats. All the
floodplain here belongs to the Natura 2000 network and Ramsar sites.
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Skywagon aircraft on 20 August, 2012 (Table 1) in the framework of a project to prevent and manage 
natural disasters [51]. 

The georeferenced point cloud of the study area, which was our basic dataset for the input of 
the analysis (Figure 3), was produced by Envirosense Ltd. and provided by the Trans Tisza Water 
Directorate. 
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Figure 2. The characteristics of the study area. (a) It is characterized by a well-developed point bar and
swale series; (b) the widths of bars and swales are various; (c) the point cloud of the study (exaggeration:
4) reflects back that swales usually have denser vegetation than point bars.

3. Materials and Methods

3.1. Aerial LiDAR Dataset

The study area was surveyed by a RIEGL LMS-Q680i ALS LiDAR fixed on a Cessna C-206
Skywagon aircraft on 20 August, 2012 (Table 1) in the framework of a project to prevent and manage
natural disasters [51].

The georeferenced point cloud of the study area, which was our basic dataset for the input
of the analysis (Figure 3), was produced by Envirosense Ltd. and provided by the Trans Tisza
Water Directorate.
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Table 1. The parameters of the survey.

Parameters Value

Designed point density 4 pts/m2

Average accuracy (horizontal and vertical) ±0.15 m
Overlap 30–60%

Pulse repetition rate 270 kHz
Registration discrete return

Laser wavelength 1550 nm
AGL height 688 m

Extent of the surveyed area 126 ha
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3.2. Data Preparation

We applied two types of noise reduction filters for all the points of the point cloud data (Figure 3).
Both filters apply a fixed kernel window, which assigns a certain number of points. Points delineate a
small local plane area and the algorithm excludes the points exceeding a threshold value based on the
distance between the delimited points (Section 3.2.1) or the distance from the surface (Section 3.2.2). As
these filters use mean and standard deviation, they are called statistical outlier removal (SOR) filters.
The analyses were carried out in CloudCompare 2.10.2 software [31].

3.2.1. Neighborhood Distance-Based Filter

The neighborhood distance filter is a kernel-based, neighborhood-related approach where the
user-defined k nearest neighbors are investigated by each point of the dataset to see whether there are
points exceeding the average distance plus standard deviation (Equation (1)).

maximum distance = dk + nσ [−] (1)

where dk denotes the average distance of the k neighbors around a given point (center); σ is the standard
deviation of the distances from the center; and n is the user-defined parameter, usually with a value
of 1–3.

We followed the recommendations and performed the noise filtering with 8 neighboring points
(k) and with 2σ.
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3.2.2. Surface Distance-Based Filter

This filter also uses a kernel window based on the user-defined number of neighboring points
on a search radius, but outliers are selected calculating the distance from the local surface within the
kernel (Equation (2)). Noise can be identified similarly to Equation (1), but the distance from the
surface, or absolute maximum, can also be defined. We can exclude isolated points, where the number
of neighbors is less than 3.

maximum distance = sdk + nσ [−] (2)

where sdk denotes the average distance from a local planar surface defined by k neighboring points
around a given point (center); σ is the standard deviation of the distances from the planar surface;
and n is the user-defined parameter. If we choose a relative error, it is usually with a value of 1–3 (to
exclude the statistical outliers).

We applied the relative error option with 8 neighbors, 2σ, and excluding island points.

3.2.3. Ground Point Classification

We applied the CSF developed by [29] to identify the ground points. Cloth refers to the grid size
covering the study area, and higher values result in coarse DTMs. The procedure works “by analyzing
the interactions between the cloth nodes and the corresponding LiDAR points, the locations of the
cloth nodes can be determined to generate an approximation of the ground surface” [29]. There are
three types of terrain that can be considered in terms of their surface rigidness and defined by users:
mountain areas with steep slopes, hilly areas understood as complex landscapes with trees and houses,
and flat areas with high houses.

