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Abstract

In Duchenne muscular dystrophy, a lack of dystrophin leads to extensive muscle weakness

and atrophy that is linked to cellular metabolic dysfunction and oxidative stress. This dystro-

phinopathy results in a loss of tethering between microtubules and the sarcolemma. Micro-

tubules are also believed to regulate mitochondrial bioenergetics potentially by binding the

outer mitochondrial membrane voltage dependent anion channel (VDAC) and influencing

permeability to ADP/ATP cycling. The objective of this investigation was to determine if a

lack of dystrophin causes microtubule disorganization concurrent with mitochondrial dys-

function in skeletal muscle, and whether this relationship is linked to altered binding of tubu-

lin to VDAC. In extensor digitorum longus (EDL) muscle from 4-week old D2.mdx mice,

microtubule disorganization was observed when probing for α-tubulin. This cytoskeletal dis-

order was associated with a reduced ability of ADP to stimulate respiration and attenuate

H2O2 emission relative to wildtype controls. However, this was not associated with altered

α-tubulin-VDAC2 interactions. These findings reveal that microtubule disorganization in dys-

trophin-deficient EDL is associated with impaired ADP control of mitochondrial bioenerget-

ics, and suggests that mechanisms alternative to α-tubulin’s regulation of VDAC2 should be

examined to understand how cytoskeletal disruption in the absence of dystrophin may

cause metabolic dysfunctions in skeletal muscle.

Introduction

In Duchenne muscular dystrophy, mutations in the X-linked gene dystrophin leads to progres-

sive weakness in striated muscles. Occurring in 1:3500–5000 males, the absence of this cyto-

skeletal-sarcolemmal linker protein results in a compromised cell membrane that becomes

damaged after contraction [1, 2]. While persistent calcium influx has been linked to repeated

cycles of fibre degeneration and regeneration [2], the loss of dystrophin has also been shown
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to cause disorganization of microtubules, specifically measured as α-tubulin, in extensor digi-

torum longus (EDL) muscle in C57Bl/10mdx mice, given dystrophin is a microtubule anchor

[3, 4]. However, the manner by which this altered microtubule network contributes to meta-

bolic dysfunction remains unclear.

Mitochondrial dysfunctions have also been identified in limb skeletal muscle, diaphragm

and heart from mouse models of Duchenne muscular dystrophy [5–9]. A specific impairment

in the ability of ADP to attenuate mitochondrial H2O2 emission during impaired oxidative

phosphorylation was identified in multiple muscles at 4 weeks of age in D2.mdx mice [6]. The

cause for this mitochondrial dysfunction was not identified, although multiple stressors inher-

ent in the disease could be contributors. One possibility may be that mitochondrial dysfunc-

tions arise from a disorganized cytoskeletal network that was reported previously in the

C57Bl/10.mdx model [3, 4]. Specifically, as mitochondria are known to bind to tubulin, a com-

ponent of microtubules [10–13], it is possible that altering microtubule architecture may influ-

ence mitochondrial bioenergetics. Indeed, we have previously shown that inducing

microtubule disorganization in EDL with microtubule-stabilizing and destabilizing com-

pounds alters ADP’s control of mitochondrial bioenergetics [13]. As such, it seems plausible

that the disorganized microtubule network in EDL from C57Bl/10.mdx mice [3] are related to

mitochondrial dysfunctions observed in other muscles, particularly white gastrocnemius

which shares similar fibre type as EDL [5–9]. However, this relationship has not been defini-

tively demonstrated within the same muscle of the same mouse model, nor has a potential

mechanism been explored for how microtubules may alter mitochondrial function in this

disorder.

The first objective of the present study was to determine if disorganized microtubules are

associated with a loss of ADP’s central control of mitochondrial bioenergetics in EDL muscle

of D2.mdx mice. We have previously used this mouse model to explore mitochondrial dys-

function in other muscles but it has yet to be examined for microtubule disorganization [6, 8].

