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Abstract: The second law of thermodynamics, with its positive change of entropy for a system not in
equilibrium, defines an arrow of time. Interestingly, also, causality, which is the connection between
a cause and an effect, requests a direction of time by definition. It is noted that no other standard
physical theories show this property. It is the attempt of this work to connect causality with entropy,
which is possible by defining time as the metric of causality. Under this consideration that time
appears only through a cause–effect relationship (“measured”, typically, in an apparatus called clock),
it is demonstrated that time must be discrete in nature and cannot be continuous as assumed in all
standard theories of physics including general and special relativity, and classical physics. The following
lines of reasoning include: (i) (mechanical) causality requests that the cause must precede its effect
(i.e., antecedence) requesting a discrete time interval >0. (ii) An infinitely small time step dt > 0 is thereby
not sufficient to distinguish between cause and effect as a mathematical relationship between the two
(i.e., Poisson bracket) will commute at a time interval dt, while not evidently within discrete time steps
∆t. As a consequence of a discrete time, entropy emerges (Riek, 2014) connecting causality and entropy
to each other.
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1. Introduction

Causality is the connection between causes and effects [1]. Itis considered to be fundamental to all
natural sciences including physics as well as philosophy and has therefore been investigated by both
faculties extensively (as summarized for example by Bunge [1]). Within the realm of physics mechanical
causality requests the principle of antecedence, which means that an effect cannot occur from a cause that is
not in the past. In special relativity theory, this statement is further constrained and requests that an effect
cannot occur from a cause that is not in the past light cone of that event. This description links causality
and time close together and requests a time interval between cause and effect [2]. Furthermore, time can
only be measured if there is a relationship between cause and effect as in a clock, which is the device of time
measurement. This dual relationship has been already described by Aristoteles: “Not only do we measure
the movement by the time, but also the time by the movement, because they define each other.” [3]. Based
on this argumentation and the finding that causality is absolute but time relative in special relativity and
that time order is invariant under Lorentz transformation only if the events in question can be connected
by signals (i.e., causal chains) [4], we state that causality is more fundamental than time as also expressed
by Reichenbach with the wording that “time order is reducible to causal order” [4]. Furthermore, we define
here time as the metric of causality. With this definition of time it is demonstrated in the following that time
must be discrete in nature. One of the many consequences thereof [5,6] and of interest here is that entropy
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emerges if time is discrete in nature but treated to be continuous [5]. Hence, it appears that casualty with
its arrow of events and entropy with its arrow of time are closely related.

The structure of the presented work starts with the derivation of the necessity of a discrete time if
time is the metric of causality (Sections 2.1–3.2). Some of the consequences of a discrete time (i.e., entropy)
are then described in paragraph 3 followed by a discussion (Section 4) and a conclusion (Section 5).

2. From Causality to a Discrete Time

2.1. Causality and Time

Causality is a common phenomenon within our daily experience. It is the relationship between a cause
and its effect. Causality describes therefore the process and consequences from an action (please note,
this is not the action used in physics). Its presence is requested here as an axiom as has been done in
classical physics [7] as well as special and general relativity theory [8,9]. It is further stated that the
relationship (i.e., process) between the cause and its effect can be described accurately with a function C,
which is position or/and momentum-dependent. It is evident that this description called by Bunge [1]
mechanical causality is deterministic and requests the presence of space as a causal change of a system can
only happen within space. Furthermore, it requests antecedence of the cause in respect to the effect [2].
Time t is defined here as the metric of causality which permits the process to be described with a function
C(4t) with4t the time between the cause and the effect to fulfill the requested antecedence. Importantly,
the time-dependent change must have a time direction to distinguish between the origin of causation and
the effective result caused. The function describing causality is therefore requested to be of unidirectional
nature and not of bidirectional nature (i.e., bijective nature) because a given result may originate from
distinct processes and cannot turned around and because of the lack of the possibility to go backward in
time by human experience.

In general, the evolution of this function C from the cause, to the effect at time4t is given by

C(4t) (1)

At infinitely small time steps with

lim4t→0C(4t) = C(0) = 0 (2)

(with C(0) = 0 by definition). With other words, at infinitely small time steps there is no causality because
the cause and the effect cannot be distinguished from each other. It is noted that this argumentation
parallels Zeno’s 3. paradox that a flying arrow does not move since at any instant it is motionless (which
paradox could be solved by infinitesimal calculus). In contrast to Zeno however, the subject of interest
is not the velocity but the causality. This suggests that time cannot be continuous if it is the metric of
causality and thus time must be discrete in nature.

