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Abstract

Background: Accumulating evidence suggests that somatic stem cells undergo mutagenic
transformation into cancer initiating cells. The serous subtype of ovarian adenocarcinoma in
humans has been hypothesized to arise from at least two possible classes of progenitor cells: the
ovarian surface epithelia (OSE) and/or an as yet undefined class of progenitor cells residing in the
distal end of the fallopian tube.

Methods: Comparative gene expression profiling analyses were carried out on OSE removed
from the surface of normal human ovaries and ovarian cancer epithelial cells (CEPI) isolated by laser
capture micro-dissection (LCM) from human serous papillary ovarian adenocarcinomas. The
results of the gene expression analyses were randomly confirmed in paraffin embedded tissues
from ovarian adenocarcinoma of serous subtype and non-neoplastic ovarian tissues using
immunohistochemistry. Differentially expressed genes were analyzed using gene ontology,
molecular pathway, and gene set enrichment analysis algorithms.

Results: Consistent with multipotent capacity, genes in pathways previously associated with adult
stem cell maintenance are highly expressed in ovarian surface epithelia and are not expressed or
expressed at very low levels in serous ovarian adenocarcinoma. Among the over 2000 genes that
are significantly differentially expressed, a number of pathways and novel pathway interactions are
identified that may contribute to ovarian adenocarcinoma development.

Conclusions: Our results are consistent with the hypothesis that human ovarian surface epithelia
are multipotent and capable of serving as the origin of ovarian adenocarcinoma. While our findings
do not rule out the possibility that ovarian cancers may also arise from other sources, they are
inconsistent with claims that ovarian surface epithelia cannot serve as the origin of ovarian cancer
initiating cells.
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Background

Ovarian cancer is the most lethal of all gynecological can-
cers [1]. In the United States alone, an estimated 22,000
women will be diagnosed and 15,000 will die from ovar-
ian cancer in 2009 [2]. Despite the obvious clinical signif-
icance of the disease, the processes that underlie the onset
and progression of ovarian cancer remain among the
most poorly understood of all human malignancies.

It has been estimated that up to 90% of ovarian adenocar-
cinomas are derived from ovarian surface (coelomic) epi-
thelia (OSE) [3,4]. However, in contrast to a
dedifferentiation origin of adenocarcinomas from more
differentiated cells [5], OSE are proposed to become more
rather than less differentiated as the malignancy
progresses often presenting cellular phenotypes resem-
bling multiple Miillerian or paramesonephric duct
derived tissues (e.g. endosalpingeal, endometrial and
endocervical cells). The lack of morphological similarity
between OSE and ovarian adenocarcinomas has led to
claims that at least the serous subtype of ovarian adeno-
carcinoma is not derived from OSE but rather from an as
yet to be defined, more differentiated cell residing in the
distal end of the fallopian tube [6-9]. Indeed anaplasia
and frank carcinoma are often detected in the distal end of
the fallopian tube in women harboring germline muta-
tions in either the BRCA1 or BRCA2 genes that have been
estimated to account for more than 80% of inherited
breast and ovarian cancers [8-10]. However, the inference
that some ovarian cancers may arise in the fallopian tube
does not detract from compelling evidence that ovarian
cancer may arise from OSE [11]. For example, it has been
recently demonstrated that murine coelomic OSE display
many characteristics of adult stem/progenitor cells, such
as in vivo label retention and in vitro clonogenicity [12].
These findings are consistent with previous studies show-
ing that transformed mouse OSE have the capacity to
serve as progenitor cells and differentiate along distinct
Miillerian lineages leading to cystic tumors that resemble
high-grade serous, endometrioid-like and mucinous-like
adenocarcinomas [13]. The fact that cancer stem cells are
typically embedded within end stage tumors does not
contradict the notion that malignant neoplasms can initi-
ate from the accumulation of mutations in adult stem cell
populations leading to their subsequent transformation
into cancer initiating cells [14]. Indeed, the cancer stem
cell hypothesis is the current resurrection of a long sus-
pected origin for cancer [15] and data are rapidly accumu-
lating that support a stem cell origin of many types of
cancers [16-18]. The fact that mammalian OSE accumu-
late high levels of potentially mutagenic 8-oxoguanine
modifications following each ovulation is consistent with
the proposal that mutant OSE may be the progenitor of
ovarian adenocarcinomas [19,20].

http://www.biomedcentral.com/1755-8794/2/71

To test the hypothesis that human OSE retain properties
of relatively uncommitted multipotent progenitor cells
until undergoing neoplastic transformation, we con-
ducted gene expression profiling analyses on 12 OSE sam-
ples collected in vivo and 12 samples of laser capture
microdissected cancer epithelia (CEPI) from serous papil-
lary ovarian adenocarcinomas collected from flash frozen
tissue. We find that over 2000 genes are significantly dif-
ferentially expressed between the OSE and CEPI samples.
Consistent with a multipotent phenotype, we found that
genes previously associated with adult stem cell mainte-
nance are highly expressed in OSE. Pathway analysis
implicates key signaling molecules and novel pathway
interactions in ovarian cancer development.

Methods

Tissue Collection for Microarray

All tissues were collected by the Ovarian Cancer Institute
following approved Institutional Review Board protocols
from Northside Hospital and Georgia Institute of Tech-
nology, Atlanta, GA. Normal ovarian surface epithelial
(OSE) cells were collected from ovaries at time of surgery
using a Cytobrush® Plus (Medscand), immediately sus-
pended in RNA later (Ambion), and stored at -20°C. Indi-
cations for removal of healthy ovaries included other
gynecologic pathologies as indicated in Table 1. Tumor
tissues were surgically removed and immediately (<1
minute) placed in cryotubes and snap frozen in liquid
nitrogen. Following pathological verification, twelve
serous papillary cancer samples were embedded in cryo-
matrix (Shandon). Seven micron frozen sections were cut
and attached to uncharged microscope slides for each
sample. Immediately after dehydration and staining (His-
toGene, LCM Frozen Section Staining Kit, Arcturus), slides
were processed in an Autopix Laser Capture Microdissec-
tion instrument (Arcturus) and cancer cells captured on
CapSure MacroCaps. Approximately 30,000 cancer epi-
thelia were collected from each of the twelve cancer sam-
ples.

RNA Extraction and Amplification

RNA was extracted from LCM cells on the MacroCaps in
25 pL of extraction buffer and isolated following PicoPure
RNA Isolation Kit (Arcturus) protocols. OSE cells were
pelleted from RNAlater and RNA was isolated with Trizol
(Invitrogen) and purified with the PicoPure RNA Isola-
tion Kit (Arcturus). RNA quality was verified on the Bio-
analyzer RNA Pico Chip (Agilent Technologies).

Total RNA from each of the above 24 extractions was
amplified using the RiboAmp OA or HS kit (Arcturus) that
maintain the original mRNA representation after two
amplification rounds, enabling accurate gene expression
profiles from ultra small samples. The amplified mRNA
was subsequently labeled using the IVT Labeling Kit
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Table I: Patient Samples Analyzed in this Study
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OCI# AGEATTIME TISSUEFOR HISTOPATHOLOGY STAGE GRADE INDICATION FOR MENOPAUSE
OF SURGERY MICROARRAY OF TUMOR OR REMOVAL OF STATUS
SURFACE HEALTHY OVARIES
EPITHELIUM
317 59 CEPI serous adenocarcinoma lc 3 N/A postmenopausal
336 63 CEPI serous adenocarcinoma Ic 3 N/A postmenopausal
367 56 CEPI serous adenocarcinoma I 3 N/A postmenopausal
242 63 CEPI serous adenocarcinoma 1) 3 N/A postmenopausal
183 66 CEPI serous adenocarcinoma 1] 2 N/A postmenopausal
413 49 CEPI serous adenocarcinoma I 3 N/A postmenopausal
229 58 CEPI serous adenocarcinoma lllc 3 N/A postmenopausal
369 52 CEPI serous adenocarcinoma lllc 2 N/A postmenopausal
528 66 CEPI serous adenocarcinoma lllc 3 N/A postmenopausal
588 71 CEPI serous adenocarcinoma lllc 2/3 N/A postmenopausal
489 48 CEPI serous adenocarcinoma Ile-IV 3 N/A perimenopausal
542 6l CEPI serous adenocarcinoma v 3 N/A postmenopausal
434 41 OSE WNL N/A N/A  atypical complex hyperplasia perimenopausal
in polypoid endometrium
437 54 OSE WNL N/A N/A cervical adenocarcinoma  postmenopausal
440 50 OSE WNL N/A N/A uterine myoma perimenopausal
448 63 OSE WNL N/A N/A uterine myoma postmenopausal
452 51 OSE WNL N/A N/A endometrial perimenopausal
adenocarcinoma
463 48 OSE WNL N/A N/A endometrial perimenopausal
adenocarcinoma
470 44 OSE WNL N/A N/A endometrial premenopausal
adenocarcinoma
475 63 OSE WNL N/A N/A benign simple cyst in right postmenopausal
ovary; left ovary brushing
used for microarray
541 41 OSE WNL N/A N/A adenomyosis uteri and perimenopausal
endometriosis
552 41 OSE WNL N/A N/A prophylactic TAH-BSO, premenopausal
previous breast and vulval
cancer and family history
563 66 OSE WNL N/A N/A endometrial postmenopausal
adenocarcinoma
567 77 OSE WNL N/A N/A endocervical postmenopausal