The second objective was to explore whether this potential relationship was related to altered

tubulin-VDAC binding stemming from disorganized microtubules. Specific attention was

given to α-tubulin considering it binds various isotypes of β-tubulin as an α/β heterodimer

with the CTT tail of both components having affinity for VDAC [10, 14–16]. VDAC2 was

selected given 1) its deficiency results in embryonic death thereby demonstrating its impor-

tance [17], 2) it has been proposed that VDAC2 may uniquely regulate the more efficient crea-

tine-dependent mitochondrial phosphate shuttling mechanism [18–21], and 3) we have

previously shown that tubulin-VDAC2 interactions are changed when microtubule organiza-

tion is altered by paclitaxel [13]. The results demonstrate a relationship between microtubule

disorganization and impaired ADP attenuation of H2O2 emission. Contrary to the hypothesis,

this dysfunction was not associated with altered α-tubulin-VDAC2 binding as detected by a

proximity ligation approach (<30nm resolution) [22]. These findings highlight the association

between microtubule networks and mitochondrial dysfunction in dystrophin deficiency sug-

gesting an important role of cytoskeletal architecture in mediating metabolic dysfunction in

this disease. The results also challenge the model of tubulin regulation of VDAC permeability

to ADP, although alternative mechanisms for future investigation are discussed.

Materials and methods

Animal care

Briefly, male 4-week old D2.mdx mice [23, 24] were used from a colony at York University

originally established with breeding pairs from Jackson Laboratories (Bar Harbor, United

States). Due to breeding difficulties in the background strain, separate male wildtype (WT)
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DBA/2J mice were purchased from Jackson Laboratories and were acclimated for 72 hours

before experiments were performed. All experiments and procedures were approved by the

Animal Care Committee at York University (AUP approval number; 2016–18). Other muscles

from these mice were used for separate manuscripts in preparation at the time of this

submission.

Preparation of permeabilized muscle fibre bundles (PmFB)

All experimental procedures were completed as reported previously [6, 13, 25–27]. Mice were

anesthetized with 5% isoflurane (1–2 L/min medical air) and maintained at a 3–5% isoflurane

for the duration of the tissue harvest. EDL muscles were removed and quickly placed in BIOPS

buffer containing (mM): 50 MES, 7.23 K2EGTA, 2.77 CaK2EGTA, 20 Imidazole, 0.5 Dithio-

threitol (DTT), 20 Taurine, 5.77 ATP, 15 phosphocreatine and 6.56 MgCl2�6H2O (pH 7.1) [6,

13, 25–27] on ice. Tissue was trimmed of fat and connective tissue in BIOPS buffer maintained

at 4˚C and separated using antimagnetic needle-tipped forceps under magnification (Zeiss

2000, Germany). Each 1–3 mg bundle was permeabilized with 40μg/ml saponin in BIOPS for

30 min. PmFB allocated for pyruvate-induced H2O2 emission were permeabilized in the pres-

ence of 35μM 2,4-dinitrochlorobenzene (CDNB) to remove endogenous glutathione and per-

mit detection of H2O2 emission supported by the pyruvate dehydrogenase complex [28]. Once

permeabilized, PmFB were washed for 15 min at 4˚C in MiRO5 buffer containing (mM): 0.5

EGTA, 10 KH2PO4, 3 MgCl2�6 H2O, 60 K-lactobionate, 20 hepes, 20 taurine, 110 sucrose and

1 mg/ml fatty acid free BSA (pH 7.1) for respiration experiments, buffer Z containing (mM):

105 K-MES, 30 KCl, 10 KH2PO4, 5 MgCl2�6 H2O, 1 EGTA and 5 mg/ml BSA (pH 7.1) for

H2O2 emission assays and buffer Y containing (mM): 250 sucrose, 10 tris-HCl, 20 tris Base, 10

KH2PO4, and 0.5mg/ml BSA for 10 min and then again in buffer Y with 10μM blebbistatin to

determine calcium retention capacity. All wash steps were completed at 4˚C.

