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ABSTRACT

The assessment of transcriptome-wide ribosome
binding to mRNAs is useful for studying the dy-
namic regulation of protein synthesis. Two meth-
ods frequently applied in eukaryotic cells that op-
erate at different levels of resolution are polysome
profiling, which reveals the distribution of ribosome
loads across the transcriptome, and ribosome foot-
printing (also termed ribosome profiling or Ribo-
Seq), which when combined with appropriate data
on mRNA expression can reveal ribosome densities
on individual transcripts. In this study we develop
methods for relating the information content of these
two methods to one another, by reconstructing the-
oretical polysome profiles from ribosome footprint-
ing data. Our results validate both approaches as ex-
perimental tools. Although we show that both meth-
ods can yield highly consistent data, some published
ribosome footprinting datasets give rise to recon-
structed polysome profiles with non-physiological
features. We trace these aberrant features to incon-
sistencies in RNA and Ribo-Seq data when compared
to datasets yielding physiological polysome profiles,
thereby demonstrating that modelled polysomes are
useful for assessing global dataset properties such
as its quality in a simple, visual approach. Aside
from using polysome profile reconstructions on pub-
lished datasets, we propose that this also provides a

useful tool for validating new ribosome footprinting
datasets in early stages of analyses.

GRAPHICAL ABSTRACT

INTRODUCTION

During protein synthesis, mRNAs are typically decoded
by multiple ribosomes simultaneously (1). The average ri-
bosome load per mRNA is a useful proxy for assessing
transcriptome-wide translational activity (2) and the rela-
tive balance between translation initiation and elongation
rates (3–5). This parameter can be accessed by two princi-
pal experimental techniques which operate at different lev-
els of resolution, namely polysome profiling and ribosome
footprinting (also termed ribosome profiling or Ribo-Seq).
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Polysome profiling is a long-established method for as-
sessing transcriptome-wide ribosome loads. Widely used in
particular for assessing eukaryotic translation, it relies on
sucrose density gradients (6), on which populations of mR-
NAs bound to different numbers of cycloheximide-arrested
ribosomes can be separated into individual peaks (7,8)
(Figure 1). Polysome profiles are often evaluated qualita-
tively by assessing the relative height of monosome ver-
sus polysome peaks, or semi-quantitatively by calculating
a polysome/monosome (P/M) ratio based on the areas un-
der the corresponding peaks (indicated as shaded areas in
Figure 1).

The information content of polysome profiles is con-
tained in several parameters, including the relative peak
location which corresponds to the number of ribosomes
bound to an mRNA, and relative peak height which for
the nth peak corresponds to the combined mRNA, rRNA
and tRNA content of all transcripts translated by n ribo-
somes (an ‘n-some’), where n is counted from the mono-
some peak onwards. In Saccharomyces cerevisiae each ri-
bosome contains around 6000 nucleotides of rRNA (9)
whereas the average transcript length is 1600 nt (10), and
rRNA absorbance therefore greatly dominates mRNA ab-
sorbance in all polysome peaks. Similar, albeit less extreme
rRNA:mRNA ratios, are also observed in higher eukary-
otes.

Ribosome footprinting is a more recently developed ap-
proach where the location of individual ribosomes on tran-
scripts is determined via deep sequencing of RNA frag-
ments generated when bound ribosomes protect transcripts
from nuclease digestion (11,12). With this technique the in-
formation content is contained in the returned sequences,
which align to the location of the bound ribosome in the
transcript sequence, and in the frequency with which each
sequence occurs in the mixture. The latter can be evalu-
ated at different levels. At one level, the frequency of se-
quences originating from one transcript versus those origi-
nating from another is proportional to the relative ribosome
loads of the two transcripts. At another level, the distribu-
tion of sequences within the same transcript is inversely pro-
portional to the speed of ribosomes traversing each section
of the transcript.

Polysome profiling and ribosome footprinting experi-
ments can be considered to contain overlapping sets of in-
formation. Ribosome footprinting reveals more detailed in-
formation as it allows assessing translational activity of in-
dividual sequences, whereas polysome profiles only reveal
summative information on the relative abundance of groups
of sequences with similar ribosome loads. Thus, a polysome
profile can be viewed as a subset of the information within a
ribosome footprinting experiment, with the exception that
information on non-translating ribosomes, which is present
in the 40S, 60S and 80S peaks of a polysome profile, is not
represented in ribosome footprinting experiments.