adenocarcinoma

Abbreviations: CEPI - cancer epithelia; OSE - ovarian surface epithelia; WNL - within normal limits; LMP - last menstrual period; HYST -

hysterectomy;

TAH-BSO - total abdominal hysterectomy with bilateral salpingo-oopherectomy

(Affymetrix), to produce biotin-labeled mRNA suitable
for hybridizing to GeneChip Probe Arrays (Affymetrix
U133 Plus 2.0).

Microarray Analysis

Affymetrix.CEL files were processed using the Affymetrix
Expression Console (EC) Software Version 5.0. Files were
processed using the default MAS5 3' expression workflow.
All reported microarray data are described in accordance
with MIAME guidelines. The processed and raw data files
for the 24 samples used in this study have been deposited
in the Gene Expression Omnibus (GEO) http://
www.ncbi.nlm.nih.gov/projects/geo/ under the series
number GSE14407. Probe sets that were called absent by
default MAS5 criteria in all 24 samples were removed

before further processing. Probe set results were further
evaluated using Spotfire DecisionSite software Probes
were considered differentially expressed if they had a fold
change value of > 3 and a p-value < .005 (Student's t-test).
This resulted in 2915 probe sets differentially expressed
between the twelve OSE and twelve CEPI samples. These
probe sets were filtered for redundant gene titles
(HGU133AV2_V25_affy_annotation file, 3/17/2008) to
yield 2320 unique genes being represented by the probe
sets. Groups of .CEL files from previous studies were proc-
essed in a similar fashion to identify differentially
expressed genes. U133 Plus 2.0 probesets were converted
to all possible U95 Set probesets using the ID converter
application of Babelomics [21] for comparison with the
Marquez et al. data [22]. The twelve .CEL files used from
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the expO study downloaded from GEO were
GSM152646.CEL, GSM152724.CEL, GSM102557.CEL,
GSM203795.CEL, GSM203744.CEL, GSM117696.CEL,
GSM203709.CEL, GSM152581.CEL, GSM179822.CEL,
GSM179890.CEL, GSM152659.CEL, and
GSM152654.CEL. The significance of the overlap between
experiments from different groups was calculated by the
hypergeometric distribution statistic calculated in R lan-
guage, an integrated environment for statistical comput-
ing and graphics http://www.r-project.org/.

Immunohistochemistry

Archival formalin fixed, paraffin embedded tissues from
ovarian adenocarcinoma of serous subtype and non-neo-
plastic ovarian tissues were obtained from the files of
Emory University Hospital and Crawford Long Hospital,
Atlanta, GA. Emory University's Institutional Review
Board (IRB) approved the immunohistochemistry screen
of these tissues. The sections (5 microns) were deparaffin-
ized and rehydrated. Antigen retrieval was in citrate buffer
(pH 6) using an electric pressure cooker for 5 min at
120°C with cooling for 10 min before immunostaining.
All tissues were exposed to 3% hydrogen peroxide for 5
min, primary antibodies for 30 min, DAKO ENVISION
system (DAKO Corp) HRP labeled polymer conjugated
with secondary antibody for 30 min, diaminobenzidine
as chromogen for 5 min and DAKO automated (DAKO
AUTOSTAINER) hematoxylin and counterstain for 15
min. Primary antibodies used in this study were anti-
ALDH1A2 (Dr Peter McCaffery, University of Aberdeen,
UK.), LHX9 (Abcam), and SFRP1 (GenWay). All incuba-
tions were performed at room temperature. Between incu-
bations, sections were washed with tris-buffered saline
(TBS) buffer. Cover slipping was performed using the Tis-
sue-Tek SCA (Sakura Finetek USA, Inc.) automatic cover
slipper. Slides were scored by a board certified pathologist
(S.L.). Slides were photographed with an Olympus C5050
digital camera attached to the optical port of an Olympus
BX60 compound microscope.

Results

Over two thousand genes are differentially expressed
between OSE and CEPI

We generated 24 individual gene expression profiles
(Affymetrix Human Genome U133 Plus 2.0 Arrays) from
12 OSE brushings and 12 CEPI samples isolated by laser
capture microdissection. Relevant histopathologies of the
24 samples are listed in Table 1. A supervised (>3-fold
change, t-test p < .005) differential expression analysis
between the OSE and CEPI samples, yielded 2915 differ-
entially expressed probe sets (see Additional file 1). After
manually removing probe sets corresponding to the same
Affymetrix gene title, 2320 differentially expressed genes
remained (see Additional file 2). Of these, 1210 genes are
highly expressed in CEPI relative to OSE and 1110 are

http://www.biomedcentral.com/1755-8794/2/71

highly expressed in OSE relative to CEPI. A hierarchical
clustering of the data resulted in a distinct separation
between the OSE and CEPI samples (Figure 1).

Comparison of gene expression profiles with prior studies
To assess the correspondence between our data and other
independently gathered ovarian cancer microarray data
sets, we compared differentially expressed probes (DEPs)
for significant overlaps using the Bonferonni corrected
hypergeometric distribution probability. We first com-
pared our DEPs to those generated after performing an
identical differential expression analysis (>3-fold change,
t-test p < .005) on five normal ovarian surface epithelial
brushings and eleven flash frozen bulk tissue serous ovar-
ian cancers that were previously characterized with the
Affymetrix Human Genome U95 Set of 3' Expression
Arrays [22]. Our analysis of these data resulted in 1000
DEPs. In order to relate our data to that of this earlier
study, all of our DEPs from the U133 Plus 2.0 Arrays were
converted to all possible corresponding probe sets from
the U95 Set, resulting in 3920 probe sets for comparison.
When compared to each other, we detected a statistically
significant overlap (392 probe sets, Bonferonni corrected
p = 1.09E-94).

We also compared our DEPs to findings from a differen-
tial expression analysis of our OSE to twelve serous papil-
lary ovarian cancer bulk tissue microarrays produced
independently by the International Genomics Consor-

tium http://www.intgen.org/ Expression Project For

Oncology (exp O, http://expo.intgen.org/geo/home.do)
using the Affymetrix Human Genome U133 Plus 2.0

Arrays. Comparison of our OSE versus the exp O bulk tis-
sue data resulted in 9942 DEPs. When compared to our
2915 DEPs, a statistically significant overlap (1498 DEPs,
Bonferonni corrected p = 1.19E-252) again was detected.

The DEPs from each of these analyses are presented in
Additional file 3. These DEP comparisons provide evi-
dence for significant concordance between our data set
and those of previous studies. The differences that remain
may be attributable to contaminating stromal, immuno-
logical and/or vascular cells contained in bulk tumor sam-
ples used in the other studies.

