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The Cox proportional hazards model is commonly used to estimate the asso-
ciation between time-to-event and covariates. Under the proportional hazards
assumption, covariate effects are assumed to be constant in the follow-up period
of study. When measurement error presents, common estimation methods that
adjust for an error-contaminated covariate in the Cox proportional hazards
model assume that the true function on the covariate is parametric and specified.
We consider a semiparametric partly linear Cox model that allows the hazard
to depend on an unspecified function of an error-contaminated covariate and
an error-free covariate with time-varying effect, which simultaneously relaxes
the assumption on the functional form of the error-contaminated covariate and
allows for nonconstant effect of the error-free covariate. We take a Bayesian
approach and approximate the unspecified function by a B-spline. Simulation
studies are conducted to assess the finite sample performance of the proposed
approach. The results demonstrate that our proposed method has favorable sta-
tistical performance. The proposed method is also illustrated by an application
to data from the AIDS Clinical Trials Group Protocol 175.
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1 INTRODUCTION

In survival data analysis, the Cox proportional hazards model is widely used to investigate the relationship between
covariates and censored survival time.1 In many biomedical applications, however, covariates are subject to measurement
error and not directly observable due to natural biological fluctuation and instrument error.2-5 Measurement errors of
biomarkers in clinical studies include both laboratory error and variations due to sampling, storage and within-subject
variability.6,7 When covariates are measured with error, characterizing the association between the survival time and the
true underlying covariates is crucial for drawing inference correctly. In practice, for regression analysis, it is common to
naively use the mismeasured covariates, which can lead to substantial bias to the estimates of the parameters of interest
and yield misleading conclusions.8

For the recent decades, people have been exploring alternative strategies to account for the measurement error for the
Cox proportional hazards model. Among those methods, approximation methods like regression calibration and SIMEX
are commonly used.9,10 Score methods are also popular, including parametric corrected score, nonparametric corrected
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score, conditional score, and refined corrected score.11-14 There are some other widely used methods, such as Bayesian
methods and seminonparametric (SNP) likelihood.3,15 But the true function on the error-contaminated covariate is usu-
ally specified in the model.12,16-18 It is common to specify a linear term for the error-contaminated covariate.12-14,19 Some
allow including a specified nonlinear function of the error contaminated covariates.20,21 However, using a specified func-
tion for the unobserved covariate can incur biased estimations when the function is misspecified. For example, when the
true relationship between the error-contaminated covariate and the log hazard is nonlinear, assuming a simple linear
relationship has an unclear effect on the model parameter estimates.

Under the condition of no measurement error presenting in the data, researchers have considered modeling the non-
linear covariate effect using the partly linear additive Cox model, which allows flexibility on modeling the covariate
effects.22-25 With measurement errors presenting, Bayesian approaches have been developed to deal with the measure-
ment error under this model.26,27 However, the linear covariate effect is assumed constant over time. But in practice, the
covariate effect may change over time and the constant effect assumption may not hold.28-30 A common example is that
the treatment effect on survival may fade over time. Statisticians have proposed using time-varying coefficients for such
cases.29,31,32 Nevertheless, to the best of our knowledge, no existing methods consider nonparametric error-contaminated
covariate and time-varying error free covariate effect simultaneously.

In this article, we develop a Bayesian approach for the partly linear Cox model that allows the hazard to depend on an
unspecified function of an error-prone covariate and a linear error-free covariate with time-varying effect. The unknown
function is approximated by a linear B-spline and the time-varying effect is approximated by a piecewise constant function.
Our contribution lies in two aspects. First, we simultaneously consider both nonparametric error-contaminated covariate
and time-varying error-free covariate effect, which is much more challenging than handling only one of these complexi-
ties. Second, we investigated knot selection using the deviance information criterion (DIC), while existing Bayesian spline
models for measurement-error problems usually fix the number of knots. For example, Bhadra and Carroll33 set the
number of knots at 25, and Cheng and Crainiceanu26 experimented with fixing it at 10 and 20.

The remainder of this article is organized as follows: in Section 2, we present the model. The likelihood function,
Bayesian algorithm for parameter estimation and model selection criteria are described in Section 3. In Section 4, we
present the simulation studies. In Section 5, we illustrate the proposed method on AIDS Clinical Trials Group (ACTG)
Protocol 175 data. Finally, in Section 6, we present conclusions and discussions.

2 JOINT MODELS

In this section, we introduce joint models for measurement error and time-to-event outcome.

2.1 Measurement error model

We define n to be the sample size and mi to be the number of repeated measures for subject i for i = 1, … ,n. For subject
i, let Xi be an error-prone covariate, Zi be a vector of error-free covariates, and Wil, l = 1, … ,mi, be the replicated mea-
surements of Xi. For simplicity of presentation, we consider the case where Zi is one-dimensional. We consider a classical
additive measurement error model,

Wil = Xi + 𝜖il, i = 1, … ,n, l = 1, … ,mi, (1)

and the errors 𝜖il are independently and identically distributed normal random variable with mean 0 and variance 𝜎2.