Mitochondrial bioenergetic assays

PmFB were placed into a high-resolution respirometer (Oroboros Instruments, Corp. Inns-

bruck, Austria) in the presence of 20mM creatine to promote cytoplasmic-mitochondrial

cycling of creatine/phosphocreatine (“phosphate shuttling”) through mitochondrial creatine

kinase (mtCK) in the inner membrane space [19–21, 29]. Approximately 350μM of O2 was

added to each chamber with each experiment completed before reaching 150μM O2. Other

technical details of respirometer settings and conditions are described previously [8, 13, 25–27,

30]. Experiments were performed in the presence of 5μM blebbistatin to prevent ADP-induced

muscle contraction [25, 31, 32] and normalized to wet weight. State 3 respiration was sup-

ported by 5mM pyruvate + 2mM malate (NADH, complex I) followed by ADP titrations at 25,

100, 500 and 5000μM ADP. 10μM cytochrome c was added to test for intactness of the outer

mitochondrial membrane, with all responses exhibiting <15% increase in respiration. 20mM

succinate (FADH2) was then added for complex II-supported respiration.

Separate PmFB were placed into a quartz cuvette containing 1ml of Buffer Z containing

10μM Amplex UltraRed, 0.5U/ml horseradish peroxidase, 40U/ml Cu/Zn-SOD1, 1 mM

EGTA, 20mM creatine and 5μM blebbistatin to measure H2O2 emission. Experiments were

completed by spectrofluorometry (QuantaMaster 40, HORIBA Scientific, Edison, NJ, USA)

with continuous stirring at 37˚C. Pyruvate (10mM) and malate (4mM) were used to stimulate

mitochondrial H2O2 emission at complex I (NADH) followed by ADP titrations at 25, 100 and

500μM to attenuate H2O2 emission. Upon completion, bundles were blotted dry and lyophi-

lized to obtain a dry weight for normalization as previously described [6, 8, 13, 31]. The rate of

H2O2 emission (pmol�s-1�mg dry weight-1) was then calculated from the slope (F/min) applied
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to a standard curve established with the same reaction conditions. H2O2 emission data at each

ADP concentration was then divided by the initial maximal rate of H2O2 emission measured

with pyruvate/malate before ADP was added. In so doing, the data captures the physiological

importance of ADP in attenuating mitochondrial H2O2 emission as an index of mitochondrial

‘ADP sensitivity’.

Calcium retention capacity (CRC) was performed s by spectrofluorometry (QuantaMaster

80, HORIBA Scientific, Edison, NJ, USA) with separate PmFB in a Calcium Retention Capac-

ity buffer as previously described [6, 8, 33, 34] with the addition of 5mM ADP to capture the

potential effect of ADP on membrane potential as might occur under state 3 conditions in
vivo. PmFB were placed into a quartz cuvette containing Calcium Green-5N (Invitrogen) dis-

solved in Buffer Y [33] where an initial 8nm CaCl2 pulse was added followed by 4nm CaCl2

pulses until mitochondrial permeability transition pore opening was evident. Two 0.5mM

pulses of CaCl2 were then added to establish maximum fluorescence by saturating the fluoro-

phore. Similarly to H2O2 bundles, PmFB were lyophilized to obtain dry weights for

normalization.

Single fibre isolation, immunofluorescent staining and proximity ligation

assay

A separate set of D2.mdx and control DBJ/2J mice (n = 8–10) were used for immunofluores-

cent experiments as described previously [13]. Briefly, EDL single fibres were isolated with

0.2% collagenase type 4 (Worthington, LLS004188, Lakewood, NJ) for 70 min (maintained at

37˚C) and triturated until viable single fibres were released. Fibres were fixed with 4% parafor-

maldehyde for 10 min, permeabilized with 0.01% triton-X100 for 10 min and then blocked

with 5% BSA PBS++ for 60 min, all at room temperature. Samples were then incubated with α-

tubulin (1:1000 Sigma, T6199) for 4 hours at room temperature followed by VDAC2 overnight

at 4˚C (1:250, Santa Cruz, 32059). Half of the fibres were used for detection of α-tubulin fol-

lowing incubation with the secondary antibody Alexa Flour 488 (Invitrogen, A21121).