CSF parameters are dependent on the point cloud density (cloth size, i.e., resolution) and the
complexity of the terrain (threshold, i.e., the distance between points and the simulated terrain), and
although suggestions exist, there is no definite rule for setting these parameters. Rather, a range can be
used to find the ideal ones. We conducted the classification with the flat terrain option (as the relief was
very low in the study area) and with cloth sizes of 2 and 5 (the larger the cloth, the coarser the DTM),
according to [29]. A value of 2 was suggested based on our point density, but we also intended to test
the effect of a larger value (i.e., 5) We used classification thresholds of 0.2, 0.5, and 1, with 500 iterations
in each case. The CSF was performed in CloudCompare 2.10.2 [31].

3.3. DTM Generation

We loaded the LAS files of the ground points into: (1) the LAS dataset, which is most commonly
used for storing LAS files; (2) the terrain dataset (TD), which is a multiresolution, TIN-based (triangular
irregular network) surface assembled from the ground points; and (3) a single point with z information.
The different storage methods offered different opportunities to produce digital terrain models. In the
case of the terrain dataset, two building options were used: the first was without thinning (z-tolerance),
abbreviated as TD; the second was with the Z minimum point selection method and the moderate
secondary thinning method with a threshold of 1 [52], abbreviated as TH. We expected that the
secondary thinning could improve the final models’ accuracy, as it could thin points which were ‘far’
from the minimum.

For the DTM production three interpolation methods were used: (1) natural neighbor interpolation
with the minimum cell assignment type (NA); (2) linear interpolation with the nearest neighbor cell
assignment type (LI); and (3) topo to raster (TT). Each of them was generated with two cell sizes, 1 m
and 2 m, as these seemed to be the most appropriate pixel sizes due to the LiDAR point density and the
width of the landforms. The natural neighbor is a weighted-average method using Thiessen polygons
for the analysis of proximity to determine a cell value [53]. The linear interpolation assigns the z values
from the plane determined by the surface triangle that contains the x,y coordinates of a given point [52].
The topo to raster creates a hydrologically correct raster from the points using the ANUDEM algorithm
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(elevation gridding method) developed by [54,55]. Altogether, 180 DTMs were generated. All DTMs
were produced in Esri ArcGIS 10.3 software with 3D Analyst and Conversion Tools [52].

3.4. Validation and Statistics Analyses

A field survey was carried out by a Stonex S9 RTK (real-time kinematic) GPS (global positioning
system) using the “stop-and-go” method with a real-time differential correction of the GNSS (global
navigation satellite systems) permanent station system of Geotrade Ltd., Hungary. The accuracy
was ±0.01 m both vertically and horizontally. A total of 604 reference points were taken crossing
8–15 swale–point bar series (Figure 2a). The dataset was used to validate the models. We defined the
term of accuracy as the difference between the reference measurements and the modeled data.

We extracted the values of all models where ground control measurements were available
(604 RTK points) and subtracted them from the measured values of the RTK points. Finally, considering
all factorial combinations (with 4 factors), 107,937 pieces of data were available in the analysis
(Supplementary material). We analyzed the dataset in terms of the efficiency of noise reduction, the
different settings of CSF, the interpolation method, and the resolution. Finally, we also examined the
effects of the different combinations of data preparation and interpolation techniques on the accuracy
of the representation of fluvial forms, i.e., how the point bars and swales can be modeled and which
approach results in the most accurate model.

Spearman correlation (r) was used to analyze the correlation between the number of points and
the model accuracies gained; we reported correlation at p (significance) < 0.05. This type of correlation
does not suppose a normal distribution and is not influenced by recurring similar data [56].

We applied the Welch test for one-way comparisons with the Tukey HSD (honestly significant
difference) post hoc test. The Tukey test is not sensitive to normal distribution [57]. A robust two-way
factorial ANOVA (analysis of variance) using 20% trimmed means and bootstrapping (999 replications)
was used to reveal the interactions between the factor variables. As a result of the trimming, the
analysis was not sensitive to outlier data. Based on the bootstrap approach—i.e., generating several
replications, in our case 999—with random sampling from the original dataset, statistical parameters
can be calculated related to the prediction error, variance of mean, etc. Accordingly, this robust
approach does not require normal distribution [58].

Swales and point bars were analyzed with the Wilcoxon test with Monte Carlo analysis (with
99,999 repetitions) [59]. The H0 was that there was no difference between the number of points per
square meter of the fluvial forms.