2.2 The survival model

Let T∗i and Ci denote the true event time and censoring time for subject i. The observed event time is defined as Ti =
min(T∗i ,Ci). The event indicator is defined as 𝛿i = I(T∗i ≤ Ci).

We consider a partly linear Cox model and assume the hazard function as follows:

h (t|Xi,Zi) = h0(t) exp (g(Xi) + 𝛽(t)Zi) , (2)
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where h0(t) is an unspecified baseline hazard, g(⋅) denotes an unknown function of Xi, and 𝛽(t) denotes the unspecified
time varying coefficient of Zi. For identifiability of the parameters, we set g(x0) = 0 for a fixed x0.

3 METHODS

In this section, we present the Bayesian algorithm for parameter estimation and inference. Combining the measurement
error and survival models, we derive the likelihood function for the joint models. We specify the prior distribution and
derive the conditional posterior distribution for each parameter. We present the method for selecting number of knots in
B-splines, baseline hazard, time-varying coefficient and how to place these knots accordingly.

3.1 Approximation

The baseline hazard h0(t) and the time varying coefficient 𝛽(t) are approximated by piecewise constant functions h∗0(t) =∑J
j=1I(t ∈ Ij)𝜆j and 𝛽∗(t) =

∑J
j=1I(t ∈ Ij)𝛽j, which are constants 𝜆j and 𝛽j, respectively, over time intervals Ij = (cj−1, cj],

j = 1, … , J, c0 = 0 < c1 < · · · < cJ < cJ+1 = ∞.
We use a degree one B-spline g∗(⋅) to approximate the unknown function g(⋅). The B-spline is defined on an interval

[𝜔0, 𝜔K]with𝜔0 = minil(Wil) and𝜔K = maxil(Wil) for i = 1, … ,n, and l = 1, … ,mi. And𝜔1, … , 𝜔K−1 are K − 1 internal
knots. Then we have g∗(x) =

∑K+1
k=1 Bk(x)𝜃k, where 𝜃1, … , 𝜃K+1 are coefficients of B-splines, B(x) = {B1(x), … ,BK+1(x)}

denotes the basis-functions of degree one B-spline, and

B1(x) =
𝜔1 − x
𝜔1 − 𝜔0

I(𝜔0 ≤ x < 𝜔1),

BK+1(x) =
x − 𝜔K−1

𝜔K − 𝜔K−1
I(𝜔K−1 ≤ x < 𝜔K),

and

Bk(x) =
x − 𝜔k−2

𝜔k−1 − 𝜔k−2
I(𝜔k−2 ≤ x < 𝜔k−1) +

𝜔k − x
𝜔k − 𝜔k−1

I(𝜔k−1 ≤ x < 𝜔k),

for k = 2, … ,K.33

Then the hazard function is approximated as

h (t|Xi,Zi) = h0(t) exp (g(Xi) + 𝛽(t)Zi)
≅ h∗0(t) exp (g∗(Xi) + 𝛽∗(t)Zi) .

3.2 Joint likelihood function

The joint likelihood can be written as

L = L1 ⋅ L2, (3)

where the likelihood for the measurement error submodel is written as

L1 ∝
n∏

i=1

mi∏

l=1

1
√

2𝜋𝜎2
exp

[

− 1
2𝜎2 (Wil − Xi)2

]

,

and the likelihood for the survival submodel is written as

L2 ∝
∏

{i∶𝛿i=1}
h(ti)

n∏

i=1
S(ti),
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where

∏

{i∶𝛿i=1}
h(ti) ≅

J∏

j=1
𝜆

dj

j

n∏

i=1
exp

{
𝛿i
[
g∗(Xi) + 𝛽∗(ti)Zi

]}
, (4)

and

n∏

i=1
S(ti) =

n∏

i=1
exp

[

−
∫

ti

0
h(t)dt

]

≅
n∏

i=1
exp

[

−
∫

ti

0
h∗0(t) exp (g∗(Xi) + 𝛽∗(t)Zi) dt

]

≅
n∏

i=1
exp

[

exp (g∗(Xi))

(

−
J∑

j=1
𝜆j exp(𝛽jZi)Δtij

)]

. (5)

Combining (4) and (5), we have

L2 ∝
J∏

j=1
𝜆

dj

j

n∏

i=1
exp

{
𝛿i
[
g∗(Xi) + 𝛽∗(ti)Zi

]}
⋅

n∏

i=1
exp

[

exp (g∗(Xi))

(

−
J∑

j=1
𝜆j exp(𝛽jZi)Δtij

)]

,

where for i = 1, … ,n and j = 1, … , J, Δtij = 0 when ti ≤ cj−1, Δtij = ti − cj−1 when ti ∈ (cj−1, cj], Δtij = cj − cj−1 when
ti > cj, and dj is the number of events in the jth interval.