Genes differentially expressed between OSE and CEPI are
involved in canonical cell cycle and signaling pathways

In order to provide a global view of the biological proc-
esses associated with genes differentially expressed
between OSE and CEPI, we searched for enrichment of
functional annotations within the Gene Ontology (GO)
database using the Genomica software package [23]. To
provide sample specific meaning to the differentially
expressed genes, we divided our results into two sets: 1)
genes that were on average significantly up-regulated
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M phase 1.04E-17
cell cycle phase 1.15E-16
mitosis 1.74E-16
mitotic cell cycle 3.59E-16
cell division 3.25E-14

C E P I Ge n eS cell cycle checkpoint 1.32E-13
spindle 4. 15E-12

(1 2 1 O) spindle organization and biogenesis 4.46E-11
regulation of mitosis 1.76E-10

regulation of cyclin-dependent protein kinase activity 1.93E-09

prostaglandin E receptor activity 1.17E-06

phospholipase inhibitor activity 1.25E-06

calcium-dependent phospholipid binding 3.78E-06

hemoglobin complex 7.02E-06

icosanoid receptor activity 9.21E-06

OS E Ge neS gas transport 2.56E-05
(1 1 1 O) perinuclear region 4.29E-05
protein kinase A binding 4.40E-05

phospholipid binding 7.39E-05

cytosol 9.57E-05

Figure |

Hierarchical clustering and gene ontology (GO) enrichment of 2320 genes differentially expressed between
ovarian surface epithelial cells and ovarian cancer epithelial tissue. The heat map (left) was generated by Z-score
normalization of log2 expression values from Affymetrix HGUI33 Plus 2.0 3. Displayed are the relative expression levels of
genes (rows) differentially expressed (red = relatively over-expressed; green = relatively under-expressed) in 12 ovarian sur-
face epithelial brushings and 12 laser capture microdissected malignant epithelia samples (columns). Unique, enriched GO
terms are listed for each set of differentially expressed genes and their statistical significance by false discovery rate (FDR) cor-
rected, hypergeometric distribution p-values. Genes overexpressed in CEPI are labeled as CEPI Genes overexpressed in OSE

are labeled OSE Genes.

(positive fold change values) in CEPI relative to OSE and,
2) genes that were on average significantly down-regu-
lated in CEPI (negative fold change values) relative to
OSE. The results indicate that 258 GO terms are unique or
significantly enriched (p < 0.05) for genes up-regulated in
CEPI (Figure 1 and Additional file 4). Of these, the most
significant category (p = 1.17E-06) was "M phase" (i.e.,
genes involved in mitosis and cytokinesis). Not surpris-
ingly, the top 19 GO terms for genes up-regulated in CEPI
were directly related to cell division. In contrast, genes up-
regulated in OSE were uniquely enriched for 202 GO
terms typically associated with non-dividing or quiescent
cells (Figure 1 and Additional file 4). Differences in the
expression pattern of signaling pathway ligands, recep-
tors, and downstream transcription factors were used to
establish the status of OSE and CEPI cells in key canonical
signaling pathways.

The cell cycle pathway

Figure 2 overlays differences in gene expression between
OSE and CEPI on the cell cycle pathway. Genes known to
be instrumental in maintaining cells in the GO/G1 phases
of the cell cycle are highly expressed in OSE. For example,
representatives of the transforming growth factor beta
(TGFB) signaling pathway, as well as, cyclin-dependent

kinase inhibitor 1B (CDKN1B) are highly expressed in
OSE. In contrast, genes known to be involved in the tran-
sition from G1 to the S phase of the cell cycle are highly
expressed in CEPI. Examples are the cyclins E1, E2, B2 and
A2 (CCNE1, CCNE2, CCNB2 and CCNA2), as well as,
members of the Origin Recognition (ORC6L) and Mini-
Chromosome Maintenance (MCM2, MCM4 and MCM5)
complexes. The results are consistent with the hypothesis
that OSE are arrested in the GO/G1 phase of the cell cycle
while CEPI are actively replicating.

With the aid of Pathway Express [24], we identified from
our DEPs specific upstream signaling pathways contribut-
ing to the inactive (OSE) and active (CEPI) states of the
cell cycle in ovarian cancer development. Figure 3 illus-
trates the differential expression status of components of
each signaling pathway interpreted from both an OSE and
CEPI frame of reference. Heatmaps depicting both the
log2 expression levels and Z-score normalization of these
individual genes are presented in Additional files 5 and 6.

The TGFB/BMP Pathway

The TGFB/BMP pathway is known to be an important
growth inhibitor of epithelial cells [25]. The results pre-
sented in Figure 2 show that the expression of genes medi-
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Figure 2

Cell cycle pathway gene expression. Shown is a GenMAPP http://www.genmapp.org rendering of a modified KEGG
(Kyoto Encyclopedia of Genes and Genomes, http://www.genome.jp/kegg/) schematic of cell cycle pathway genes. Genes signif-
icantly overexpressed in CEPI relative to OSE are colored red. The execution of the cell cycle is depicted from left to right and
individual phases identified below by |- beam brackets. Genes involved in maintaining G| are generally under-expressed in CEPI
while genes involved in GI to S progression, G2, and M are over-expressed.
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Figure 3

Pathway deregulation in ovarian cancer. Individual signaling pathways hypothesized to be deregulated in the oncogenic
transformation of ovarian surface epithelia (OSE) into ovarian cancer epithelia (CEPI). An individual OSE is represented on the
left with individual pathways (as discussed in the text) labeled adjacent to their respective section of each cell. An individual
CEPI with the same signaling pathways is represented on the right as a mirror image of the OSE cell. The legend describes the
colored boxes and lines used to represent expression differences and potential interactions among genes. The juxtapositional
placement of the two cell halves is meant to emphasize the dichotomous state of signaling between the OSE and CEPI as
revealed by our gene expression microarrays.
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ating TGFB/BMP induced growth inhibition in OSE is
significantly down-regulated in CEPI. For example,
expression of the transforming growth factor, beta 2
(TGFB2), the TGFB2 receptors II and III (TGFBR2,
TGFBR3), disabled homolog 2 mitogen-responsive phos-
phoprotein (Drosophila) (DAB2), bone morphogenic pro-
tein 2 (BMP2), as well as, the BMP receptors BMPR1A, and
BMPR2 are all significantly reduced in CEPI while SMADG
(mothers against decapentaplegic homolog 6 (Dro-
sophila)), an inhibitory SMAD [26], is highly expressed in
CEPI (Figure 3). Snail 2 (SNAI2) [27-29] is expressed at
high levels in OSE (Figure 3) consistent with the absence
of CDHI1 expression in OSE [4]. Extracellular modifiers of
TGFB/BMP signaling, decorin (DCN)[30], and chordin-
like 1 (CHRDL1) are also expressed at high levels in OSE
[31].

The WNT Pathway

The WNT (wingless-type MMTV integration site family
members) signaling pathway has been implicated in a
variety of normal and disrupted developmental processes
such as stem cell maintenance [32], embryonic patterning
and cancer [33,34]. The secreted ligands of the WNT fam-
ily are known to stimulate cellular proliferation through
interactions with their cognate frizzled receptors (FZDs)
but are also found to inhibit cellular proliferation in cell-
dependent contexts [35]. For example, the inhibitors of
differentiation, WNT2B and WNT5A [35,36], are
expressed at significantly higher levels in OSE (Figure 3).
In contrast, WNT7A, an inducer of cellular replication in
the female reproductive tract [37], is highly expressed in
CEPI. The WNT receptor FZD7 that has been shown to be
expressed in embryonic stem cells (ES) and to play a role
in self-renewal capacity of ES cells [38], is highly expressed
in OSE and significantly down-regulated in CEPI. The
high expression of known antagonists of WNT signaling
including WNT5A, DAB2, [39] secreted frizzled related
protein 1, (SFRP1) and secreted frizzled related protein 2
(SFRP2) in OSE indicates that major components of WNT
signaling are attenuated on the surface of the ovary. The
high expression of WNT7A and several FZD receptors in
CEPI alternatively suggests that various components of
WNT signaling are activated in CEPL

Among the most highly expressed genes in CEPI is Zic
family member 1(ZIC1), an activator of WNT signaling
[40]. ZIC encoding genes have been previously implicated
in cancer development [41] and ZIC1 is known to tran-
scriptionally trans-activate apolipoprotein E (APOE) [42]
- a gene previously implicated in the proliferation and sur-
vival of ovarian cancer cells [43]. Over-expression of ZIC1
in CEPI is significantly correlated with APOE expression
(Pearson's r = +0.65).

http://www.biomedcentral.com/1755-8794/2/71

The NOTCH Pathway

The complex interactions that exist between signaling
pathways are readily evident in our data. For example, the
WNT pathway is known to have recurrent and consistent
interactions with the NOTCH signaling pathway [44]. The
NOTCH signaling pathway plays an important role in
cell-to-cell communications that regulate multiple cell
differentiation processes during embryonic and adult life
[45]. NOTCH3 has been identified as being frequently
over-expressed in ovarian cancer cells and is thought to
form a juxtacrine signaling loop with the ligand jagged1
(JAG1) produced by mesothelial cells of the intraperito-
neal cavity [46,47]. NOTCH3 over-expression also has
been shown to play a major role in the proliferation of
ERBB2-negative breast cancer cells [48]. Our results dem-
onstrate that NOTCH3 is highly expressed in CEPI and
expressed at significantly lower levels in OSE.