Next, we shall get concrete by defining the function C. We start with a classical description of the
Hamilton function H(q, p) with q = (q1, q2, q3) and p = (p1, p2, p3) for the generalized phase space
canonical position and momentum, respectively, and the acting potential V(q) (in cartesian coordinates
the Hamilton function reads H(q, p) = 1

2 mp2 + V(q)) [10]. Using the Hamilton equation ṗi = − ∂H
∂qi

the
second law of Newton is obtained [10]

− ∂V
∂qi

= lim4t−>0(
pi(t +4t)− pi(t)

4t
) (3)

The function C(4t) is then defined by − ∂V
∂qi
4t through (see also below around Equation (10))
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pi(t +4t) = −∂V
∂qi
4t + pi(t) (4)

connecting the cause described by the force − ∂V
∂qi

that acts during the time 4t on p(t) with the effect
described by p(t +4t), respectively (please note, the variable t is arbitrarily chosen). With a force (ready
to cause) acting during an infinitely small time step (i.e., lim4t−>04t = 0) there is no effect. That means,
a force can only have an effect if time is of discrete nature since a discrete value cannot be equal to 0.
A critical reader may state that the time step can be infinitely small but larger than 0 and must does not
be of discrete nature. It is in our definition of an infinitely small time step that it approximates 0 at the
limit (lim4t−>04t = 0) which is actually done in the standard description of the second law (Equation (3))
without hesitation because the second law of Newton is a continuous function yielding acceleration.
We thus request time to be of discrete nature.

To further strengthen our argumentation on the impact-full difference between4t > 0 and4t = 0
we shall now fundamentally elaborate on the relationship between the cause and effect and the role of
a discrete time step using the following mathematical law: If two functions f (q, p) and g(q, p) “commute”
within the Poisson bracket with { f , g} = ∑n

j=1
∂ f
∂qj

∂g
∂pj
− ∂ f

∂pj

∂g
∂qj

= 0 (and n the number of degrees of freedom)
they are in involution with each other and thus they are independent of each other (i.e., do not have the
same degree of freedom) [10]. With other words if {pi(t +4t),− ∂V

∂qi
4t} = 0 there is no causality possible

because there is no connection between them. Indeed, as shown below {pi(t +4t) and the change/the
cause − ∂V

∂qi
4t are in involution if and only if4t is infinitely small:

{pi(t +4t),− ∂V
∂qi
4t} =

n

∑
j=1

∂pi(t +4t)
∂qj

∂−V
∂pj∂qi

4t− ∂pi(t +4t)
∂pj

∂−V
∂qj∂qi

4t (5)

=
n

∑
j=1

∂(− ∂V
∂qi
4t + pi(t))

∂qj

∂−V
∂pj∂qi

4t−
∂(− ∂V

∂qi
4t + pi(t))

∂pj

∂−V
∂qj∂qi

4t

=
n

∑
j=1

∂(− ∂V
∂qi
4t)

∂qj

∂−V
∂pj∂qi

4t−
∂(− ∂V

∂qi
4t)

∂pj

∂−V
∂qj∂qi

4t− ∂−V
∂qj∂qi

4t

=
n

∑
j=1

∂2V
∂qj∂qi

4t

With an infinitely small4t: lim4t−>04t = 0

lim4t−>0{pi(t +4t),−∂V
∂qi
4t} = 0 (6)

This means that if and only if4t > 0 the Poisson bracket is different from zero ({pi(t +4t),− ∂V
∂qi
4t} 6= 0)

and therefore we argue that there is only causality if time is of discrete nature. The cause during the time
step4t (i.e., ∂V

∂qi
4t) can thus have an effect (Equation (4) in the presence of a non-trivial potential V(q).