3.3 Bayesian approaches for joint model with B-spline

The complete joint likelihood under Bayesian framework can be described by (3). The observed
data are D = {

(
Ti, 𝛿i,Wi1, … ,Wimi ,Zi

)
: i = 1, … ,n}, and the vector of parameters is Θ =

(
𝜎

2
, 𝜆1, … , 𝜆J , 𝛽1, … , 𝛽J , 𝜃1, … , 𝜃K+1,X1, … ,Xn

)T
.

In Bayesian analysis, random walk priors can be used with spline models as local smoothers to avoid overfitting and
enforce smoothness across the coefficients.26,34-36 In the model fitting, we used the first-order random walk priors (RW1)
for 𝛽∗(t) and g∗(Xi). Specifically, for 𝛽∗(t) =

∑J
j=1I(t ∈ Ij)𝛽j, the prior of (𝛽1, … , 𝛽J) is set as follows: 𝛽1 ∼ N

(
0, v2

1
)

and

𝛽j − 𝛽j−1 ∼ N
(

0, 𝜎2
𝛽

)

for j = 2, … , J. Similarly, for g∗(x) =
∑K+1

k=1 Bk(x)𝜃k, the prior of (𝜃1, … , 𝜃K+1) satisfies 𝜃1 ∼ N
(
0, v2

2
)

and 𝜃k − 𝜃k−1 ∼ N
(
0, 𝜎2

𝜃

)
for k = 2, … ,K + 1. Consequently, the prior density of (𝛽1, … , 𝛽J) is

1
√

2𝜋v2
1

exp

[

−
𝛽

2
1

2v2
1

]

⋅
J∏

j=2

1
√

2𝜋𝜎2
𝛽

exp

[

− 1
2𝜎2

𝛽

(
𝛽j − 𝛽j−1

)2
]

,

and the prior density of (𝜃1, … , 𝜃K+1) is

1
√

2𝜋v2
2

exp

[

−
𝜃

2
1

2v2
2

]

⋅
K+1∏

k=2

1
√

2𝜋𝜎2
𝜃

exp

[

− 1
2𝜎2

𝜃

(𝜃k − 𝜃k−1)2
]

.

To obtain conjugacy, we use the normal prior for the normal mean, the inverse-gamma priors for the normal variances
and gamma priors for the baseline hazard parameters.16,17,37 We chose the values of the hyperparameters following the
common practice in Bayesian analysis for vague and minimal informative priors, for example, a normal distribution with
zero mean and very large variance or a gamma or an inverse-gamma distribution with very small shape and rate.16,17,37-40

For the measurement error variance 𝜎2, we use an inverse gamma prior IG(e0, f0). For baseline hazard parameters 𝜆j
(j = 1, … , J), we use a gamma prior G(e1, f1). For the random walk prior variances 𝜎2

𝛽

and 𝜎2
𝜃

, we use inverse gamma priors
IG(e2, f2) and IG(e3, f3), respectively. For unobserved Xi (i = 1, … ,n), we use a normal prior N (𝜇0, 𝜎

2
0). The hyperprior for
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𝜇0 is chosen as a normal N (0, v2
0) and the hyperprior for 𝜎2

0 is chosen as an inverse gamma IG(e4, f4). We set the values of
the hyperparameters above as e0 = 0.001, f0 = 0.001, e1 = 0.001, f1 = 0.001, e2 = 0.001, f2 = 0.001, e3 = 0.001, f3 = 0.001,
e4 = 0.001, f4 = 0.001, v0 = 1000, v1 = 1000, v2 = 1000. We derive the conditional posterior distributions as follows, where
rest denotes the other parameters in the model.

1.

(
𝜎

2 |D, rest
)
∼ Inv-Gamma

(

e0 +
∑n

i=1mi

2
, f0 +

∑n
i=1
∑mi

l=1(Wil − Xi)2

2

)

. (6)

2.

(
𝜆j |D, rest

)
∼ Gamma

(

dj + e1,

( n∑

i=1
Δtij exp

(
g∗(Xi) + 𝛽jZi

)
)

+ f1

)

. (7)

3.

(𝛽j |D, rest) ∝ N
(
𝛽j | ⋅

)
L(𝛽j | ⋅), (8)

where N(𝛽1|⋅) ∝ N(𝛽1|0, v2
1)N(𝛽2 − 𝛽1|0, 𝜎2

𝛽

), N(𝛽J|⋅) ∝ N(𝛽J − 𝛽J−1|0, 𝜎2
𝛽

), N(𝛽j|⋅) ∝ N(𝛽j+1 − 𝛽j|0, 𝜎2
𝛽

)N(𝛽j − 𝛽j−1| 0, 𝜎2
𝛽

)
for j = 2, … , J − 1, and

L(𝛽j|⋅) ∝
∏

{i∶ti∈(cj−1,cj]}
exp

{
𝛿i
[
g∗(Xi) + 𝛽jZi

]}
⋅

n∏

i=1
exp

[

exp (g∗(Xi))

(

−
J∑

j=1
𝜆j exp(𝛽jZi)Δtij

)]

.