Ribosome footprinting datasets tend to be interpreted in
a very detailed manner, usually including comparisons of
ribosome densities between individual genes, and in some
cases also of ribosome densities on individual codons. Such
detailed analyses are sometimes complemented by meta-
gene analyses, where footprint densities are averaged over
all genes or subsets of genes contained in an organism.

Compared to these two extremes, polysome profiles have
an intermediate information content––they reveal a more
detailed breakdown of translational activity than metagene
analyses, but summarise information more than gene-level
footprint analyses. We reasoned that interpreting footprint-
ing datasets at the information level of polysome profiles
could add significant insights to current analyses of foot-
printing data. Moreover, details of the footprinting method-
ology are still being developed, in particular with respect to
the use of cycloheximide during the initial preparation of
cell extracts (13–15), but also with respect to library prepa-
ration (16), the nucleases used to generate the ribosome pro-
tected fragments (17), and other parameters (18–20). A sim-
ple visual way of examining the integrity of ribosome foot-
printing datasets would provide a useful tool to assess newly
generated datasets.

Herein, we describe the development of methodology
and software for simulating polysome profiles from ribo-
some footprinting datasets. We apply this methodology to
published ribosome footprinting datasets from yeast and
mammalian cells and reveal that there is indeed a corre-
spondence between polysome profiles and Ribo-Seq data,
but we also identify heterogeneity in the apparent propor-
tion of very heavily ribosome bound mRNAs. In many
datasets, an apparent excess of heavy polysomes is cor-
rected when higher quality reference data for mRNA ex-
pression are used, whereas in a smaller subset of datasets
the excess of heavy polysomes persists even when evalu-
ated with reference mRNA data. Further investigation of
this subset of datasets yielding non-physiological modelled
polysome profiles demonstrates that such datasets display
other issues, such as generally having a poor correlation of
transcript-specific ribosome densities with other datasets,
and low base-quality scores for the Ribo-Seq data. Overall
we demonstrate that modelled polysome profiles are a con-
venient visual tool for assessing RiboSeq dataset integrity,
and we provide the polysome modelling functionality as a
simple to install python package.

MATERIALS AND METHODS

Polysome profiles

Polysome profiles were generated using sucrose density gra-
dients as described (21). The Saccharomyces cerevisiae pro-
file was generated using yeast strain BY4741 (22) trans-
formed to URA+ and grown to OD600 of 0.62 at 30◦C in de-
fined (SC) medium lacking uracil. The mammalian cell pro-
file was generated using HEK293 cells grown to 70% conflu-
ence under standard conditions in Dulbecco’s modified Ea-
gle’s medium and supplemented with 10% heat-inactivated
fetal bovine serum. Cell lysates for sucrose density gradients
were generated as previously described (23).

Computational tools

All analyses were performed using Python 3.7.6 (Python
Software Foundation) in Jupyter Notebooks (24). Libraries
used included Numpy (25), SciPy (26), SciKit Learn (27),
Matplotlib (28) and Pandas (29). All data and Python
scripts are available from GitHub (https://github.com/
tobiasvonderhaar/polysomes). The software for generating
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Figure 1. Components of a polysome profile. The representative profile was generated with cycloheximide-arrested polysomes from logarithmically growing
S. cerevisiae, centrifuged through a 7–47% sucrose density gradient followed by optical density scanning at 254 nm wavelength. Selected peak locations are
indicated. The shaded areas correspond to the ‘monosome’ (black) and ‘polysome’ (light grey) regions of the profile, which are frequently used to calculate
the P/M ratio as a proxy for translational activity.

and comparing modelled polysomes has been published us-
ing the Python Packaging Index (PyPI, https://pypi.org/
project/polyan/) and is freely available at no charge.

Determination of peak locations in polysome profiles

Initial sets of peak locations were determined either by vi-
sual inspection of polysome profiles, or computationally by
identifying profile regions where four or more consecutive
points with monotonically increasing OD254 were followed
by four or more consecutive points with monotonically de-
creasing OD254. Peak locations identified either way were
then fitted to a logarithmic function, using species-specific
fractional polysome numbers for the 40S and 60S peaks, re-
spectively (the fractional number for the small subunit being
0.35 for yeast and 0.37 for mammals, based on the known
relative masses of the small and large ribosomal subunits).
Additional peak locations were then calculated based on a
fitted logarithmic trendline as described.