With the introduction of a discrete time also a time direction [5] is obtained in contrast to the guaranteed
time reversibility of the second law of Newton through its second order time derivative along with its
infinitely small time step [4]. This can be illustrated by going a causality event forward with Equation (4)
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in a first step and then going a step backward with pi(t +4t) the starting state and the effect (result) given
by pi(t) which yields

pi(t) =
∂V

∂qi(t +4t)
4t + pi(t +4t) =

∂V
∂qi(t +4t)

4t− ∂V
∂qi(t)

4t + pi(t) (7)

This equation is only true for an infinitely small time step lim4t−>04t or a trivial potential V(q). In
conclusion, time must be of discrete nature, if it is considered to be the metric of causality. As a consequence
of a discrete time, there is an arrow of time [4], which of course is requested by causality.

2.2. Under a Dynamic Discrete Time

In this section, a physical non-relativistic classical theory is established with a discrete time using the
dynamical discrete time approach by Lee [11].

If time is a discrete dynamical variable tn the continuous space function q(t) of a system is replaced
by a sequence of discrete values qn = q (tn) and pn = p (tn) with [11]:

(q0, p0, t0), (q1, p1, t1), ..., (qn, pn, tn), ..., (qN+1, pN+1, tN+1) (8)

with (q0, p0, t0) the initial and (qN+1, pN+1, tN+1) the final “position”. In this description qn and pn,
are still continuous, while tn is of discrete character and is only changing if there is causality, i.e., an acting
force which requests pn 6= pn−1 during a time ∆tn. Under these circumstances ∆tn = tn − tn−1 , which
is dynamic in nature if a time reversible/symmetric descriptions is requested that can approximate
the continuous time theories or alternatively is constant ∆tn = ∆t if a time irreversible description is
permitted/requested.

The Hamiltonian function at point n Hn(qn, pn) follows the discrete Hamiltonian equation [5] :

1
∆tn

(pi,n+1(tn +4tn+1)− pi,n(tn)) = −
∂Hn

∂qi,n
(9)

yielding the discrete second law of Newton but written differently:

pi,n+1(tn +4tn+1) = −
∂V

∂qi,n
4tn + pi,n(tn) (10)

The latter is the descriptor for causality with the cause on the right (i.e., with the acting force during a time
step) “working” on the system (i.e., the momentum at point n) and the effect on the left (i.e., the new
momentum at point n + 1).

The space and momentum variables are dependent on each other as follows

4tn = m
qi,n − qi,n−1

pi,n
(11)

if and only if pi,n(tn−1 +4tn) 6= pi,n−1(tn−1) and pj,n(tn−1 +4tn) 6= pj,n−1(tn−1) with j 6= i and a carefully
selected reference frame (i.e., such that the force acts only in one direction and such that pi,n−1 = 0).
Please note that the last equation corresponds to a definition of the discrete momentum (i.e., pn =

lim∆tn−0 m qn−qn−1
∆tn

) [4] but written differently because it is used to define the time step. It is thereby
important to understand that there is no time step unless the momentum changes—actually in absence of
a momentum change the time step is then infinitely large (with limpi,n→pi,n−14tn → ∞). If the system moves
with constant velocity (or constant momentum) there is no time as there is nothing caused. At the moment
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of a momentum change, a time step is realized following the above equation. The causality relationship of
Equation (8) is then given by

pi,n+1 = − ∂V
∂qi,n

m
qi,n − qi,n−1

pi,n
+ pi,n (12)

In the absence of a force (i.e., ∂V
∂qi,n

= 0) the momentum does not change, as expected. In the presence
of a force, the momentum changes in dependent of past (i.e., at point n− 1) and present (i.e., at point
n) information yielding the future momentum at point n + 1 [5]. Time as such is not present anymore.
There are only points (depicted by n, n− 1, n + 1) that can be interpreted as states, which change yielding
a dynamic, however. In this description, it gets evident that a system with momentum and space
evolves from state to state (Equation (12)) without the request of a time variable showing that time is
not fundamental. This finding parallels with the description of general relativity by the Hamilton-Jacobi
formulation, which is an equivalent formulation of standard general relativity, but without an explicit
time [12]. As stated by Rovelli, in the latter description many physical variables change together, and no
preferred clock or parameter is needed to track change. In such a dynamic albeit no explicit time, there is
a “becoming” using a word by Rovelli, which in the case presented is described by the causality

Cn→n+1 = − ∂V
∂qi,n
4tn = − ∂V

∂qi,n
m

qi,n − qi,n−1

pi,n − pi,n−1
(13)