Since N
(
𝛽j |⋅

)
and L(𝛽j |⋅) are both log-concave, (𝛽j |D, rest) is also log-concave.

4.

(

𝜎

2
𝛽

|D, rest
)

∼ Inv-Gamma
⎛
⎜
⎜
⎝

e2 +
J − 1

2
, f2 +

∑J
j=2
(
𝛽j − 𝛽j−1

)2

2

⎞
⎟
⎟
⎠

. (9)

5.

(𝜃k|D, rest) ∝ N (𝜃k|⋅)L (𝜃k|⋅) , (10)

where N(𝜃1|⋅) ∝ N(𝜃1|0, v2
2)N(𝜃2 − 𝜃1|0, 𝜎2

𝜃

), N(𝜃K+1|⋅) ∝ N(𝜃K+1 − 𝜃K|0, 𝜎2
𝜃

), N(𝜃k|⋅) ∝ N(𝜃k+1 − 𝜃k|0, 𝜎2
𝜃

)N(𝜃k −
𝜃k−1|0, 𝜎2

𝜃

) for k = 2, … ,K, and

L (𝜃k|⋅) ∝
n∏

i=1
exp

{
𝛿i
[
g∗(Xi) + 𝛽∗(ti)Zi

]}
⋅

n∏

i=1
exp

[

exp (g∗(Xi))

(

−
J∑

j=1
𝜆j exp(𝛽jZi)Δtij

)]

∝
n∏

i=1
exp

{

𝛿i

[K+1∑

k=1
Bk (Xi) 𝜃k + 𝛽∗(ti)Zi

]}

⋅
n∏

i=1
exp

[

exp

(K+1∑

k=1
Bk (Xi) 𝜃k

)(

−
J∑

j=1
𝜆j exp(𝛽jZi)Δtij

)]

.

Since N (𝜃k|⋅) and L (𝜃k|⋅) are both log-concave, (𝜃k|D, rest) is also log-concave.
6.

(
𝜎

2
𝜃

|D, rest
)
∼ Inv-Gamma

(

e3 +
K
2
, f3 +

∑K+1
k=2 (𝜃k − 𝜃k−1)2

2

)

. (11)
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7.

(
𝜇0|𝜎

2
0 ,X1, … ,Xn

)
∼ N

((
n𝜎−2

0 + v−2
0
)−1nX𝜎−2

0 ,

(
n𝜎−2

0 + v−2
0
)−1
)

. (12)

8.

(
𝜎

2
0 |𝜇0,X1, … ,Xn

)
∼ Inv-Gamma

(

e4 +
n
2
, f4 +

1
2

n∑

i=1
(Xi − 𝜇0)2

)

. (13)

9.

(Xi|D, rest) ∝ N
(
𝜇0, 𝜎

2
0
)

L (Xi|⋅) , (14)

where

L (Xi|⋅) ∝
mi∏

l=1

1
√

2𝜋𝜎2
exp

[

− 1
2𝜎2 (Wil − Xi)2

]

⋅ exp
{
𝛿i
[
g∗(Xi) + 𝛽∗(ti)Zi

]}

⋅ exp

[

exp (g∗(Xi))

(

−
J∑

j=1
𝜆j exp(𝛽jZi)Δtij

)]

∝
mi∏

l=1

1
√

2𝜋𝜎2
exp

[

− 1
2𝜎2 (Wil − Xi)2

]

⋅ exp

{

𝛿i

[K+1∑

k=1
Bk (Xi) 𝜃k + 𝛽∗(ti)Zi

]}

⋅ exp

[

exp

(K+1∑

k=1
Bk (Xi) 𝜃k

)(

−
J∑

j=1
𝜆j exp(𝛽jZi)Δtij

)]

.

Since N
(
𝜇0, 𝜎

2
0
)

is log-concave and L (Xi|⋅) is piecewise log-concave, (Xi|D, rest) is also piecewise log-concave.

3.4 Bayesian algorithm

Since 𝜎2, 𝜆1, … , 𝜆J , 𝜎2
𝛽

, 𝜎2
𝜃

, 𝜇0, and 𝜎2
0 have conjugate priors, they can be sampled directly from their posteriors (6), (7),

(9), (11), (12), and (13). For 𝛽1, … , 𝛽J , 𝜃1, … , 𝜃K+1, X1, … ,Xn, since their corresponding conditional posterior densities
are log-concave or piecewise log-concave, they can be sampled using an adaptive rejection algorithm.41

Algorithm.

Step 0: Initialize parameters. Sample from the joint posterior

Θ =
(
𝜎

2
, 𝜆j, 𝛽j, 𝜃k,Xi|Ti, 𝛿i,Wi1, … ,Wimi ,Zi

)
, i = 1, … ,n, j = 1, … , J, k = 1, … ,K + 1.