Statistical analyses were conducted in R 3.53 statistical software [60] with the coin [61],
the onewaytest [62] and the WR2 [63] packages.

List of statistical abbreviations used in the results paragraph:

- df: degree of freedom
- F: F-statistic
- p: significance
- pmc: Monte Carlo simulation based p-value (significance)
- Q: Q-statistic for 2-way ANOVA (analysis of variance)
- r: Spearman correlation
- W: Wilcoxon test statistic
- z: z-score
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4. Results

4.1. Number of Points and Accuracy

Noise reduction resulted in a smaller number of points, reducing the input data of the ground
point classification from 10.1 million to 8.7 million (Table 2). The original dataset—without noise
filtering—contained several points which caused false terrains in the final models.

Table 2. Accuracies as reflected in the noise reduction and CSF parameters (o: original LAS dataset; d:
distance-based filter with island detection; n: neighborhood-based filter; CS: cloth size; Thd: threshold;
SD: standard deviation).

Filtering Method Noise Reduction CSF Parameters
(CS; Thd) Point Number Accuracy (mean ± SD; m)

Original point cloud - - 10,120,880 −0.15 ± 0.17

Noise filter
d - 8,718,994 −0.13 ± 0.15
n - 10,073,485 −0.12 ± 0.15

Ground
point filter

d 2; 1 6,943,468 −0.15 ± 0.17
d 2; 0.2 5,199,607 −0.12 ± 0.13
d 2; 0.5 6,375,149 −0.14 ± 0.14
d 5; 1 6,875,994 −0.15 ± 0.17
d 5; 0.2 3,720,552 −0.09 ± 0.16
d 5; 0.5 5,905,299 −0.13 ± 0.14
n 2; 1 8,050,253 −0.14 ± 0.16
n 2; 0.2 5,958,207 −0.12 ± 0.13
n 2; 0.5 7,395,394 −0.14 ± 0.14
n 5; 1 7,971,242 −0.14 ± 0.16
n 5; 0.2 4,246,638 −0.09 ± 0.16
n 5; 0.5 6,842,756 −0.13 ± 0.14
o 2; 1 8,293,970 −0.15 ± 0.18
o 2; 0.2 6,999,426 −0.15 ± 0.16
o 2; 0.5 7,837,259 −0.15 ± 0.16
o 5; 1 8,287,750 −0.15 ± 0.18
o 5; 0.2 6,729,067 −0.16 ± 0.16
o 5; 0.5 7,781,547 −0.15 ± 0.16

The different parameters of the CSF provided ground points on a large scale from 8.3 million to
3.7 million. Thus, the difference was large in the models, and the number of points had a moderate
correlation with the mean accuracies (r = −0.65, p < 0.05), indicating that smaller points provided better
agreement with the field measurements. The smallest differences belonged to the neighborhood-based
noise filtering, the larger cloth size (5), and the smaller threshold value (0.2). Generally, the differences
were low, between 0.09–0.16 m, but the standard deviations were high (0.13–0.18 m), indicating high
relative standard deviation (even more than 100%).

4.2. Effect of Noise Reduction and the CSF Parameters

Considering the noise reduction itself, according to the Welch test, all models had significant
differences (F = 194.1; df = 7.18 × 10−4; p < 0.001). In the following step, we analyzed the effects of CSF
parameters, the cloth sizes, and thresholds (Figure 4). The smallest differences were obtained using the
point clouds with noise reduction and the cloth size of 5, and a threshold of 0.2 occurred in the models
(the difference was −0.08 m in relation to the reference). In the case of the original point cloud, these
parameters provided the worst model, having the poorest accuracy (−0.12 m).