The remaining fibres retained following primary antibody incubations were used for deter-

mination of protein-protein interaction by proximity ligation assay. Fibres were probed

according to manufacturer’s instructions with some modifications described previously [13].

Briefly, proximity ligation assay anti-goat minus (Sigma, DUO92001) and anti-mouse plus

(Sigma, DUO92006) probes were used to detect primary antibodies used above. Single fibres

were incubated with anti-goat minus and anti-mouse plus probes (1:5 dilution) for 1 hour

prior to a treatment with the detection reagents red (Sigma, DUO92008) consisting of a 30

min incubation with the provided ligase to splice the oligonucleotide ends of the probes

together, and a 1 hour 40 min incubation with the provided polymerase to read and amplify

the signal on the resulting DNA strand. All incubations were completed at 37˚C. Fibres were

coated in anti-fade mounting medium and covered with a coverslip. Negative control experi-

ments were previously published that demonstrate the specificity of the proximity ligation

assay with these same antibodies [13].

Image capture and quantitation

A Zeiss laser scanning confocal microscope 700 (Carl Zeiss) was used to acquire images with a

63X oil immersion objective with the pin hole set to 1AU. The parameters used to acquire

images of microtubules include; excitation at 488nm for α-tubulin obtaining an average inten-

sity for each image. Starting at the top of the fibre, capturing 4–19 stacks with a z-step of

0.35 μm resulting with a depth of approximately 3.94 ± 0.11 μm2 suggesting that predomi-

nately sub-sarcolemma microtubules were imaged for both directionality and protein-protein
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interaction analysis. Image acquisition began when microtubules were clearly visible. Along

the length of the fibre, 3 different images were taken, scanning the same area (μm2) in each

image (yielding 3 images/fibre) with one fibre analyzed per mouse (WT and D2.mdx). The

representative image used in this manuscript (Fig 1) was stacked into a 3D image using ImageJ

(ImageJ, http://imagej.nih.gov/ij/) projecting an average intensity. Samples were excited at

594nm to capture α-tubulin-VDAC2 interactions completed with the proximity ligation assay.

Similar parameters were used to acquire α-tubulin-VDAC2 interactions. Images were analyzed

in 3D using the spot tool on Imaris image quantifying software (Bitplane).

Microtubule directionality

Confocal images of microtubules were utilized for the determination of microtubule direction-

ality as described previously [35]. Briefly, images were prepared by selecting 6 ROI of 100x100

square pixels for each image obtained, not including areas around nuclei. A single z-stack

image obtained at approximately 4–6 stacks from the top of the fibre were utilized for direc-

tionality analysis. Images were processed using the sharpen and smooth tool on ImageJ.

Microtubule organization was then assessed using the TeDT software kindly provided by Dr.

Evelyn Ralston at the National Institute of Arthritis and Musculoskeletal and Skin Disease at

the National Institute of Health (NIAMS at NIH), Bethesda, Maryland, USA. The plotted

graph represents the average frequency of each angle that microtubules are oriented. Results

are expressed as fractions of total microtubules aligned at each degree.