Step 1: Simulate 𝜎2 | rest from posterior (6).
Step 2: Simulate 𝜆j | rest from posterior (7).
Step 3: Simulate 𝛽j | rest from log-concave posterior density (8).
Step 4: Simulate 𝜎2

𝛽

| rest from posterior (9).
Step 5: Simulate 𝜃k | rest from log-concave posterior density (10).
Step 6: Simulate 𝜎2

𝜃

| rest from posterior (11).
Step 7: Simulate 𝜇0 | rest from posterior (12).
Step 8: Simulate 𝜎2

0 | rest from posterior (13).
Step 9: By numerical integration of (14), we first compute the posterior probability of Xi in each interval

[w0,w1] , … , [wK−1,wK], and simulate the index k of the interval that Xi belongs to from the multinomial dis-
tribution with the calculated probabilities. We then simulate (Xi | rest) from the piecewise log-concave posterior
density (14) truncated by the interval [wk−1,wk].

Repeat steps 1 to 9 until convergence is achieved.
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We conducted parameter estimation via the Markov chain Monte Carlo algorithm under a Bayesian framework in
R, version 3.3.4. Adaptive rejection algorithm was implemented via R package “Runuran.”42 We discarded the first 1000
Markov chain Monte Carlo samples, and inference was conducted using a total of 4000 posterior samples after burn-in.
Convergence was evaluated on the basis of deviance and trace plots of model parameters. Convergence was achieved
within the burn-in iterations.

3.5 Inference for goodness-of-fit and selection of number of knots

We used the DIC to assess the trade-off between model fit and complexity and to select the number of knots for B-splines.43

The DIC is defined in R2WInBUGS44 as

DIC = D(𝜃∗) + pD,

where D(𝜃∗) is the posterior mean deviance to summarize fit, pD is the additional term to summarize complexity. The
posterior mean deviance D(𝜃∗) is a Bayesian measure of how well the model fits the data, the smaller it is, the better the
model fits. The term pD measures the effective number of parameters included in the model, the larger the effective num-
ber of parameters is, the easier it is for the model to fit the data, and the larger deviance should be penalized. Therefore,
DIC is considered as a Bayesian measure of fit, penalized by an additional complexity term.43

Here, the deviance is defined as

D(𝜃∗) = −2 log L(Data|𝜃∗),

an the additional complexity term is defined as

pD = pv =
Var (D (𝜃∗))

2
,

which is an alternative measure for model complexity.37,45,46 It is positive, invariant to parameterization and considered
robust and accurate in estimating the effective number of model parameters.37,45,46 For the proposed model, the likelihood
used to compute the deviance is the complete likelihood as in the DIC5 from Celeux et al:47

L = L (W ,X ,Z|𝜃∗)

=
n∏

i=1

1
√

2𝜋𝜎2
0

exp

[

− 1
2𝜎2

0
(Xi − 𝜇0)2

]

⋅
n∏

i=1

mi∏

l=1

1
√

2𝜋𝜎2
exp

[

− 1
2𝜎2 (Wil − Xi)2

]

⋅
J∏

j=1
𝜆

dj

j

n∏

i=1
exp

{
𝛿i
[
g∗(Xi) + 𝛽∗(ti)Zi

]}
⋅

n∏

i=1
exp

[

exp (g∗(Xi))

(

−
J∑

j=1
𝜆j exp(𝛽jZi)Δtij

)]

.

For the naive model, the likelihood used to compute the deviance is the same as the original definition in Spiegelhalter
et al:43

L = L
(

W ,Z|𝜃∗
)

=
J∏

j=1
𝜆

dj

j

n∏

i=1
exp

{

𝛿i

[

g∗(W i⋅) + 𝛽∗(ti)Zi

]}

⋅
n∏

i=1
exp

[

exp
(

g∗(W i⋅)
)
(

−
J∑

j=1
𝜆j exp(𝛽jZi)Δtij

)]

,

where W i⋅ = m−1
i
∑mi

l=1Wil is the mean of the replicated measures for subject i. For the ideal model, substitute W i⋅
with Xi.

One may choose knots that are equally spaced or quantile-based. In this article, we choose locations of knots on
the quantiles of the observed measurements of X with approximately equal number of events. To be more specific, for
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k = 1, … ,K, the number of events in the interval Ik = [wk−1,wk] is dk =
∑n

i=1
∑mi

l=1𝛿i ⋅ I(Wil ∈ Ik). Knots were placed
accordingly such that d1 ≈ · · · ≈ dK . We performed experiments with other knots placement strategies, such as equally
spaced or at the quantiles of observed measurements of X . The current strategy worked best in our study.

For the piecewise constant functions that approximate h0(t) and 𝛽(t), we set the number of intervals J proportional to
the square-root of the number of events. Denoting V as the number of events, we have J = c

√
V . By experiment, we found

c = 0.3 works well in our study (see Section S.1 in the supplementary materials). The J − 1 internal knots were placed on
the quantiles of time with approximately equal number of events.