The Hedgehog Pathway

Activation of the Hedgehog (Hh) signaling pathway has
previously been implicated in multiple cancers [33,34].
Consistent with activation of the Hh signaling pathway in
CEP]I, our results show that two known antagonists of Hh
signaling, hedgehog interacting protein (HHIP) and
growth arrest-specific 1 (GAS1) [49,50] are expressed at
low levels in CEPI. In addition, genes previously shown to
be inversely regulated following Hh pathway activation in
pluripotent mesenchymal cells (e.g., insulin-like growth
factor 2 (IGF2) is up-regulated while SFRP1 and SFRP2 are
down-regulated) [51], are likewise inversely regulated in
CEPIL

The Retinoid Pathway

Retinoids are vitamin A-derived morphogens that can
directly modulate WNT signaling during normal develop-
ment [52]. The gene with the largest fold decrease (-256x)
in CEPI is aldehyde dehydrogenase 1 family, member A2
(ALDH1A2). This gene encodes an enzyme responsible for
the conversion of retinaldehyde to retinoic acid - a known
marker of lineage specific stem cells [53]. The low levels of
ALDH1A2 in CEPI imply that a deficit of retinoic acid in
these cells may be contributing to ovarian cancer by atten-
uation of the WNT signaling pathway. Other genes known
to modulate the cellular activity of retinoic acid are also
differentially expressed between OSE and CEPI (e.g.,
cytosolic cellular retinoic acid binding proteins (CRABPs)
[54,55] and cytochrome P450s (CYP26A1) [56,57]). The
fact that genes involved in the synthesis/activation of
retinoic acid are not expressed in CEPI while genes
involved in the degradation and/or inhibition of retinoic
acid signaling are expressed in CEPI strongly implicates
alteration of the retinoid signaling pathway in ovarian
cancer development.
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Immunohistochemistry validation of differentially expressed genes
Figure 4 affirms the corresponding protein expression lev-
els for a number of the differentially expressed genes iden-
tified by microarray analysis. Immunohistochemistry was
performed on formalin fixed, paraffin-embedded (FFPE)
archived tissue samples selected to contain both ovarian
serous adenocarcinoma and adjacent OSE. Consistent
with the microarray profiles, we found that SFRP1 (Figure
4a), ALDH1A2 (Figure 4b), and LHX9 (Figure 4c and 4d)
are differentially expressed at the protein level between
OSE and CEPI. We are currently performing immunohis-
tochemistry for additional proteins in order to substanti-
ate the activity of the pathways discussed above.

Gene set enrichment analyses identify overlapping gene
expression signatures of specific cell functions in OSE and
CEPI

In order to provide a comparative gene expression per-
spective to the differentially expressed genes identified in
our study, we employed Gene Set Enrichment Analysis
(GSEA) to compare our results to a large collection of pre-
viously curated biological experiments (e.g., expression
microarray, predicted cis-regulatory motifs, etc.) [58]. The
Molecular Signatures Database (MSigDB) is the collection
of gene sets for use with GSEA software [58]. Statistically
significant overlaps between differentially expressed gene
sets derived from independent expression microarrays
provide evidence for shared biological functions between
the interrogated experiments. GSEA allows for the ranked
comparison of differentially expressed genes between
independent experiments. Genes from our dataset were
ranked by their average fold difference in expression
between OSE to CEPI. GSEA was then used to identify
gene sets from previously published studies that signifi-
cantly overlap with genes differentially expressed between
CEPI and OSE.

Similarities between OSE and cancer stem cells

The gene set with the highest GSEA normalized enrich-
ment score (NES, -2.58, p = 3.31 e23) to OSE was
BOQUEST_CD31PLUS_VS_CD31 MINUS_DN (see Addi-
tional file 7). This gene set was derived from previously
reported differences between the transcriptional signa-
tures of stem cell-like (CD31-) and differentiated (CD31+)
adipose tissue cells [59].

The cancer stem cell model posits that only a specific sub-
set of a cancer cell population is able to sustain tumor
growth [60]. Putative ovarian cancer stem cells (OCSC)
have recently been isolated from disaggregated ovarian
serous adenocarcinomas and from ascites fluid [61,62].
The origin of OCSCs has yet to be determined but they
were shown to be CD44+ (Indian blood group), and KIT*
(Zuckerman 4 feline sarcoma viral oncogene homolog)
[61,62]. While our results indicate that CD44 is highly

http://www.biomedcentral.com/1755-8794/2/71

expressed in OSE and expressed at significantly lower lev-
els in CEPI, KIT expression was found to be low in all of
our samples and thus not differentially expressed. How-
ever, the default Affymetrix MAS5 absent/present calls
detected the presence of KIT in 5 of our 12 OSE samples
but absent in all 12 CEPI samples suggesting that KIT is
expressed in OSE. In addition, we found that KIT ligand
(KITLG), is highly expressed in OSE and significantly
lower expressed in CEPI. These findings indicate that
OCSC and OSE express a number of overlapping genes
and support the notion that OSE could give rise to OCSC.

The capacity for self-renewal in multiple adult stem cell
lineages has been associated with expression of the LIM
homeobox genes [63,64]. Our results demonstrate that
LIM homeobox 1, 2, 6 and 9 (LHX1, LHX2, LHX6 and
LHX9) are differentially expressed between OSE and CEPI.
LHX2 and 9 are highly expressed in OSE and not
expressed in CEPI, whereas LHX1 and LHX6 are expressed
in CEPI and not in OSE.

Similarities between wound healing and CEPI

The gene set with the highest positive GSEA normalized
enrichment score (NES, 3.04, p = 5.9 e%4) to CEPI was
SERUM_ FIBROBLAST _CELLCYLE (see Additional file 8).
This set was derived from a previously reported overlap
between transcriptional signatures in common between
wound healing and poor cancer prognosis [65]. Many of
the genes from this set that are highly expressed in CEPI
promote entry into and progression through the cell cycle
(e.g., FOXM1, PTTG1, AURKA) and have been previously
associated with stage III epithelial ovarian cancers [66,67].

Discussion

We have found that over 2000 genes are significantly dif-
ferentially expressed between OSE and CEPI. Many of
these genes are known to be involved in the canonical cell
cycle pathway, as well as, signaling pathways previously
implicated in development (i.e., the TGFB/BMP, WNT,
NOTCH, Hedgehog and Retinoid pathways). The fact that
many of the genes highly expressed in OSE have previ-
ously been associated with the maintenance of stem cells
in a quiescent state is relevant to hypotheses on the cellu-
lar origin of ovarian cancer.

Under the dedifferentiation hypothesis of cancer develop-
ment, cancer cells are postulated to be less differentiated
than their progenitor cells but often resemble their tissue
of origin phenotypically [5]. The fact that CEPI appear
more rather than less differentiated than OSE and do not
phenotypically resemble OSE has been offered as evi-
dence that these cells are not the source of CEPI [7]. An
alternative hypothesis is that OSE are stem-cell like and
maintain a degree of pluripotency sufficient to allow them
to morphologically transform during the process of CEPI
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Figure 4

Immunohistochemistry of OSE gene products. Immu-
nohistochemistry was performed on fresh frozen paraffin
embedded OSE and CEPI tissue samples. Staining with pri-
mary antibodies against (A) secreted frizzled-related protein
I (SFRPI), (B) aldehyde dehydrogenase | family, member A2
(ALDH1A2), and (C and D) lim homeobox 9 (LXH9) indi-
cated strong protein expression in OSE (labeled arrow) and
lower or absent protein expression in CEPI (labeled arrow),
consistent with mRNA expression values shown in Addi-
tional file 5. Each image is a typical representative from |10
normal and 10 cancer slides. The slides chosen for display
contain both CEPI and normal adjacent OSE from the same
tissue sample.

development. Our results indicate that many, if not all, of
the OSE cells on the surface of the ovary are not terminally
differentiated but arrested in a quiescent state characteris-
tic of most adult stem cell populations [68]. While our
findings are consistent with the hypothesis that OSE may
retain properties of relatively uncommitted pluripotent
cells until undergoing neoplastic transformation, they do
not preclude the possibility that at least some tumors cur-
rently classified as ovarian may arise from related, yet ana-
tomically distinct sources such as cancer initiating cells
embedded within the fallopian tube [69]. Indeed, our
finding that the OSE molecular profile so closely resem-
bles that of previously identified somatic stem cells and
cancer stem cells suggests that all ovarian cancer initiating

http://www.biomedcentral.com/1755-8794/2/71

cells, regardless of their proposed tissue of origin, will
likely share many essential characteristics.