Polysome modelling

Individual peaks in the polysome profile were modelled
based on scaled probability density functions (PDFs) of a
normal distribution:

f (x|μ, σ, s) = 1√
2πσ 2

· e− (x−μ)2

2σ2 · s

where � is the location of the peak’s maximum, � its stan-
dard deviation, and s is a scaling factor to adjust the area
under the peak to the experimental data. The OD contribu-
tions from the individual peaks were then summed to gen-
erate the complete profile. Contributions from initial debris
peaks and from drifting baselines were modelled as an ex-
ponential decay function and a linear function, respectively,
and were added to the summed PDFs.

Ribosome footprinting datasets

Ribosome footprinting datasets for yeast were
retrieved from the NCBI GEO database (30)
(https://www.ncbi.nlm.nih.gov/geo/) using the search
term ((‘Saccharomyces cerevisiae’[ORGN]) AND (‘high
throughput sequencing’[Platform Technology Type]) AND
ribosome). Returned results were manually screened for
such datasets that reported footprinting data, or corre-
sponding footprinting and RNA-Seq data, for standard
laboratory yeast strains grown in YPD or SC at 30◦C,
either formatted as counts per gene, counts per codon, or
RPKM. All datasets were reformatted to counts per gene
before further computational processing, based on gene
length information for the R64-2-1 release of the yeast
genome. Datasets for HEK293 cells were identified using a
similar strategy but replacing the organism specification in
the search term with ‘HEK293’.

Modelling polysome profiles from ribosome footprinting
datasets

Relative ribosome densities were calculated for each indi-
vidual gene as follows: RNA abundances were calculated
by converting RNA counts to RPK, and assuming a to-
tal cellular RNA number of 60 000 for yeast (31) or 300
000 for HEK293 cells. The number of ribosomes bound to
RNAs corresponding to the same gene were calculated from
its footprint counts, assuming a total ribosome number per
yeast cell of 200 000 of which 85% are active during fast
growth in rich medium (31). In HEK293 cells, we assumed
a total ribosome content of 2 million. The average ribosome
density was then calculated from these values, and the ri-
bosomes assigned to polysome peaks corresponding to the
integers on either side of the average density. For an exam-
ple transcript expressed at 10 RNAs per cell each carrying
5.8 ribosomes on average or 58 ribosomes in total, 11.6 ri-
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bosomes (=20% of 58) would be assigned to the five-some
peak and 46.4 ribosomes (=80% of 58) to the six-some peak.

Following assignment of RNA-bound ribosomes to their
n-some peaks, the remaining, inactive ribosomes (15%)
were assigned to the monosome, 60S and 40S peaks. For
control conditions and fast growing cells, the proportion
of inactive ribosomes was assumed to be 15%, and it was
also assumed that 3 out of 10 of these inactive ribosomes
were split into separate subunits (this generated the best fit
to experimental profiles). For figures where polysome pro-
files were modelled without inclusion of inactive ribosomes,
this step was omitted by setting the include idle parameter
passed to the modelling function to False.

Cluster analyses

To assess the similarity between modelled yeast polysomes,
peak volumes for each dataset were tabulated and subjected
to a hierarchical clustering approach (32). The Euclidean
distance between clusters was calculated using the scipy
linkage function with the ‘complete’ method, which assigns
distances based on the farthest point between clusters. The
optimal number of clusters was determined by maximising
the Davies–Bouldin index (33), the ratio of between-cluster
similarity distances and within-cluster similarity distances.

RMSD-based P-values

Based on the analyses shown in Figures 5–7 a reference
‘known good’ collection of yeast datasets was established
which showed low RMSD values compared to the experi-
mental profile and where our analyses did not reveal any
other issues with data quality. This reference collection
comprised datasets GSE106572, GSE107718, GSE109343,
GSE109734, GSE116523, GSE122039, GSE124428,
GSE13750, GSE34082, GSE41590, GSE45366, GSE50049,
GSE51164, GSE51532, GSE52119, GSE53313, GSE56622,
GSE59573, GSE61753, GSE63789, GSE66411, GSE67387,
GSE72030, GSE76117, GSE81269, GSE84746, GSE85036,
GSE85198, GSE85590, GSE86466 and GSE87614. RMSD
values for all possible pairwise combinations of datasets
were calculated using the yeast reference RNA profile.
The parameters of the best fitting normal distribution
to the resulting RMSD values were estimated using the
stats.norm functionality in scipy. P-values are calculated
as the probability of observing a given RMSD value in a
normal distribution with the fitted parameters.