4 SIMULATION STUDY

We conducted Monte Carlo (MC) simulations to evaluate the performance of our proposed method. We compare our
proposed method with the ideal method that uses the true value of the unobserved latent covariate and the naive method
that replaces Xi by W i⋅.

For each dataset, we simulated the time-to-event endpoint from a Cox model with a Weibull baseline hazard function
h0(t) = abtb−1, where a = 0.1 is the rate parameter and b = 1.1 is the shape parameter. We set 𝛽(t) = c(t + 2)d for the time
varying coefficient for the baseline covariate, where c = −1.5 and d = 0.1. We set x0 = 0 and

g(x) =
3 sin(𝜋x∕2)

1 + 2x2{2 − 1.5sign(x)}
,

where sign(x) = 1 if x > 0, sign(x) = −1 if x < 0, and sign(x) = 0 if x =0.
We consider three simulation scenarios as follows:

1. X ⊥Z, Xi
i.i.d.∼ N(0, 1), 𝜖il

i.i.d.∼ N(0, 𝜎2).
2. X ⊥Z, Xi

i.i.d.∼ N(0, 1), 𝜖il
i.i.d.∼ scaled t3 with variance 𝜎2.

3. If Zi = 0, Xi
i.i.d.∼ N(−1, 1), else Xi

i.i.d.∼ N(1, 1), 𝜖il
i.i.d.∼ N(0, 𝜎2).

Here the covariate Zi was simulated from a Bernoulli distribution with the probability equals to pz = 0.5. These three
scenarios represent three situations where X is subject to normal error and independent of Z, X is subject to non-normal
error and independent of Z, and X is subject to normal error and correlated with Z. For the third scenario, to account for
the correlation between X and Z in the model, we assume that X has two different normal priors respectively for Z = 0
and Z = 1 in the Bayesian estimation steps. We simulated the censoring times independently from a uniform distribution
and truncated them by the study endpoint. The censoring rate is around 40%. For each of the three scenarios, we consider
sample sizes n = 1000 and 2000, measurement error variances 𝜎2 = 0.32 and 0.52, and two repeated measures of Xi were
simulated for each subject based on (1). A total of 100 replicates were performed for each scenario. We used estimates from
the naive method as the initial values in our proposed approach. On average, the proposed Bayesian method converges
fast. The modeling performance is evaluated based on five metrics, including the mean bias, the mean standard error (SE),
the empirical standard error (Emp. SE), the coverage probabilities of the 95% confidence intervals (95% CR), where the
confidence intervals are Bayesian highest density interval (HDI), and the mean squared error (MSE). For each function
of 𝛽(t) and g(x), we computed these metrics on an equally spaced 100 grid points. Specifically, for the mean bias, we first
computed the mean bias at each of the 100 grid points and then took the average of their absolute values; for the mean
standard error, the empirical standard error, 95% CR, and the MSE, we first computed the metrics at each of the 100 grid
points and then took the average.

Tables 1 to 3 and Figures 1 to 3 present the simulation results. The naive approach had a moderate performance when
variance and sample size were small and its performance worsened as the error variance increased. On average, the naive
estimates of 𝛽(t) had large bias and the coverage probabilities of the 95% confidence intervals were far from the nominal
levels as the error variance increasing. In contrast, the proposed approach generally performed well in all scenarios.
The estimated parameters had small bias and the coverage probabilities were either better or comparable to the ideal
method. Compared to the naive approach, the MSEs of the proposed approach were usually smaller, but could be slightly
larger for estimating g(x) when 𝜎2 is small since the naive estimates had smaller variances. Figures 1 to 3 show that the
estimated g(x) from the proposed approach are very close to the true curve. The coverage probabilities of g(x) from the
ideal approach were similar for n = 1000 and 2000 and ranged between 86% and 88%, which were lower than the nominal
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T A B L E 1 Simulation scenario (1): X is with normal error and independent of Z

n = 1000 n = 2000

𝝈 Method Mean bias Mean SE Emp. SE 95% CR MSE Mean bias Mean SE Emp. SE 95% CR MSE

𝛽(t) Ideal 0.064 0.157 0.129 96 0.022 0.039 0.124 0.101 97 0.013

0.3 Proposed 0.073 0.166 0.140 94 0.027 0.046 0.130 0.107 97 0.015

Naive 0.206 0.149 0.124 71 0.066 0.192 0.116 0.095 58 0.052

0.5 Proposed 0.078 0.175 0.143 95 0.028 0.048 0.138 0.110 97 0.015

Naive 0.338 0.147 0.123 35 0.142 0.330 0.114 0.094 22 0.128

g(x) Ideal 0.042 0.161 0.186 88 0.039 0.027 0.121 0.140 88 0.022

0.3 Proposed 0.058 0.243 0.231 93 0.061 0.055 0.179 0.179 89 0.038

Naive 0.157 0.166 0.178 75 0.069 0.139 0.123 0.133 71 0.049

0.5 Proposed 0.078 0.298 0.246 96 0.072 0.069 0.230 0.213 92 0.054

Naive 0.286 0.162 0.162 58 0.158 0.272 0.121 0.120 50 0.136

T A B L E 2 Simulation scenario (2): X is with non-normal error and independent of Z

n = 1000 n = 2000

𝝈 Method Mean bias Mean SE Emp. SE 95% CR MSE Mean bias Mean SE Emp. SE 95% CR MSE