The processes by which stem cells self-renew and differen-
tiate are accomplished by a combination of cellular divi-
sion strategies known as symmetric and asymmetric
division [17,70]. Symmetric division gives rise to two
identical daughter stem cells. In contrast, asymmetric divi-
sion results in one stem cell and one progenitor cell with
limited self-renewal potential. Our results, showing that
LHX2 and LHX9 are expressed in OSE supports the notion
that asymmetric cellular division is occurring in OSE. Pro-
genitor cells can subsequently go through several rounds
of cell division before terminating into a mature differen-
tiated cell. Whether or not stem cells self-renew or differ-
entiate is regulated by the microenvironment. A
microenvironment that is conducive to stem cell self-
renewal is referred to as a stem cell niche [16,68]. Stem
cell progeny that remain in a stem cell niche typically dis-
play arrested cell growth/replication and are described as
being quiescent [68,71]. In contrast, stem cell progeny
that exit a stem cell niche typically enter a transient period
of accelerated cell division resulting in large numbers of
cells prior to terminal differentiation.

The above description of stem cells and the niches that
control their division is relevant to OSE because during
the period between ovulations, OSE are quiescent. While
arrested cell growth and division are associated with ter-
minal differentiation, at least some OSE must not termi-
nally differentiate because they reactivate their cell cycle
and proliferate in response to ovulation. Evidence recently
has been presented showing that cells on the surface of the
macaque ovary transition from quiescent to a replicating
phenotype in response to ovulation [72]. Similar phe-
nomena have been previously observed in mice [73-75]
and generally support the notion that ovulation tempo-
rarily disrupts the ovarian surface niche resulting in con-
trolled proliferation.

Our results are consistent with the hypothesis that the sur-
face of the ovary is an interovulatory or facultative stem cell
niche and this suggests that all or many of the resting cells
on the surface of the ovary are not terminally differenti-
ated but arrested in a quiescent state characteristic of adult
stem cell populations [68,71]. We find that a variety of
signaling molecules (including TGFB/BMP and TGFBR
family members, antagonists of the WNT and hedgehog
signaling pathways, as well as members of the retinoid sig-
naling pathway) is expressed at high levels in OSE. The
fact that these molecules previously have been shown to
be integral for the maintenance of stem cell niches in
other organ systems [31,35,71,76,77] indicates that they
are likely performing a similar function on the surface of
the ovary between ovulations. Also consistent with the
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hypothesis that the surface of the ovary is a type of facul-
tative stem cell niche is our finding that transcription fac-
tors previously implicated in self-renewal and asymmetric
division are expressed in OSE [64,78]. In contrast, genes
expressed in CEPI have been associated with the entry and
progression of cells through the cell cycle [79-84]. Of par-
ticular note, is the high expression of the Cyclin E family
genes (CCNE) in CEPI. It has recently been shown that the
constitutive expression of CCNE in mouse embryonic
stem cells results in an almost nonexistent GO/G1 phase
of the cell cycle [68]. The lack of an extended GO/G1
results in less time for cells to respond to mitogens that
stimulate cellular differentiation. Thus, the elevated
expression of CCNE in CEPI may contribute to cancer
growth in a similar fashion.

The complex molecular processes underlying the onset
and development of epithelial ovarian cancer is only
beginning to be unraveled. Our results indicate that a
number of key developmental pathways are involved in
the establishment and development of ovarian cancer.
While many of these pathways have previously been
either directly or indirectly implicated in ovarian cancer,
detailed network analyses of our gene expression data led
to the identification of linkages between these pathways
attributable to the altered expression of key regulatory
genes. We believe that the type of detailed network analy-
ses of gene expression data presented in this paper when
combined with next generation sequencing for mutation
analyses of individual ovarian adenocarcinoma genomes
will help expand our understanding of the origins of ovar-
ian cancer and facilitate the development of more effec-
tive therapies.

Conclusion

Accumulating evidence suggests that somatic stem cells
undergo mutagenic transformation into cancer initiating
cells. Our results indicate that OSE express many genes
involved in somatic stem cell maintenance. These findings
are consistent with the hypothesis that human OSE retain
properties of relatively uncommitted multipotent progen-
itor cells until undergoing neoplastic transformation. The
multipotent nature of OSE may contribute to the complex
histological subtypes of epithelial ovarian cancer (e.g.,
serous, endometrioid, clear cell, mucinous and others).
While our findings do not rule out the possibility that
ovarian cancers may also arise from other sources, they are
inconsistent with claims that ovarian surface epithelia can-
not serve as the origin of ovarian cancer initiating cells.

Competing interests
The authors declare that they have no competing interests.

http://www.biomedcentral.com/1755-8794/2/71

Authors' contributions

LW and LM carried out the microarray experiments. SL
performed and interpreted the immunohistochemistry.
BB and KT aided in the coordination of the study and the
collection of samples for study. NB participated in the
design of the study, the analysis and interpretation of the
microarray data and drafted the manuscript. JM conceived
of the study, participated in its design and coordination
and drafted the manuscript. All authors read and
approved the final manuscript.

Additional material

Additional file 1

supplemental_table_1_2915.xls. differentially expressed Affymetrix
probe sets.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1755-
8794-2-71-S1.TIFF]

Additional file 2

supplemental_table_2_2320.xls. differentially expressed genes.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1755-
8794-2-71-S2 XLS]

Additional file 3
supplemental_table_3_oci_expo_mda_intersections.xls. OCI, EXPO,
and MD Anderson data intersection probe set lists.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1755-
8794-2-71-S3 . XLS]

Additional file 4
supplemental_table_4_go_p_05_genomica.xls. Gene Ontology List.
Click here for file
|http://www.biomedcentral.com/content/supplementary/1755-
8794-2-71-S4 XLS]

Additional file 5

supplemental_figure_1.tif. heat map of genes in figure 3.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1755-
8794-2-71-S5.XLS]

Additional file 6

supplemental_figure_1_legend.doc. supplemental_figure_1_legend.
Click here for file
|http://www.biomedcentral.com/content/supplementary/1755-
8794-2-71-S6.XLS]

Additional file 7

supplemetal_table_5_63_overlap_genes.xls. 63 Gene Overlap between
OSE gene set and BOQUEST_CD31PLUS_VS_CD31 MINUS_DN
gene set from MSigDB.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1755-
8794-2-71-S7 XLS]

Page 11 of 14

(page number not for citation purposes)


http://www.biomedcentral.com/content/supplementary/1755-8794-2-71-S1.TIFF
http://www.biomedcentral.com/content/supplementary/1755-8794-2-71-S2.XLS
http://www.biomedcentral.com/content/supplementary/1755-8794-2-71-S3.XLS
http://www.biomedcentral.com/content/supplementary/1755-8794-2-71-S4.XLS
http://www.biomedcentral.com/content/supplementary/1755-8794-2-71-S5.XLS
http://www.biomedcentral.com/content/supplementary/1755-8794-2-71-S6.XLS
http://www.biomedcentral.com/content/supplementary/1755-8794-2-71-S7.XLS

BMC Medical Genomics 2009, 2:71

Additional file 8

supplemetal_table_6_65_overlap_genes.xls. 65 Gene Overlap between
CEPI gene set and SERUM_FIBROBLAST_CELLCYCLE gene set from
MSigDB.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1755-
8794-2-71-S8.DOC]

Acknowledgements

We thank Dr. Peter McCaffery (Institute of Medical Sciences, University of
Aberdeen, UK) for ALDHIA2 antibodies, Dr. Erin B. Dickerson (OCI) for
assistance in antibody selections and the reviewers of our manuscript for
their beneficial suggestions. This work was supported by The Ovarian Can-
cer Institute, The Georgia Cancer Coalition, The Golfers Against Cancer
Foundation, The Ovarian Cycle Foundation, The Robinson Family Founda-
tion and The Deborah Nash Willingham Endowment Fund. The supporting
parties had no role in study design, data collection and analysis, decision to
publish, or preparation of the manuscript.