During the step n− 1 to n the force − ∂V
∂qi,n

is generated yielding a causal event from state n→ n + 1.
Time as a metric gets only useful, if one array of states is compared with another one (for example

a clock). The time step between two states of causality is then given by Equation (13). The time step
4tn is thereby related to the velocity relative to the acceleration at state n. It seems obvious that this
time description can be relative as found in special relativity. It makes sense to distinguish between
two scenarios: (i) a discrete time reversible description with its limit lim4tn−>0 approximating a time
continuous case and (ii) an irreversible description with 4tn = 4t . In the reversible case 4tn = sn4t
with sn the scaling factor as used in [5]. In this case, there is a reversibility axiom requesting sn

sn+1
=

Fi,n+1
Fi,n

[5]
(see also below). This yields

Cn→n+1 = − ∂V
∂qi,n
4tn = Fi,nsn4t = Fi,n+1sn+14t = Cn+1→n+2 = const

and with this

4tn ∝
1

Fi,n
(14)

Hence, causality is constant, and time is dynamic as indicated by Lee [11]. Reversibility is gained
because causality C is constant. The forward causal event n → n + 1 can be reversed by the backward
causal process n + 1→ n (Cn→n+1 + Cn+1→n = 0).

In standard microscopic physical theories this approach is used with infinitely small steps losing the
causality argument per se. It is, however, known that this is not a correct approach since thermodynamics
states the irreversibility of nature. For this scenario (ii)4tn = 4t yielding

Cn→n+1 = − ∂V
∂qi,n
4t

and thus
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Cn→n+1 ∝ − ∂V
∂qi,n

= Fi,n (15)

with a constant time step and causality being of variable nature.

3. Consequences of a Discrete Time: On the Origin of the Second Law of Thermodynamics

While there are many consequences of a discrete time such as a maximal acceleration [12] or the
cosmic constant and the inflation of the universe [6], the focus here is the second law of thermodynamics.
The basic microscopic physical laws are time reversible and only the second law of thermodynamics,
which is a macroscopic physical representation of the world, is able to describe irreversible processes
in an isolated system through the change of entropy 4S > 0 [12,13]. In 2014, we showed that at the
microscopic level time irreversibility can be obtained if time is of discrete nature [5] applying the discrete
dynamical time concept of Lee introduced above [11]. It was further demonstrated that the consequences
of a continuous time description of physics if time is actually of discrete origin is a microscopic entropy,
which upon ensemble averaging is equal to the Clausius entropy and Boltzmann/Gibbs entropy under
a slow changing force limit. With other words, entropy is an artifact when describing a macroscopic system
under a continuous time. This microscopic entropy of a Z particle system at state n, which can easily be
made macroscopic by proper averaging, is thereby described by the following equation:

Sn = −
Z

∑
i=1

Ni,d f kB ln si,n (16)

with kB the Boltzmann constant and Ni,d f the number of degree of freedoms of particle i and si,n the time

scaling factor that follows the reversibility axiom sn+1
sn

= Fx,n
Fx,n+1

(assuming only a change of the force along
the x-axis for simplicity). The entropy change from causality event n to n + 1 is then given by [5]

4S = Sn+1 − Sn =
Z

∑
i=1

Ni,d f kB ln
Fx,i,n

Fx,i,n+1
(17)

Upon ensemble averaging this description yields the Boltzmann entropy under a slow changing force
limit [4].

The presented description of time being the metric of causality described through the force Fi,n =

(Fx,i,n, 0, 0) is now further elaborated on using Equation (15) yielding

4S = Sn+1 − Sn =
Z

∑
i=1

Ni,d f kB ln
Ci,n→n+1

Ci,n+1→n+2
(18)

Equation (18) establishes the correlation between entropy change and causal event change under the
assumption that time is the metric of causality yielding the following second law of thermodynamics

4S = Sn+1 − Sn =
Z

∑
i=1

Ni,d f kB ln
Ci,n→n+1

Ci,n+1→n+2
≥ 0 (19)

in an isolated system with equality if the system is in thermodynamic equilibrium. This results in the
following entropy definition at time point n.