The two-way factorial ANOVA revealed the relevance of the noise filtering and the CSF parameters
(Figure 5). The results confirmed the observations from Figure 4, i.e., that both the noise filtering
and the specifications of the CSF parameters had a significant effect on the modeled values. There
were significant main effects for noise reduction (Q = 147.8; p < 0.001), for cloth size parameters
(Q = 19.65; p < 0.001), and for their interaction (Q = 17.82; p < 0.001). We observed a similar case with
the model of threshold values: the main effects were significant (for noise Q = 149.1, p < 0.001; for
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threshold Q = 87.67, p < 0.001), and the interaction of noise reduction and threshold was also significant
(Q = 231.3, p < 0.001).Sensors 2020, 20, x FOR PEER REVIEW 9 of 18 
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4.3. Consequences of the Interpolation Algorithms

Considering the medians of the accuracies, values ranged between −0.16 and −0.05 m (Figure 6).
However, the quartiles and the outliers varied on a larger scale (minimum: −1.67 m; maximum: 0.619 m)
indicating that modeled values were influenced by several factors. Subtracting the worst from the best
model, the largest difference in modeled height was −1.71 m. The visual interpretation highlighted
that the model without filtering, using inappropriate CSF parameters and interpolation techniques,
resulted in a DTM with a high number of pixels with noise. The noise is mainly concentrated in the
area with higher density of vegetation (we will consider this issue more deeply in Section 4.5) (Figure 7).
Generally, interpolations resulted in differences between the model pairs, except in the cases of TT, TD,
and the terrain dataset with thinning TH methods (F = 745.8; df = 5.35 × 10−5; p < 0.001; Figure 8).
The LI usually resulted in models with the largest differences, and the NA interpolation was the most
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accurate. Although TT, TD, and TH were not the most accurate, there was another important issue to
be considered: the narrower range of data. The most accurate model, based on the median difference,
was the one with the NA interpolation with a cloth size of 5 and a threshold of 0.2; however, this model
had the highest outliers in a positive direction. The TT, TD, and TH models were the models with
minimal differences in medians (and insignificant differences based on the post hoc test).

Sensors 2020, 20, x FOR PEER REVIEW 10 of 18 

0.2; however, this model had the highest outliers in a positive direction. The TT, TD, and TH models were 
the models with minimal differences in medians (and insignificant differences based on the post hoc test). 

 
Figure 6. Boxplots of model accuracies ordered by medians for 1 m resolution (o: original database, 
d: distance-based noise filter, n: neighborhood-based noise filter; first number: cloth size parameter; 
second number: threshold parameter; LI: linear interpolation, NA: natural neighbor interpolation, TD: 
terrain dataset with natural neighbor interpolation; TH: terrain dataset with thinning and natural 
neighbor interpolation; TT: topo to raster interpolation). 

 
Figure 7. The best and the worst models according to the range of medians and the differences 
between them: (a) o|2|0.2|LI: o: original database; first number: cloth size parameter (2); second 
number: threshold parameter (0.2); LI: linear interpolation; (b) n|5|0.2|NA: n: neighborhood-based 
noise filter; first number: cloth size parameter (5); second number: threshold parameter (0.2); NA: natural 
neighbor interpolation. (c) The difference between o|2|0.2|LI and n|5|0.2|NA terrain models. 

Figure 6. Boxplots of model accuracies ordered by medians for 1 m resolution (o: original database,
d: distance-based noise filter, n: neighborhood-based noise filter; first number: cloth size parameter;
second number: threshold parameter; LI: linear interpolation, NA: natural neighbor interpolation,
TD: terrain dataset with natural neighbor interpolation; TH: terrain dataset with thinning and natural
neighbor interpolation; TT: topo to raster interpolation).
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Figure 7. The best and the worst models according to the range of medians and the differences between
them: (a) o|2|0.2|LI: o: original database; first number: cloth size parameter (2); second number:
threshold parameter (0.2); LI: linear interpolation; (b) n|5|0.2|NA: n: neighborhood-based noise filter;
first number: cloth size parameter (5); second number: threshold parameter (0.2); NA: natural neighbor
interpolation. (c) The difference between o|2|0.2|LI and n|5|0.2|NA terrain models.
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4.4. Effect of the Resolution on the Accuracy

We analyzed the dataset from the perspective of the resolution of the final, interpolated maps
(Figure 9). The two-way ANOVA revealed that the coarser resolution (2 m compared to 1 m) resulted
in more accurate models: models were 0.009–0.012 m closer to the reference surface, on average.
Noise reduction and resolution had a significant main effect (Q = 144.8, p < 0.001 and Q = 120.1,
p < 0.001, respectively), but their interaction was not significant (Q = 0.14, p = 929). In the case of
interpolation methods, all the main effects were significant (for interpolation Q = 2563.6, p < 0.001, for
resolution Q = 79.9, p < 0.001) and their interaction was also significant (Q = 4478, p < 0.001). According
to the previous results, LI, TT, TH, and TD interpolations had the same values, and the resolution
did not change the differences, but in the case of NA a relevant improvement (0.058 m on average)
was observed.