References

I
2.
3.

A Snapshot of Ovarian Cancer
ease/Ovarian-Snapshot.pdf]
Cancer Facts and Figures 2009 [http://www.cancer.org/down-
loads/STT/500809web.pdf]

Scully RE, Clement PB, Young RH: Ovarian Surface Epithelial-
Stromal Tumors. In STERNBERG'S Diagnostic Surgical Pathology
Edited by: Mills SE. Philadelphia, PA: Lippincott Williams & Wilkins;
2004:2543-2578.

Auersperg N, Wong AS, Choi KC, Kang SK, Leung PC: Ovarian sur-
face epithelium: biology, endocrinology, and pathology.
Endocr Rev 2001, 22:255-288.

Sell S: Cellular origin of cancer: dedifferentiation or stem cell
maturation arrest? Environ Health Perspect 1993, 5:15-26.

Piek JM, Verheijen RH, Kenemans P, Massuger LF, Bulten H, van Diest
P): BRCAI/2-related ovarian cancers are of tubal origin: a
hypothesis. Gynecol Oncol 2003, 90:491.

Dubeau L: The cell of origin of ovarian epithelial tumors and
the ovarian surface epithelium dogma: does the emperor
have no clothes? Gynecol Oncol 1999, 72:437-442.

Medeiros F, Muto MG, Lee Y, Elvin JA, Callahan M), Feltmate C, Gar-
ber JE, Cramer DW, Crum CP: The tubal fimbria is a preferred
site for early adenocarcinoma in women with familial ovar-
ian cancer syndrome. Am | Surg Pathol 2006, 30:230-236.

Lee Y, Miron A, Drapkin R, Nucci MR, Medeiros F, Saleemuddin A,
Garber J, Birch C, Mou H, Gordon RW, et al.: A candidate precur-
sor to serous carcinoma that originates in the distal fallopian
tube. | Pathol 2007, 211:26-35.

Finch A, Shaw P, Rosen B, Murphy ], Narod SA, Colgan TJ: Clinical
and pathologic findings of prophylactic salpingo-oophorecto-
mies in 159 BRCAI and BRCAZ2 carriers. Gynecol Oncol 2006,
100:58-64.

Bell DA, Scully RE: Early de novo ovarian carcinoma. A study of
fourteen cases. Cancer 1994, 73:1859-1864.

Szotek PP, Chang HL, Brennand K, Fujino A, Pieretti-Vanmarcke R, Lo
Celso C, Dombkowski D, Preffer F, Cohen KS, Teixeira J, Donahoe
PK: Normal ovarian surface epithelial label-retaining cells
exhibit stem/progenitor cell characteristics. Proc Natl Acad Sci
USA 2008, 105:12469-12473.

Cheng W, Liu J, Yoshida H, Rosen D, Naora H: Lineage infidelity
of epithelial ovarian cancers is controlled by HOX genes that
specify regional identity in the reproductive tract. Nat Med
2005, 11:531-537.

Reya T, Morrison §J, Clarke MF, Weissman IL: Stem cells, cancer,
and cancer stem cells. Nature 2001, 414:105-111.

Sell S: History of Cancer Stem Cells. In Regulatory Networks in
Stem Cells. [Turksen K (Series Editor); Stem Cell Biology and Regenerative
Medicine] Edited by: Rajasekhar V, Mohan C. New York, NY: Humana
Press; 2009.

[http://planning.cancer.gov/dis-

21.

22.

23.
24.

25.

26.

27.

28.

29.

30.

31

32.
33.
34.
35.

36.

37.

38.

http://www.biomedcentral.com/1755-8794/2/71

Morrison §), Spradling AC: Stem cells and niches: mechanisms
that promote stem cell maintenance throughout life. Cell
2008, 132:598-611.

Morrison §J, Kimble J: Asymmetric and symmetric stem-cell
divisions in development and cancer. Nature 2006,
441:1068-1074.

Rossi D), Jamieson CH, Weissman IL: Stems cells and the path-
ways to aging and cancer. Cell 2008, 132:681-696.

Fathalla MF: Incessant ovulation--a factor in ovarian neoplasia?
Lancet 1971, 2:163.

Murdoch WJ, Martinchick JF: Oxidative damage to DNA of ovar-
ian surface epithelial cells affected by ovulation: carcinogenic
implication and chemoprevention. Exp Biol Med (Maywood)
2004, 229:546-552.

Al-Shahrour F, Carbonell |, Minguez P, Goetz S, Conesa A, Tarraga },
Medina |, Alloza E, Montaner D, Dopazo J: Babelomics: advanced
functional profiling of transcriptomics, proteomics and
genomics experiments. Nucleic Acids Res 2008, 36:VW341-346.
Marquez RT, Baggerly KA, Patterson AP, Liu J, Broaddus R, Frumovitz
M, Atkinson EN, Smith DI, Hartmann L, Fishman D, et al.: Patterns
of gene expression in different histotypes of epithelial ovar-
ian cancer correlate with those in normal fallopian tube,
endometrium, and colon. Clin Cancer Res 2005, 11:6116-6126.
Segal Lab: Genomica. [http://genomica.weizmann.ac.il/].

Draghici S, Khatri P, Bhavsar P, Shah A, Krawetz SA, Tainsky MA:
Onto-Tools, the toolkit of the modern biologist: Onto-
Express, Onto-Compare, Onto-Design and Onto-Translate.
Nucleic Acids Res 2003, 31:3775-3781.

Brown KA, Pietenpol JA, Moses HL: A tale of two proteins: differ-
ential roles and regulation of Smad2 and Smad3 in TGF-beta
signaling. | Cell Biochem 2007, 101:9-33.

Imamura T, Takase M, Nishihara A, Oeda E, Hanai J, Kawabata M,
Miyazono K: Smadé inhibits signalling by the TGF-beta super-
family. Nature 1997, 389:622-626.

Choi J, Park SY, Joo CK: Transforming growth factor-betal
represses E-cadherin production via slug expression in lens
epithelial cells. Invest Ophthalmol Vis Sci 2007, 48:2708-2718.
Dhasarathy A, Kajita M, Wade PA: The transcription factor snail
mediates epithelial to mesenchymal transitions by repres-
sion of estrogen receptor-alpha. Mol Endocrinol 2007,
21:2907-2918.

Herfs M, Hubert P, Kholod N, Caberg JH, Gilles C, Berx G, Savagner
P, Boniver |, Delvenne P: Transforming growth factor-betal-
mediated Slug and Snail transcription factor up-regulation
reduces the density of Langerhans cells in epithelial metapla-
sia by affecting E-cadherin expression. Am | Pathol 2008,
172:1391-1402.

Stander M, Naumann U, Wick W, Weller M: Transforming growth
factor-beta and p-21: multiple molecular targets of decorin-
mediated suppression of neoplastic growth. Cell Tissue Res
1999, 296:221-227.

Kosinski C, Li VS, Chan AS, Zhang J, Ho C, Tsui WY, Chan TL, Mifflin
RC, Powell DW, Yuen ST, et al: Gene expression patterns of
human colon tops and basal crypts and BMP antagonists as
intestinal stem cell niche factors. Proc Natl Acad Sci USA 2007,
104:15418-15423.

Nusse R: Wnt signaling and stem cell control. Cell Res 2008,
18:523-527.

Taipale J, Beachy PA: The Hedgehog and Whnt signalling path-
ways in cancer. Nature 2001, 41 1:349-354.

Beachy PA, Karhadkar SS, Berman DM: Tissue repair and stem
cell renewal in carcinogenesis. Nature 2004, 432:324-331.
Nemeth MJ, Topol L, Anderson SM, Yang Y, Bodine DM: Wnt5a
inhibits canonical Wnt signaling in hematopoietic stem cells
and enhances repopulation. Proc Natl Acad Sci USA 2007,
104:15436-15441.