Sn = −
Z

∑
i=1

Ni,d f kB ln Ci,n→n+1 (20)
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It is noted that this is an entropy of a system under study contrasting the Boltzmann entropy, which
is an ensemble averaged entity. In order to compare the two we shall describe the two entropies of a large
system of Z independent, identical, indistinguishable particles (such as the ideal gas or diluted gas) for
which each micro-state has the same probability. Boltzmann showed that the entropy is then given by

SB = −kB < ln pj >= −kBZ
J

∑
j=1

pj ln pj (21)

with pj =
Zj
Z being the probability of a single particle to be in the state j and the average is a single particle

average taken over all the possible states J of the particle.
In comparison, following reference [5] the ensemble averaged microscopic entropy of this Z particles

system under a slow changing force limit is given by < Sn >≈ −kB Z ∑J
l=1 pl ln (pl sl,n). Following this

formula, the ensemble averaged causality-derived entropy of Eqution (20) is then given by

< Sn >≈ −kB Z
J

∑
l=1

pl ln(pl Cl,n→n+1) ≈ −kB Z
J

∑
l=1

pl ln pl = SB (22)

Thus, for a system with independent non-interacting particles in the “slow causality limit” with
Cl,n→n+1, the average microscopic entropy approximates the Boltzmann entropy of the system. An
interpretation of this analogy suggests that the original description of the entropy by Boltzmann is just
a statistical averaging of a variable which is close to a constant (i.e., Cl,n→n+1) but that the entropy term
itself has not its root in statistical mechanics but in causality.

3.1. The Relationship between Causality and Entropy Discussed by Gedankenexperimente

In this paragraph Equations (19) and (20) are discussed on four well known thermodynamic examples
and the universe to illustrate the action of causality through the microscopy entropy derived.

(i) Let us first elaborate on the classical example with two temperature reservoirs with T1 > T2 that
can exchange heat and only heat while the entire system is isolated (Figure 1a). This is an important
Gedankenexperiment because it has been shown by Planck that this example of two heat exchanging
reservoirs can be translated into any other thermodynamic process that undergoes an irreversible process
towards the thermodynamic equilibrium [13]. Following the second law of thermodynamics this system
goes into the thermodynamic equilibrium with a temperature Teq with T1 > Teq > T2. Following the
causality argument, it is evident that the temperature bath with T1 comprises gas particles with a higher
kinetic energy yielding on average a larger force (by repulsion because of a large momentum change at the
wall) and correspondingly a larger average causality at the heat exchanging wall than the particles from
the T2 reservoir. Part of these forces via causality dissipate through the wall with a net transfer from T1 to
T2 (exchanging thereby heat) until an equilibrium is obtained.

(ii) The next Gedankenexperiment is an isolated system in equilibrium (Figure 1b). If an isolated
system is in the thermodynamic equilibrium from a macroscopic perspective no causal events happen
since the system is in equilibrium and hence4S = 0 with F = 0 with F the force of the entire system as
it is observed macroscopically. It is evident that from a microscopic perspective there are many causal
events (for example in a container filled with ideal gas molecules in the thermodynamic equilibrium there
are constant collisions and along with it acting forces, while macroscopically no measurable changes
occur). However, the causal events do not dissipate into smaller ones. At the thermodynamic limit (with
Z → ∞) at each time step overall the same causal relationships occur inside the isolated system and with
it the same local acting forces Fx,i,n when summed over all molecules and thus the microscopic entropy of
Equation (20) do not change in average and with it also not the macroscopic one [5].
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(iii) This description brings us to an example of having an ideal gas at a given temperature in
an isolated container localized in one corner of the container with a directed velocity (Figure 1c). According
to Boltzmann, this is a rather unique state of the system and the entropy increases until the gas molecules
are distributed evenly in the container, which is the most probably state of the system. In accordance,
the causal events of the gas molecules dissipate into smaller ones because at the beginning a concerted
force of the gas molecules is present such that the gas molecules may fly into the wall in a concerted
fashion yielding a large force, which dissipates into smaller ones after many collisions until the causality is
approaching 1.

(iv) Next, the ideal gas in equilibrium is studied and a unique case is selected in which the observer
defines a single equilibrium micro-state out of the many as special (Figure 1d). In the approach of
Boltzmann, this system is unique and an entropy increase is expected, which makes no sense because
the system is in equilibrium. This apparent paradox can be solved by requesting ensemble averaging to
be mandatory because the unique selected micro-state will never reoccur. As a consequence, Boltzmann
entropy is only applicable on a system for which many repetitive experiments have been done. In the
concept presented here the sum of the acting forces to all the molecules in the system is always independent
on the micro-state selected and thus the causal entropy will not change as expected since the system is in
equilibrium. The microscopic entropy in Equation (20) is thus independent of the observer and does not
request a macroscopic view and thus gets rid at least of some of the paradox that come along with the
Boltzmann entropy [14].