Sensors 2020, 20, x FOR PEER REVIEW 11 of 18 

 
Figure 8. Mean differences by interpolation types (LI: linear interpolation; NA: natural neighbor 
interpolation; TD: terrain dataset with natural neighbor interpolation; TH: terrain dataset with 
thinning and natural neighbor interpolation; TT: topo to raster interpolation; error bars: 95% 
confidence intervals; insignificant differences: where error bars intersected the 0 value, this is shown 
by the vertical dashed line). 

4.4. Effect of the Resolution on the Accuracy 

We analyzed the dataset from the perspective of the resolution of the final, interpolated maps 
(Figure 9). The two-way ANOVA revealed that the coarser resolution (2 m compared to 1 m) resulted 
in more accurate models: models were 0.009–0.012 m closer to the reference surface, on average. Noise 
reduction and resolution had a significant main effect (Q = 144.8, p < 0.001 and Q = 120.1, p < 0.001, 
respectively), but their interaction was not significant (Q = 0.14, p = 929). In the case of interpolation 
methods, all the main effects were significant (for interpolation Q = 2563.6, p < 0.001, for resolution Q 
= 79.9, p < 0.001) and their interaction was also significant (Q = 4478, p < 0.001). According to the 
previous results, LI, TT, TH, and TD interpolations had the same values, and the resolution did not change 
the differences, but in the case of NA a relevant improvement (0.058 m on average) was observed. 

 
(a) (b) 

Figure 9. Interaction plot of resolution and noise filtering (a) and resolution and interpolation 
techniques (b) (LI: linear interpolation; NA: natural neighbor interpolation; TD: terrain dataset with 
natural neighbor interpolation; TH: terrain dataset with thinning and natural neighbor interpolation; 
TT: topo to raster interpolation; d: surface distance-based; n: neighborhood distance-based filtering; 
o: original point cloud). 

Figure 9. Interaction plot of resolution and noise filtering (a) and resolution and interpolation
techniques (b) (LI: linear interpolation; NA: natural neighbor interpolation; TD: terrain dataset with
natural neighbor interpolation; TH: terrain dataset with thinning and natural neighbor interpolation;
TT: topo to raster interpolation; d: surface distance-based; n: neighborhood distance-based filtering; o:
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4.5. Effects of the Noise Reduction and the Ground Point Classification on the Fluvial Forms

Point bars had larger point/m2 values in each model except in two cases (both distance- and
neighborhood-based noise reduction models with the cloth size of 5 and the threshold of 0.2).
Accordingly, the difference was significant (W = 140; z = 2.373; pMC = 0.015).

We revealed that the greatest accuracy (i.e., the smaller differences between the reference
and measured values) was found in the ground point classifications of smaller points densities:
1.38 points/m2 for point bars and 1.90 points/m2 for swales (Figure 10). Furthermore, the best CSF
parameters were in accordance with the previous results, and the fewest points, the cloth size of 5, and
the threshold of 0.2 resulted in the highest accuracy. The noise reduction was efficient, and, although
the difference between them was slight (less than 0.01 m), the neighborhood-related filtering was
the most effective. Resolution had a significant effect on the accuracy, but the difference was only
0.009–0.011 m between the 1 and 2 m geometric resolution models. Generally, the accuracy of the
swales was always below that of the point bars by 0.057–0.069 m.
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5. Discussion

Aerial LiDAR is a promising technology for collecting large amounts of data even in areas which
are hard to access due to dense vegetation or their topography [64]. Surveys result in continuous
data from the target areas, and the outcomes are point clouds with several million data points with
horizontal and vertical coordinates, the intensity of the returning beams, and, in the case of multiple
echoes, the number of returns [65]. Although these datasets represent the fastest and most accurate
method of surveying and provide the possibility of object detection beside the elevation data, they have
limitations as well [66]. Our study area was a fluvial landscape with swales and point bars, with areas
of temporary and locally permanent water cover, and with different vegetation densities (including
trees, bushes, grasslands, and aquatic vegetation). These factors bias the final models derived from the
point clouds, and we focused on the steps involved in the data preparation and the process of creating
a digital terrain model.