Kubo F, Takeichi M, Nakagawa S: Wnt2b inhibits differentiation
of retinal progenitor cells in the absence of Notch activity by
downregulating the expression of proneural genes. Develop-
ment 2005, 132:2759-2770.

Carta L, Sassoon D: Wnt7a is a suppressor of cell death in the
female reproductive tract and is required for postnatal and
estrogen-mediated growth. Biol Reprod 2004, 71:444-454.
Melchior K, Weiss ], Zaehres H, Kim YM, Lutzko C, Roosta N,
Hescheler ], Muschen M: The WNT receptor FZD7 contributes

Page 12 of 14

(page number not for citation purposes)


http://www.biomedcentral.com/content/supplementary/1755-8794-2-71-S8.DOC
http://planning.cancer.gov/disease/Ovarian-Snapshot.pdf
http://planning.cancer.gov/disease/Ovarian-Snapshot.pdf
http://www.cancer.org/downloads/STT/500809web.pdf
http://www.cancer.org/downloads/STT/500809web.pdf
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11294827
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11294827
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12893227
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12893227
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10053122
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10053122
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10053122
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16434898
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16434898
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16434898
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17117391
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17117391
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17117391
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16137750
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16137750
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16137750
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8137211
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8137211
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18711140
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18711140
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15821746
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15821746
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15821746
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11689955
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11689955
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18295578
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18295578
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16810241
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16810241
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18295583
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18295583
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=4104488
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15169974
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15169974
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15169974
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18515841
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18515841
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18515841
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16144910
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16144910
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16144910
http://genomica.weizmann.ac.il/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12824416
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12824416
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17340614
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17340614
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17340614
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9335505
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9335505
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17525203
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17525203
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17525203
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17761946
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17761946
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17761946
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18385519
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18385519
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18385519
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10382266
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10382266
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10382266
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17881565
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17881565
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17881565
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18392048
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11357142
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11357142
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15549094
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15549094
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17881570
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17881570
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17881570
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15901663
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15901663
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15901663
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15070830
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15070830
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15070830
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18681827

BMC Medical Genomics 2009, 2:71

39.

40.
41.

42.

43.

44,

45.
46.

47.

48.

49.

50.

51

52.

53.

54.

55.

56.

57.

58.

59.

to self-renewal signaling of human embryonic stem cells. Biol
Chem 2008, 389:897-903.

Jiang Y, Prunier C, Howe PH: The inhibitory effects of Disabled-
2 (Dab2) on Whnt signaling are mediated through Axin. Onco-
gene 2008, 27:1865-1875.

Merzdorf CS, Sive HL: The zicl gene is an activator of Wnt sig-
naling. Int | Dev Biol 2006, 50:611-617.

Wong YF, Cheung TH, Lo KW, Yim SF, Siu NS, Chan SC, Ho TW,
Wong KW, Yu MY, Wang VW, et al.: Identification of molecular
markers and signaling pathway in endometrial cancer in
Hong Kong Chinese women by genome-wide gene expres-
sion profiling. Oncogene 2007, 26:1971-1982.

Salero E, Perez-Sen R, Aruga ], Gimenez C, Zafra F: Transcription
factors Zicl and Zic2 bind and transactivate the apolipopro-
tein E gene promoter. | Biol Chem 2001, 276:1881-1888.

Chen YC, Pohl G, Wang TL, Morin PJ, Risberg B, Kristensen GB, Yu
A, Davidson B, Shih le M: Apolipoprotein E is required for cell
proliferation and survival in ovarian cancer. Cancer Res 2005,
65:331-337.

Hayward P, Kalmar T, Arias AM: Wnt/Notch signalling and infor-
mation processing during development. Development 2008,
135:411-424.

Lai EC: Notch signaling: control of cell communication and
cell fate. Development 2004, 131:965-973.

Choi J, Park JT, Davidson B, Morin PJ, Shih IM, Wang TL: Jagged-1
and Notch3 Juxtacrine Loop Regulates Ovarian Tumor
Growth and Adhesion. Cancer Res 2008, 68:5717-5723.

Park JT, Li M, Nakayama K, Mao TL, Davidson B, Zhang Z, Kurman
R}, Eberhart CG, Shih IM, Wang TL: Notch3 gene amplification
in ovarian cancer. Cancer Res 2006, 66:6312-6318.

Yamaguchi N, Oyama T, Ito E, Satoh H, Azuma S, Hayashi M, Shimizu
K, Honma R, Yanagisawa Y, Nishikawa A, et al.: NOTCH3 signaling
pathway plays crucial roles in the proliferation of ErbB2-neg-
ative human breast cancer cells. Cancer Res 2008, 68:1881-1888.
Taniguchi H, Yamamoto H, Akutsu N, Nosho K, Adachi Y, Imai K, Shi-
nomura Y: Transcriptional silencing of hedgehog-interacting
protein by CpG hypermethylation and chromatic structure
in human gastrointestinal cancer. | Pathol 2007, 213:131-139.
Lee CS, Buttitta L, Fan CM: Evidence that the WNT-inducible
growth arrest-specific gene | encodes an antagonist of sonic
hedgehog signaling in the somite. Proc Natl Acad Sci USA 2001,
98:11347-11352.

Ingram W], Wicking CA, Grimmond SM, Forrest AR, Wainwright BJ:
Novel genes regulated by Sonic Hedgehog in pluripotent
mesenchymal cells. Oncogene 2002, 21:8196-8205.

Easwaran V, Pishvaian M, Salimuddin , Byers S: Cross-regulation of
beta-catenin-LEF/TCF and retinoid signaling pathways. Curr
Biol 1999, 9:1415-1418.

Storms RW, Trujillo AP, Springer JB, Shah L, Colvin OM, Ludeman
SM, Smith C: Isolation of primitive human hematopoietic pro-
genitors on the basis of aldehyde dehydrogenase activity.
Proc Natl Acad Sci USA 1999, 96:9118-9123.

Gupta A, Williams BR, Hanash SM, Rawwas J: Cellular retinoic
acid-binding protein Il is a direct transcriptional target of
MycN in neuroblastoma. Cancer Res 2006, 66:8100-8108.

Schug TT, Berry DC, Toshkov IA, Cheng L, Nikitin AY, Noy N:
Overcoming retinoic acid-resistance of mammary carcino-
mas by diverting retinoic acid from PPARbeta/delta to RAR.
Proc Natl Acad Sci USA 2008, 105:7546-7551.

White JA, Guo YD, Baetz K, Beckett-Jones B, Bonasoro ], Hsu KE,
Dilworth FJ, Jones G, Petkovich M: Identification of the retinoic
acid-inducible all-trans-retinoic acid 4-hydroxylase. | Biol
Chem 1996, 271:29922-29927.

Abu-Abed S, Dolle P, Metzger D, Beckett B, Chambon P, Petkovich
M: The retinoic acid-metabolizing enzyme, CYP26AI, is
essential for normal hindbrain patterning, vertebral identity,
and development of posterior structures. Genes Dev 2001,
15:226-240.

Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gil-
lette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP:
Gene set enrichment analysis: a knowledge-based approach
for interpreting genome-wide expression profiles. Proc Natl
Acad Sci USA 2005, 102:15545-15550.

Boquest AC, Shahdadfar A, Fronsdal K, Sigurjonsson O, Tunheim SH,
Collas P, Brinchmann JE: Isolation and transcription profiling of
purified uncultured human stromal stem cells: alteration of

60.
6l.

62.

63.

64.
65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

8l.

http://www.biomedcentral.com/1755-8794/2/71

gene expression after in vitro cell culture. Mol Biol Cell 2005,
16:1131-1141.

Dalerba P, Cho RW, Clarke MF: Cancer stem cells: models and
concepts. Annu Rev Med 2007, 58:267-284.

Alvero AB, Chen R, Fu HH, Montagna M, Schwartz PE, Rutherford T,
Silasi DA, Steffensen KD, Waldstrom M, Visintin |, Mor G: Molecular
phenotyping of human ovarian cancer stem cells unravels
the mechanisms for repair and chemoresistance. Cell Cycle
2009, 8:158-166.