Western blotting

Western blotting procedures were completed as previously reported [6, 8, 36] using rodent

OXPHOS Cocktail, ab110411, Abcam, Cambridge, UK, 1:250 dilution), VDAC2 (Santa-Cruz,

32059, Dallas, TX, 1:1000 dilution) and adenine nucleotide translocase 1 (ANT1, ab180715,

Abcam, 1:1000 dilution) antibodies. Briefly, protein content was determined using BCA pro-

tein assay kit (Life Technologies, Carlsbad, CA, USA) to prepare samples. Proteins were sepa-

rated on a 12% acrylamide gel and then transferred onto a low-fluorescence polyvinylidene

difluoride membrane that was then blocked and incubated with the respective primary anti-

bodies listed above overnight at 4˚C. Membranes were then washed and incubated with their

Fig 1. Microtubule organization. Confocal microscopy representative 3D images of α-tubulin-stained single EDL fibres from WT (9 slices) and D2.mdx (10 slices)

mice. Graphical representation of microtubule directionality measured with the TeDT software (n = 5–8). Results are reported as mean ± SEM, (�p<0.05 vs wildtype).

Scale bar, 10μm.

https://doi.org/10.1371/journal.pone.0237138.g001
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corresponding infrared fluorescent secondary antibodies (LI-COR, Lincoln, NE, USA) and

imaged with the LI-COR infrared imager. Membranes were analysed with ImageJ software.

Proteins were made relative to total protein measured on a separate membrane stained with

amido black stain where loading accuracy was tested with a coefficient of variation of 8.6%.

Statistics

The ROUT test was used to omit outliers followed by the D’Agostino-Pearson omnibus nor-

mality test to verify that all data followed a normal distribution. Statistical differences were

assessed by two-way ANOVA for ADP-stimulated respiration and attenuation of H2O2 emis-

sion followed by Bonferroni multiple comparison post-hoc analysis when appropriate. Differ-

ences in glutamate and succinate stimulated respiration, H2O2 emission in the absence of

ADP, Western blot densitometry results and CRC were determined through a student’s un-

paired t-test (GraphPad Prism 7, La Jolla, CA). Similarly, a student’s un-paired t-test was used

to determine differences in the average frequency calculated at each angle when measuring

microtubule directionality. Results are reported as mean ± SEM with significance accepted at

p< 0.05.

Results

Altered microtubule organization is associated with impaired ADP-control

of bioenergetics in D2.mdx mice

Confocal microscopy visually confirmed the disorganization of microtubule architecture in

EDL from D2.mdx compared to WT as was reported previously in C57.Bl/10mdx (Fig 1) [37,

38]. Further analysis with the TeDT software determined a higher frequency of microtubules

oriented at various direction from D2.mdx mice when compared to WT which had higher

peaks at 0/180 and 90 degrees (Fig 1). As microtubules have been proposed to regulate ADP

permeability through VDAC, we next determined the ability of ADP to stimulate respiration

and lower H2O2 emission. Complex I-supported respiration (NADH from pyruvate) was

impaired in D2.mdx vs WT at 500μM (-43%, p<0.001) and 5mM ADP (-38%, p<0.0001) with

a main effect observed across groups (p<0.0001) (Fig 2A), as was combined complex I and II

(additional FADH2 from succinate) (p<0.001) (Fig 2B).

Maximal H2O2 emission (State II, no ADP) was similar in D2.mdx and WT (p = 0.11) (Fig

2C). The ability of ADP to attenuate H2O2 was impaired in the D2.mdx mice when compared

to WT at all ADP concentrations that were assessed (main effect p<0.05) (Fig 2D). This

impairment in ADP was not observed in the absence of creatine in the media (data not

shown). While ADP sensitivity is captured here by examining the change in H2O2 emission

relative to maximal State II conditions, no change in absolute rates of H2O2 emission were

observed at any given ADP in EDL (data not shown).

We next employed a calcium retention capacity assay to determine whether dystrophic

muscle is more susceptible to mPTP formation (which is believed to involve VDAC) [39].

However, no differences were observed between WT and D2.mdx EDL (p = 0.17) (Fig 2E).