𝛽(t) Ideal 0.064 0.157 0.129 96 0.022 0.039 0.124 0.101 97 0.013

0.3 Proposed 0.059 0.166 0.155 94 0.029 0.045 0.132 0.104 98 0.014

Naive 0.157 0.150 0.139 79 0.049 0.172 0.118 0.094 69 0.044

0.5 Proposed 0.062 0.176 0.163 93 0.032 0.050 0.140 0.112 98 0.016

Naive 0.269 0.148 0.138 52 0.103 0.291 0.115 0.090 28 0.102

g(x) Ideal 0.042 0.161 0.186 88 0.039 0.027 0.121 0.140 88 0.022

0.3 Proposed 0.072 0.249 0.227 93 0.060 0.067 0.185 0.185 90 0.043

Naive 0.126 0.170 0.200 77 0.063 0.114 0.122 0.133 74 0.039

0.5 Proposed 0.098 0.289 0.271 93 0.090 0.110 0.219 0.200 91 0.060

Naive 0.223 0.168 0.196 63 0.115 0.207 0.128 0.131 60 0.090

T A B L E 3 Simulation scenario (3): X is with normal error and correlated with Z

n = 1000 n = 2000

𝝈 Method Mean bias Mean SE Emp. SE 95% CR MSE Mean bias Mean SE Emp. SE 95% CR MSE

𝛽(t) Ideal 0.040 0.187 0.158 97 0.027 0.038 0.141 0.129 95 0.019

0.3 Proposed 0.044 0.203 0.173 96 0.033 0.047 0.152 0.139 95 0.022

Naive 0.231 0.181 0.160 76 0.082 0.246 0.136 0.129 54 0.080

0.5 Proposed 0.047 0.222 0.195 96 0.041 0.051 0.163 0.152 95 0.027

Naive 0.458 0.175 0.160 25 0.238 0.469 0.131 0.132 9 0.240

g(x) Ideal 0.066 0.196 0.220 87 0.060 0.053 0.143 0.171 86 0.038

0.3 Proposed 0.075 0.239 0.249 89 0.075 0.066 0.190 0.199 87 0.049

Naive 0.128 0.190 0.206 82 0.069 0.114 0.138 0.159 76 0.050

0.5 Proposed 0.100 0.289 0.296 89 0.107 0.085 0.216 0.223 88 0.063

Naive 0.198 0.183 0.194 70 0.125 0.188 0.130 0.151 65 0.113
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F I G U R E 1 Simulation scenario (1): Estimated 𝛽(⋅) left and g(⋅) right
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F I G U R E 2 Simulation scenario (2): Estimated 𝛽(⋅) left and g(⋅) right
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F I G U R E 3 Simulation scenario (3): Estimated 𝛽(⋅) left and g(⋅) right
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level. One possible reason is that the variations from the model selections were not taken into account in constructing the
confidence intervals. In addition, the placement of the knots did not take into account of the shape of g(x), which makes
the coverage probabilities lower in intervals with high curvature in g(x) and low event density. These aspects might also
contribute to the decrease of the coverage probabilities of the proposed method when sample size increased from 1000
to 2000. To explore the influence of the function shape, we conducted simulations when g(x) was a function with lower
curvature and obtained the ideal estimates. The coverage probabilities were closer to the nominal level (see Section S.2
in the supplementary materials).

5 REAL DATA APPLICATION ON ACTG

We applied our proposed approach to the ACTG Protocol 175 data.48 The ACTG 175 is a double-blind randomized
controlled trial evaluating different treatment regimens effectiveness in HIV-infected patients. It compared four treat-
ment regimens, zidovudine alone, zidovudine plus didanosine, zidovudine plus zalcitabine, and didanosine alone, in
HIV-infected participants based on the time to progression to AIDS-defining event or death.48 A total of 2467 participants
were recruited in the study between December 1991 and October 1992. By following the participants until November
1994, researchers recorded a total of 308 events. Since the primary study suggested that zidovudine alone is less effective
compared to the other three treatment regimens, the aim of further investigations is to compare two treatment groups,
which are zidovudine alone and the combination of the other three.