Zhang S, Balch C, Chan MW, Lai HC, Matei D, Schilder |M, Yan PS,
Huang TH, Nephew KP: Identification and characterization of
ovarian cancer-initiating cells from primary human tumors.
Cancer Res 2008, 68:4311-4320.

Dahl L, Richter K, Hagglund AC, Carlsson L: Lhx2 expression pro-
motes self-renewal of a distinct multipotential hematopoi-
etic progenitor cell in embryonic stem cell-derived
embryoid bodies. PLoS ONE 2008, 3:e2025.

Rhee H, Polak L, Fuchs E: Lhx2 maintains stem cell character in
hair follicles. Science 2006, 312:1946-1949.

Chang HY, Sneddon JB, Alizadeh AA, Sood R, West RB, Montgomery
K, Chi JT, Rijn M van de, Botstein D, Brown PO: Gene expression
signature of fibroblast serum response predicts human can-
cer progression: similarities between tumors and wounds.
PLoS Biol 2004, 2:E7.

Lassmann S, Shen Y, Jutting U, Wiehle P, Walch A, Gitsch G, Hasen-
burg A, Werner M: Predictive value of Aurora-A/STKI5
expression for late stage epithelial ovarian cancer patients
treated by adjuvant chemotherapy. Clin Cancer Res 2007,
13:4083-4091.

Puri R, Tousson A, Chen L, Kakar SS: Molecular cloning of pitui-
tary tumor transforming gene | from ovarian tumors and its
expression in tumors. Cancer Lett 2001, 163:131-139.

Orford KW, Scadden DT: Deconstructing stem cell self-
renewal: genetic insights into cell-cycle regulation. Nat Rev
Genet 2008, 9:115-128.

Dubeau L: The cell of origin of ovarian epithelial tumours. Lan-
cet Oncol 2008, 9:1191-1197.

Knoblich JA: Mechanisms of asymmetric stem cell division. Cell
2008, 132:583-597.

Kobielak K, Stokes N, de la Cruz |, Polak L, Fuchs E: Loss of a qui-
escent niche but not follicle stem cells in the absence of bone
morphogenetic protein signaling. Proc Natl Acad Sci USA 2007,
104:10063-10068.

Wright JW, Pejovic T, Fanton , Stouffer RL: Induction of prolifer-
ation in the primate ovarian surface epithelium in vivo. Hum
Reprod 2008, 23:129-138.

Stein K, Allen E: Attempts to stimulate proliferation of the ger-
minal epithelium of the ovary. Anat Rec 1942, 82:1-9.

Tan OL, Fleming JS: Proliferating cell nuclear antigen immuno-
reactivity in the ovarian surface epithelium of mice of vary-
ing ages and total lifetime ovulation number following
ovulation. Biol Reprod 2004, 71:1501-1507.

Gotfredson GS, Murdoch W]: Morphologic responses of the
mouse ovarian surface epithelium to ovulation and steroid
hormonal milieu. Exp Biol Med (Maywood) 2007, 232:277-280.
Chute JP, Muramoto GG, Whitesides ], Colvin M, Safi R, Chao NJ,
McDonnell DP: Inhibition of aldehyde dehydrogenase and
retinoid signaling induces the expansion of human hemat-
opoietic stem cells. Proc Natl Acad Sci USA 2006,
103:11707-11712.

He XC, Zhang ], Tong WG, Tawfik O, Ross ], Scoville DH, Tian Q,
Zeng X, He X, Wiedemann LM, et al.: BMP signaling inhibits intes-
tinal stem cell self-renewal through suppression of Wnt-
beta-catenin signaling. Nat Genet 2004, 36:1117-1121.

Friedman SL: Transcriptional regulation of stellate cell activa-
tion. | Gastroenterol Hepatol 2006, 3:579-83.

Bedrosian |, Lu KH, Verschraegen C, Keyomarsi K: Cyclin E dereg-
ulation alters the biologic properties of ovarian cancer cells.
Oncogene 2004, 23:2648-2657.

Courjal F, Louason G, Speiser P, Katsaros D, Zeillinger R, Theillet C:
Cyclin gene amplification and overexpression in breast and
ovarian cancers: evidence for the selection of cyclin DI in
breast and cyclin E in ovarian tumors. Int | Cancer 1996,
69:247-253.

Farley ], Smith LM, Darcy KM, Sobel E, O'Connor D, Henderson B,
Morrison LE, Birrer MJ: Cyclin E expression is a significant pre-

Page 13 of 14

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18681827
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17922036
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17922036
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16892174
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16892174
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17043662
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17043662
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17043662
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11038359
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11038359
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11038359
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15665311
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15665311
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18192283
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18192283
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14973298
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14973298
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16778208
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16778208
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18339869
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18339869
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18339869
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17724792
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17724792
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17724792
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11572986
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11572986
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11572986
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12444557
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12444557
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12444557
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10607566
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10607566
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10430905
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10430905
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16912187
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16912187
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16912187
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18495924
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18495924
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8939936
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8939936
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11157778
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11157778
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11157778
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16199517
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16199517
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16199517
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15635089
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15635089
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15635089
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17002552
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17002552
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19158483
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19158483
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19158483
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18519691
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18519691
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18431502
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18431502
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18431502
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16809539
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16809539
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14737219
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14737219
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17634533
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17634533
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17634533
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11163117
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11163117
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11163117
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18202695
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18202695
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19038766
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18295577
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17553962
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17553962
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17553962
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18000169
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18000169
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15229142
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15229142
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15229142
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17259335
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17259335
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17259335
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16857736
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16857736
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16857736
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15378062
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15378062
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15378062
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15007381
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15007381
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8797862
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8797862
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8797862
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12649182

BMC Medical Genomics 2009, 2:71

dictor of survival in advanced, suboptimally debulked ovar-
ian epithelial cancers: a Gynecologic Oncology Group study.
Cancer Res 2003, 63:1235-1241.

82. Rosen DG, Yang G, Deavers MT, Malpica A, Kavanagh JJ, Mills GB, Liu
J: Cyclin E expression is correlated with tumor progression
and predicts a poor prognosis in patients with ovarian carci-
noma. Cancer 2006, 106:1925-1932.

83. Schildkraut JM, Moorman PG, Bland AE, Halabi S, Calingaert B,
Whitaker R, Lee PS, Elkins-Williams T, Bentley RC, Marks JR, Ber-
chuck A: Cyclin E overexpression in epithelial ovarian cancer
characterizes an etiologic subgroup. Cancer Epidemiol Biomark-
ers Prev 2008, 17:585-593.

84. Hallstrom TC, Mori S, Nevins JR: An E2FIl-dependent gene
expression program that determines the balance between
proliferation and cell death. Cancer Cell 2008, 13:11-22.

Pre-publication history
The pre-publication history for this paper can be accessed

here:

http://www.biomedcentral.com/1755-8794/2/71/prepub

http://www.biomedcentral.com/1755-8794/2/71

Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."
Sir Paul Nurse, Cancer Research UK
Your research papers will be:
« available free of charge to the entire biomedical community
« peer reviewed and publishedimmediately upon acceptance
« cited in PubMed and archived on PubMed Central
« yours — you keep the copyright

Submit your manuscript here:

O BioMedcentral
http://www.biomedcentral.com/info/publishing_adv.asp

Page 14 of 14

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12649182
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16568440
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16568440
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16568440
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18349276
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18349276
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18167336
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18167336
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18167336
http://www.biomedcentral.com/1755-8794/2/71/prepub
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Tissue Collection for Microarray
	RNA Extraction and Amplification
	Microarray Analysis
	Immunohistochemistry

	Results
	Over two thousand genes are differentially expressed between OSE and CEPI
	Comparison of gene expression profiles with prior studies
	Genes differentially expressed between OSE and CEPI are involved in canonical cell cycle and signaling pathways
	The cell cycle pathway
	The TGFB/BMP Pathway
	The WNT Pathway
	The NOTCH Pathway
	The Hedgehog Pathway
	The Retinoid Pathway
	Immunohistochemistry validation of differentially expressed genes

	Gene set enrichment analyses identify overlapping gene expression signatures of specific cell functions in OSE and CEPI
	Similarities between OSE and cancer stem cells
	Similarities between wound healing and CEPI


	Discussion
	Conclusion
	Competing interests
	Authors' contributions
	Additional material
	Acknowledgements
	References
	Pre-publication history