Reduced ANT1 protein content, but not α-tubulin-VDAC2 interactions,

may contribute to mitochondrial ADP-impairments in D2.mdx mice

A proximity ligation assay was used to determine whether α-tubulin-VDAC2 interactions

were different between D2.mdx and WT [10, 13, 40]. However, similar protein-protein inter-

actions were found in D2.mdx and WT mice (p = 0.83) (Fig 3). No changes were observed in

specific subunits of complexes I (p = 0.54), II (p = 0.12), III (p = 0.70), IV (p = 0.50) or
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V (p = 0.48) nor their sum (p = 0.45) (Fig 4A). VDAC2 (p = 0.10) (Fig 4B) protein content was

similar between WT and D2.mdx while the inner mitochondrial membrane transport protein

adenine nucleotide translocase 1 (ANT1) was significantly reduced in D2.mdx compared to

WT (-27%, p<0.05) (Fig 4C).

Fig 2. Mitochondrial bioenergetics in EDL PmFB. ADP-stimulated respiration was initially supported by complex I

(NADH from 5mM pyruvate/4mM malate) in the presence of creatine with an ADP titration of 25μM, 100μM, 500μM

and 5mM concentrations (n = 12) (A) directly followed by complex II (FADH2 from 20mM succinate, Succ) (n = 11–

12) (B). Mitochondrial H2O2 emission was stimulated at complex I (NADH from 10mM pyruvate/4mM malate)

(n = 12) (C) followed by an ADP titration and expressed relative to maximal H2O2 emission in response to pyruvate/

malate before ADP was titrated (% of State II) (n = 11–12) (D). Calcium retention capacity (n = 10) (E). Results are

reported as mean ± SEM, (�p<0.05 vs wildtype).

https://doi.org/10.1371/journal.pone.0237138.g002
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Discussion

In D2.mdx mice, we demonstrate that microtubule disorganization in EDL muscle is associ-

ated with a reduced ability of ADP to stimulate mitochondrial oxidative phosphorylation and

attenuate H2O2 emission. However, contrary to the hypothesis, there were no differences in

the degree of α-tubulin-VDAC2 interactions assessed by proximity ligation assay. These

Fig 3. α-tubulin—VDAC2 interactions in single EDL fibres. Schematic representing the model of α-tubulin-VDAC2

interaction (A). Cropped confocal microscopy images (B; see raw data for full representative image) and graphical depiction of

the proximity ligation assay of α-tubulin-VDAC2 (n = 8) (C). Scale bar, 10μm. Results are reported as mean ± SEM. The image

in panel A is reproduced with permission from our previous work [13].

https://doi.org/10.1371/journal.pone.0237138.g003
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findings demonstrate that microtubule disorganization and mitochondrial dysfunction occur

concurrently in dystrophin-deficient muscle, but that the tubulin-VDAC model of bioener-

getic control may not represent a causal link between these two phenomena leaving the possi-

bility that other mechanisms may exist.

Impaired mitochondrial bioenergetics is thought to contribute to muscle weakness in

Duchenne muscular dystrophy [6–8, 41]. However, the specific link between dystrophin defi-

ciency and mitochondrial dysfunction has not been fully resolved. While Ca2+ stress has been

proposed as a primary cause of swollen mitochondria and impaired oxidative phosphorylation

in mdx mice [5], separate observations of altered microtubule networks [37, 38, 42] were also

linked to disrupted cytosolic NADPH oxidase-induced ROS and Ca2+ signaling [42]. An

intriguing possibility of a mitochondrial link to microtubule disorganization emerges when

considering the separate discoveries that tubulin components of microtubules can directly

bind to VDAC on the outer mitochondrial membrane and decrease its permeability to ADP/

ATP cycling [10, 14, 21, 29]. Considering that pharmacological alterations of microtubule net-

works changes tubulin-VDAC interactions and ADP-dependent bioenergetics [13], it seems

plausible that the distinct observations of disorganized microtubules and mitochondrial dys-

functions in D2.mdx muscle may be due to altered microtubule-VDAC interactions. Such an

observation would implicate microtubule disorganization in D2.mdx mice as a modulator of

mitochondrial dysfunction in addition to the cytosolic stressors noted previously [42].