(v) We end with a Gedankenexperiment on the evolution of the universe using Newtonian physics
for simplification [6]. The causal event with the largest acting force ever was at the beginning of the
universe in the big bang also requesting the smallest time step. Causal events are dissipating since into
smaller ones (in part because the universe expands) along with longer and longer time steps yielding
an arrow of time described by Equation (19). It is interesting to note that this description of the second
law of thermodynamics is valid for a single universe at any time event, while the classical Clausius one
or the statistical one by Boltzmann require a temperature bath outside the isolated universe, a universe
that evolves from equilibrium to equilibrium in infinitely slow steps, and ensemble averaging in the latter
theory. Furthermore, the non-trivial request of having at the big bang the universe in the most ordered
state with the lowest entropy according to Boltzmann [15] gets obvious with Equation (20) because at the
beginning the causal events had the largest acting forces.

T  > T 

<

<

<Cn->n+1 >> <Cn->n+1 >

a
T   

b

1

1

2

2

<Cn->n+1 >=1 

T   

c

<Cn->n+1 >>1 

<

<
<

<

T   

d

<Cn->n+1 >=1 

Figure 1. Gedankenexperimente (a) An isolated system (indicated by double walls) is composed of two
closed sub-systems with unequal temperature that can exchange heat through the single wall. The systems
are filled with an ideal gas. The gas molecules indicated by spheres from the left sub-system (1) have
a larger kinetic energy yielding a larger momentum change in average at the heat exchanging wall
than the molecules from the right sub-system (2) when hitting the wall yielding a larger causality on
the left sub-system when compared with the right sub-system (b) An ideal gas system in equilibrium.
(c) A system in which the ideal gas molecules are concentrated on the right top corner. (d) The system is in
thermodynamic equilibrium and a special state is selected.
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3.2. In Quantum Mechanics There Is No Time

The relationship of Equation (20) between causality and entropy requests the presence of causality.
However, causality is absent in standard quantum mechanics [1]. If the derived relationship between
causality and entropy is thus only true for non quantum mechanical systems on the first notion it appears
to be a limited concept requesting a discussion. For this, we first need to clarify the terms causality and time
in the context of standard quantum mechanics [1,16]. The non-causal nature of quantum mechanics can
be exemplified by a measurement of a quantum mechanical system which outcome is not determined for
a single experiment most popularly visualized by the Schrödinger cat [16], which is alive and dead at the
same time before one has a look at it and upon measurement can be either alive or dead. Actually, quantum
mechanics lacks causality by definition since a quantum mechanical system can have superimposed states
(such as alive and dead in the example of the cat). From a causality point of view superimposed states
means that a system is always covering all the possible states simultaneously and thus no causal chain is
eminent. Next, time must be discussed within quantum mechanics. It must be thereby noted that there is
no time in quantum mechanics reflected by the lack of a time operator. The time-dependent Schrödinger
equation comprises a classical time and is thus of semi-classical nature [16] with a time therein that comes
from an adjacent classical clock [17,18], the latter which of course follows causality as discussed above.
Thus, the time evolution of the wave function described by the time-dependent Schrödinger equation
pinpoints to the time evolution of the classical outcome being of causal nature. The non-causal property of
quantum mechanics culminates in its projection to the classical world via the Born rule in the measurement.
However, the statistical ensemble of measurements described by the Born rule is of classical nature and
thus can cause an effect along with time as the metric yielding also to an entropy. The Born rule can therein
be used to establish a non-unitary process building a basis for entropy [19]. The von Neumann entropy is
such an entropy, which is of classical nature as it is not an operator. It builds upon the density operator,
which is a statistical entity ensemble averaged over all the states and thus not time sensitive. With other
words, time as well as entropy are treated classically in quantum mechanics and thus the established
relationship between entropy and causality described in Equation (20) holds also for standard quantum
mechanics. From the rather different perspective of the transactional interpretation, which describes
a measurement as a collapse between a retarded and advanced wave function an arrow of time in quantum
mechanics can also be obtained by using a causal argument that requests also a discrete time (in addition
to a discrete space) [19,20].