In previous works, e.g., [19,28,67–69], it was found that noise reduction during preprocessing
yielded a better digital terrain model, but on the other hand this procedure could sometimes reduce
the accuracy of the model, as [70] found in their study. We had a hypothesis that the noise reduction of
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the point cloud results in more accurate models in our case, and we pointed out that different noise
reduction techniques can have a significant effect on the input data which are the basis of the next
stage of the process, i.e., ground point classification. Although the distance-based method including
island removal (i.e., deleting points clusters without connection to other points) seemed a powerful
method, in the end we found that neighborhood-related noise removal provided the best input data
for ground point classification in this fluvial area. However, noise removal was an important step,
and both methods resulted in better models than the original point cloud without noise filtering. The
difference between the two noise filters is that the distance-based algorithm also removes too many
ground points and consequently leaves fewer points for the interpolation phase. Nevertheless, the
difference between the noise filtering techniques was small, resulting as 0.01 m on average with same
standard deviation (Table 2). Accordingly, we confirmed that noise removal is a relevant beginning
step in DTM generation from LiDAR point clouds. Our results are in accordance with the suggestions
of [13], showing that in the case of flat terrain, noise filtering based on a statistical approach can be an
effective technique. Regarding all combinations, our final DTMs were more accurate using preliminary
noise filtering, with slightly better outcomes using the neighborhood distance-based method.

As one of the key steps in the ALS data processing is the point cloud filtering, the number of
the different filters for ground point extraction is continuously increasing. In our study we utilized
the method of [29]—which applies a cloth simulation filter—where attention needs to be paid to
set the most effective parameters, as it requires specific experience. The cloth simulation filter has
two important parameters. The first parameter is cloth size, which is in accordance with the point
cloud density, i.e., too low and too high values can also result in inappropriate models. We found
that models produced from a cloth size of 5 m were more accurate than the finer, 2 m, setting.
Thus, larger cloths (larger kernel windows) have more relating points where the algorithm can
validate the threshold setting. An important result is that point density was 4 points/m2; furthermore,
calculating with multiple echoes, it can even reach 10 points/m2 [50]. Accordingly, a finer cloth
size would have been reasonable, the recommendation of the developer is one-third of the point
spacing (http://ramm.bnu.edu.cn/researchers/wumingzhang/english/default_contributions.htm), but
according to the mean difference between the two settings, the 5 m cloth was 0.012 m better (for the
neighborhood-related filter (Figure 4)). The second CSF parameter is the threshold. A threshold value
of 0.5 was suggested by [29], but this was not the best setting in our case. A smaller value of 0.2 resulted
in more accurate models with all interpolation methods. We confirmed that, generally speaking, lesser
points provided better input for DTM generation, which agrees with the results of [68,69,71]. However,
lesser points did not mean the least points. A distance-based filter resulted in the least points, whereas
the dataset of the neighborhood-based filter was the best input for the interpolation (Table 2).