We are interested in investigating the effect of treatment on survival time adjusted for baseline CD4 counts. CD4
counts are commonly used as biomarker in clinical trials to assess HIV-infected patients for treatment eligibility and
monitor antiretroviral response to treatment.49 CD4 measurements is known to be measured with error, mainly due to
physiologic biologic variation and assay performance.50,51 Therefore, the measured CD4 counts may not reflect the true
underlying CD4 counts. Most participants in ACTG 175 study had replicated CD4 measurements before receiving treat-
ment. After excluding 4 CD4 observation outliners, for each participant, we used two repeated measurements between
3 weeks before randomization and 1 week after randomization as replicates for the baseline CD4 measurements, those
with only 1 measurement were also included. To achieve approximate constant variance, we applied the logarithmic 10
transformation to the CD4 counts. We have a total of 2463 analytical participants, of which 307 events were observed and
2156 were censored. To investigate the normality assumption on the measurement error, we produced a normal Q-Q plot
for within-person CD4 measurement differences (Figure 4). It shows a slight deviation from normality in the tails, which
is similar to the t distribution.

We used DIC to select among models with g∗(⋅) being a B-spline of 1 to 9 internal knots or a linear function to determine
whether the true unknown g∗(⋅) for CD4 is linear or nonlinear, and with both h∗(⋅) and 𝛽∗(⋅) being a piecewise constant
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F I G U R E 4 ACTG: Normal Q-Q plot for within-person measurement differences
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F I G U R E 5 ACTG: Estimated 𝛽(⋅) and g(⋅) (center curves) and 95% confidence intervals (outer curves)

function of 1 to 5 internal knots. And Xi is the logarithmic 10 transformed CD4, Zi is the indicator variable I (treatment
≠ zidovudine alone). We set x0 = 1.806, which is the minimum observed log10CD4.

We compared models according to DIC: a smaller DIC suggests the model has a better fit. The model with 2 inter-
nal knots for g∗(⋅) and 4 internal knots for h∗(⋅) and 𝛽∗(⋅) has the smallest DIC (−4353). Denote this model by M

𝛽(t).
The corresponding estimated functions on the treatment effect and the unobserved true CD4 measures are presented
in Figure 5. The estimated measurement error variance is 0.0066 (95% CI: [0.0062, 0.0069]). We also fixed 𝛽

∗(⋅) as a
non-time-varying constant 𝛽 and used DIC to select among models with g∗(⋅) being a B-spline of 1 to 9 internal knots or
a linear function and with h∗(⋅) a piecewise constant function of 1 to 5 internal knots. The model with 5 internal knot for
g∗(⋅) and 4 internal knots for h∗(⋅), denoted by M

𝛽
, has the smallest DIC (−4273), which is larger than the DIC of M

𝛽(t).
To further evaluate the evidence of time-varying covariate effect, we also compared the two models M

𝛽(t) and M
𝛽

using
the Bayes factor.52,53 The Bayes factor of M

𝛽(t) to M
𝛽

is 494. This result indicates decisive evidence for the model with
time-varying 𝛽(⋅).53

We found that the use of different treatment regimens is significantly associated with the risk of progression to
AIDS-defining events or death after adjusting for CD4 counts. The difference between the two treatment groups is stable
at the early stage and then decrease over time. A potential reason can be drug effect eliminating across time. It can be seen
from Figure 5 that log hazard decreases when log10CD4 count increases. There are obvious changes of rates when the
log10CD4 count is between 2.4 and 2.5 or the CD4 count is between 250 and 315. We also repeat the above analyses using
the naive method. The model with 1 internal knot for g∗(⋅) and 3 internal knots for h∗(⋅) and 𝛽∗(⋅)was selected according
to DIC (5866). The difference between the two treatment groups seems to slightly increase at the early stage and then
decrease over time. On average, we observe similar results on the estimate of treatment effect compared to the proposed
method. A potential reason could be that the measurement error is relatively small in the real data. The naive estimate of
g(⋅) is closer to a straight line. The estimated rate of log hazard decrease with log10CD4 count is larger for low CD4 count
(fewer than around 250) than the proposed estimate, and smaller for median range CD4 count (between around 250 and
315), and similar for higher CD4 count (more than around 315).

6 CONCLUSION

We considered a Cox-type model that depends nonparametrically on an error-contaminated covariate and allows for
time-varying covariate effect. The nonlinear effect and time-varying covariate effect are estimated via nonparametric
Bayesian approach. The simulation study shows that our proposed method has significantly better modeling performance
compared to the naive method under all simulation scenarios. As it is shown in the simulation studies, our proposed
method also works well when the measurement error follows a t distribution with degree of freedom equals 3.

Our current work focused on survival models with normally distributed covariates contaminated with normal error.
The proposed method can potentially be extended to survival models with non-normally distributed covariates con-
taminated with non-normal error. Other survival models such as frailty models and recurrent event models and other
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censoring mechanisms such as interval censoring may also be explored. Another potential future research topic is to
extend the proposed method to allow for different measurement error models.

Our proposed method can be applied to a wide range of clinical trials and epidemiology studies where modeling the
association between the unobserved covariate and the survival outcome plays an important role.
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