4. Discussion

The nature of time is one of the big mysteries both in physics as well as in philosophy. While
Aristoteles states time measures change [3], Newton states that it ticks [7]. Aristoteles mentioned further
that we measure time through a change of motion and motion through time indicating thereby how its
definition slips one through the fingers. While in general relativity theory time is the fourth dimension
along with the three space coordinates, it is evident that a human being, while able to move forward and
backward in space, cannot do so in time. Augustinus therefore distinguishes between the present, the
past in the present and the future in the present, highlighting the fact that time is different from space
coordinates as we can only be in the present. Our body can measure the consequence of a force which
means causality. If time is the metric of causality it is thus reasonable that we can only be in the present and
neither in the past nor the future. Our body is thereby a typical device, which can only measure if there
is an effect from a cause. This is also true for a clock, which is the device of time measurement. A clock
is of periodic nature requesting a momentum change and with it a force and actually a changing force
causing clock to be of causal nature. By introducing time as the metric of causality the usual delineation
between time and causality is reversed as has been proposed by Reichenbach [4] with the consequence
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that time is no longer a fundamental physical entity. Actually, a system is defined by the coordinate and
momenta (q, p) and their gradients along space and causality arises from there. This can be exemplified
by an object that travels with a constant velocity. Since nothing happens, there is no causality and thus no
time. Somebody may point out that there is velocity and thus time must be taken into account because
velocity is the first time derivative of space. However, since the reference frame of the system can be
put to the object, the system can also be described in absence of a velocity and thus no time is needed to
describe the system as long as there is not an acting force and correspondingly causality. Of course, this is
an idealization and in nature there is always a cause and an effect because gravitation acts everywhere;
it is omni-present. So, each causal event is related to other ones and as time is the metric of causality it
is ubiquitous (which does not mean that it is fundamental). The time step sizes between the events are
however dependent on the causal system and the choice of the reference frame and are therefore relative
in nature yielding thereby for example time dilation as demonstrated in special relativity, but this accounts
only for the time step size and not the acclaimed fundamental causal numbering. If it is in the interest of
the experimenter to compare two distinct systems in respect to causal events, they are best compared each
to a third system that comprises a higher frequency of events, which is called a clock.

Following this description on the causal chain it is evident that it comprises an arrow of time. This can
be exemplified with the evolution of the universe starting with the big bang being the strongest causal
event followed by the “dissipation” into smaller and more events (because the universe expands) towards
a state where nothing will happen anymore (if the universe will not collapse eventually), which is nothing
but the thermodynamic equilibrium of the universe. In the established physics theories an arrow of time is
obtained only with the second law of thermodynamics through the entropy (while indirectly). By defining
here time as the metric of causality and demonstrating its discrete nature a relationship between entropy
change and causality change is established suggesting the origin of entropy to be causality with an entropy
increase when the causal chain dissipates into smaller causal events. This interpretation appears to contrast
the Boltzmann approach in its root because it is not about the measure of disorder but the measure of order.
However, of course these two entities are related with each other directly. In this context, it is mentioned
that recently another approach to a derivation of entropy has been proposed that is based on the cognition
between past and future in the brain relating the two entities also with a chain of information [21].

Finally, it is interesting to elaborate on the discrete nature of time. It has been demonstrated here
that time must be quantized if it is the metric of causality. Another approach for defining time recently
introduced by Lucia and Grisolia by using the ratio between entropy and entropy rate also yielded
a discrete nature of time [22]. Discrete time physics is fascinating and reveals many interesting insights
into fundamentals of physics [23–30]. Furthermore, with time to be discrete and space continuous, time
and space albeit both variables of the space-time vector get inherently distinct as requested from the notion
of an arrow of time prohibiting traveling backward in time and the free motion in space including both
directions forward and backward.

5. Conclusions

In summary, the present work introduced time as the metric of causality. With this approach, causality
through the second law of Newton within classical physics is fundamental, and time is only the metric.
With the time as the metric of causality, time is requested to be of discrete nature yielding an entropy
description from the consequence of causal changes. The reader is invited to elaborate further on the many
consequences of a discrete time in physics.
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