In studies by [71,72], the NA algorithm was proposed as the most appropriate one for the
representation of coastal subdued areas using a LiDAR point cloud. In our work, interpolations had
a relevant effect on the DTMs, and there were significant differences between the methods studied.
According to the median-based rank of the differences, the NA had the best and the LI had the
worst performance; the TT, TD, and TH models were found in the middle range. The TT, TD, and
TH interpolations had very similar results without significant differences (p > 0.05). Although NA
interpolation (with a cloth size of 5 and a threshold of 0.2 as CSF parameters) provided the lowest
differences according to the medians, it had a skewed distribution with a relevant number of outliers in
the positive differences. As differences were calculated by subtracting the modeled terrain heights from
the reference, this means that the most accurate NA model had several underestimated real heights,
while models usually overestimated them. The TT, TD, and TH (without significant differences) showed
medians only with slightly lower differences than the best NA, but the ranges were the narrowest. This
can be an advantage as the potential error is smaller. However, unlike LI and NA methods, which are
embedded in several software packages, including open-source solutions (e.g., ArcGIS [52], GRASS
GIS [73], SADA [74], Surfer [75], R [76], and Python [77]) which ensure the widespread usage of the
algorithms, TT, TD, and TH interpolations are available only in ArcGIS. Thus, these algorithms can be
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considered software-specific solutions limited to the users of that software. Differences were not high,
but were greater than results of [48], who found differences from the reference data ranging from –0.05
to +0.05 m. In our case, the range varied from –0.10 m to +0.60 m, and we observed large differences
in individual points (–1.67 m to +0.62 m, which was relevant in the floodplain, considering that the
relative difference between the deepest points of the swales and the highest point of the point bars was
only 0.80–1.10 m).

Resolution seemed a significant influencing factor in DTM generation, but without interaction
with the noise filtering: the 2 m setting was more accurate by 0.007–0.010 m for each combination of the
noise filters or the original dataset. This was in accordance with the analysis of cloth size parameter,
where the larger (5 m) size resulted in more accurate models. Furthermore, interpolations were usually
insensitive to the resolution, but the NA method, which was considered the best performing technique,
was accurate to 0.005 m with the 2 m option. Accordingly, our recommendation is to use the coarser
resolution of 2 m. The differences were not high but were significant.

In floodplains, and especially in our study area, the dominant forms were the swales and the
point bars. Point bars are always in a higher terrain position in relation to swales; accordingly, swales’
water coverage lasts longer, and the vegetation’s water supply is relevantly better. In our previous
study [50], we revealed that the vegetation density is significantly higher in swales; therefore, the
number of ground points per m2 was significantly smaller (5.88 vs. 4.91). NDVI differed significantly
(F = 1567, p < 0.001), which was a relevant background factor which influenced the model accuracy
when investigating these fluvial forms: removing the dense vegetation from the surface cannot be as
accurate for swales as point bars.

Generally, we have to note that these differences were not high, and we can come to the conclusion
that, on average, all were in a negligible range. However, as reflected in Figure 7, the spatial appearance
of the anomalies can relevantly alter the surface. These small differences can generate a different
environment and change the characteristics of the fluvial forms, altering the waterflow modeling.
The error propagation is unpredictable; thus, our primary task is to provide the best model and
geomorphology seemed a good indicator by which to choose them.

6. Conclusions

This study provides a brief description of point cloud processing from noise reduction to digital
terrain generation. Our hypothesis was that noise filtering, ground point classification, interpolation,
and geometric resolution have significant effects on the generated DTMs. We found that all types of
preliminary noise filtering had significantly more accurate results related to the processing than when
only applying the original database. CSF as a ground classification technique was a powerful tool,
and the resulting DTMs had very low errors (from −0.03 to −0.22 m as upper and lower quartiles).
CSF parameters had a significant effect on accuracy, where a coarser cloth size (5 m) and a smaller
threshold (0.2) resulted in the best model performance. In the case of interpolations, we have drawn
two conclusions: the natural neighbor method provided the most accurate model considering the
medians; regarding the range of the differences, the topo to raster and terrain dataset approaches with
natural neighbor interpolations provided the best DTMs. Although the density of the ALS point cloud
made it possible to use a 1 m geometric resolution for the final DTM, the 2 m resolution was more
accurate. We also revealed that landform elements, even when the line of sight is not limited by the
topography, can decrease the models’ accuracy; swales had significantly larger model errors due to
denser vegetation and water absorption related to point bars. These results proved our hypotheses and
can serve as a guidance for ALS LiDAR point cloud preprocessing, classification, and interpolation
and for choosing the right resolution in a fluvial environment.

Supplementary Materials: The datasets analyzed for this study can be found in the Mendeley Data
https://data.mendeley.com/datasets/publish-confirmation/d93f3vmdm5/1.
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