Fig 4. Protein content of mitochondrial proteins. Integrated densitometry for subunits of electron transport chain complexes I-V

(OXPHOS; n = 10–11), (A) VDAC2 (n = 10) (B) and ANT1 (n = 9–10) (C) with representative blots. Results are reported as

mean ± SEM, (�p<0.05 vs wildtype).

https://doi.org/10.1371/journal.pone.0237138.g004
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However, the present findings demonstrate no differences in the degree of α-tubulin-

VDAC2 interactions despite the association between microtubule disorganization and mito-

chondrial dysfunction. Nevertheless, this observation does not rule out the possibility of other

tubulin-VDAC interaction combinations. For example, while the CTT tail of α-tubulin has

been shown to block the pore of VDAC, there is a greater affinity of the CTT tail on certain β
isotypes, particularly βIII and VDAC1 [14]. In addition, it has been suggested that free βII

tubulin binds VDAC in muscle—independent of heterodimeric tubulin—such that this free

pool may be a distinct regulator of ADP/ATP cycling through VDAC [15]. Furthermore, the

affinity of tubulin binding can be modulated through post translational modifications [11]

such as phosphorylation [43] or altered mitochondrial membrane lipid composition [44]

which highlights the complexity of the potential regulation of this pathway. Lastly, it has been

proposed that free tubulin regulates VDAC permeability based on experiments that observed

the effect of adding or removing exogenous free tubulin to various preparations [10, 16].

Future investigations could develop novel approaches that capture the degree to which free

tubulin binds VDAC without altering their interactions during specimen processing. Such

approaches would be required to isolate the relative contribution of free vs. polymerized tubu-

lin to VDAC-dependent bioenergetics in the absence of dystrophin. Overall, the present find-

ings warrant additional investigation into these alternative possibilities of how microtubule

network dynamics may change the regulation of ADP-control of bioenergetics through

VDAC.

This study does not rule out the possibility that VDAC1 or VDAC3 are differentially

affected by disorganized microtubule networks in D2.mdx muscle. However, it has been sug-

gested that only VDAC2 regulates the effect of creatine on respiration through phosphate shut-

tling [18], as assessed in the present study, possibly by being functionally linked to

mitochondrial creatine kinase as well as tubulin in a super-complex [29]. The lethality of

VDAC2 knockout mice also suggests its importance in regulating mitochondrial bioenergetics

[17]. Nevertheless, the lack of change in α-tubulin-VDAC2 in the present investigation war-

rants further study of VDAC1 and 3 interactions with tubulin isotypes in mdx muscle given

their influence on respiration [17].

Lastly, an additional relationship was found between reduced ANT1 content and impaired

ADP-dependent mitochondrial bioenergetics. As ANT1 is found on the inner mitochondrial

membrane, it is not thought to bind tubulin directly but may still be part of a larger complex

with mitochondrial creatine kinase and VDAC [21]. Reduced ANT1 may be a distinct contrib-

utor to impaired ADP-control of bioenergetics in EDL muscle similar to the reductions previ-

ously reported in white gastrocnemius and quadriceps in D2.mdx mice at the same age of 4

weeks [6, 8].

In conclusion, this investigation demonstrates that microtubule disorganization is associ-

ated with mitochondrial dysfunction within the same muscle of dystrophin-deficient mice, but

this may not be mediated by altered α-tubulin-VDAC2 interactions. Additional research is

warranted given the proposed model of tubulin-VDAC regulation of bioenergetics is complex

and may involve other factors such as alternative tubulin and VDAC isoforms. The association

between microtubule organization and mitochondrial dysfunction reported herein serves as a

foundation for extensive exploration between these various combinations to determine if

microtubules truly ‘link’ dystrophin deficiency to mitochondrial bioenergetics.
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