Determination of Kulback–Leibler divergence

Raw datasets were downloaded from the sequence read
archive (34) and processed as described by adapter trim-
ming, alignment to the yeast genome and analysis using the
RUST suite of Python tools (35). The KL-value at codon
40 of the processed aligned reads was used as A-site specific
value, whereas the maximum KL value in the region 30–37
(i.e. 3–10 codons upstream from the A-site) as used as the
5′-KL value, and the maximum in the region 43:50 (3–10
codons downstream of the A-site) was used as the 3′-KL
value.

Statistical analyses

To test for statistical significance of differences in dataset
parameters in Figure 7A, two-tailed t-tests were conducted
comparing parameter values for the main dataset cluster
with parameters for the separately clustering datasets (all
for analyses conducted with the external reference mRNA
data). The P-values reported in Figure 7 were adjusted for
multiple testing using Holm–Sidak adjustment. Decision
tree analyses were conducted using the SciKitLearn im-
plementation of the Extremely Randomised Trees classifier
(36) with 100 estimators (the reported results are robust to
changing the numbers of estimators in the range from 10 to
1000).

RESULTS

Quantitative features of polysome profiles

Interpreting experimental polysome profiles can be prob-
lematic since peaks corresponding to monosomes and lower
number polysomes are often easily visually distinguishable,
but higher polysome peaks are obscured due to their smaller
size and closer spacing (Figure 1). However, the location of
mass densities in zonal gradients follows known mathemat-
ical rules (37), so that peak locations in the denser gradient
region can in principle be predicted based on locations of
the well separated peaks. In practice, we found that in well-
formed gradients peak locations can be accurately related
to polysome numbers using an exponential function (Fig-
ure 2). This holds true for both polysome gradients gener-
ated with yeast (Figure 2) and HEK293 cells (Supplemental
Figure S1).

Individual peaks in polysome profiles are reminiscent in
shape of the bell-shaped curves of Gaussian (normal) dis-
tributions. We found that individual peaks of a profile fit
Gaussian distributions well if the latter are adjusted for the
width of individual peaks, and are multiplied with appropri-
ate scaling factors to account for the peaks’ non-uniform
size. Moreover, complete profiles can be closely approxi-
mated by summing appropriately scaled Gaussians at each
of the pre-determined peak locations (Figure 3). In prin-
ciple this follows the general approach of Gaussian mix-
ture models (GMMs (38)), although our pre-determined
peak locations constrain the model much more than is typi-
cally the case for GMMs. Importantly, the close fit between
experimental and modelled polysomes extends throughout
the whole gradient profile, including the higher polysome
region where individual peaks are no longer distinguishable
by eye. The good fit between experimental data and Gaus-
sian models holds for polysome profiles derived from both
actively translating yeast (Figure 3) and mammalian cell
lines (Supplemental Figure S2).

Modelling polysome profiles from ribosome footprinting data

Central parameters of modelled polysome profiles are the
scaling factors for individual peaks. The area under an un-
scaled Gaussian distribution is one by definition, and in
consequence these scaling factors are directly proportional
to the contributions individual peaks make to the overall
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Figure 2. Peak locations in polysomal gradients. (A) Peak locations in polysome profiles generated with logarithmically growing yeast cells. Blue lines
indicate peak locations detected directly using a peak finding algorithm, orange lines indicate peak locations extrapolated from the directly detected peak
locations. (B) Peak locations (coloured dots, colours corresponding to panel A) compared to the prediction function (black line).

Figure 3. Approximation of a yeast polysomal gradient profile as a Gaussian mixture model. (A) Individual scaled Gaussian distributions making up the
modelled polysome profile. (B) The summed Gaussian distributions with added initial debris peak and baseline drift (the contribution of the latter two is
shown as the broken grey line). (C) Overlay of the trace from panel B with the experimental polysome data (black dots) used to generate the fit.

profile. In turn, the contribution of individual peaks to the
profile is proportional to the amount of RNA present in the
n-some population of transcripts represented by that peak.
As discussed above, rRNA absorbance dominates the ab-
sorbance from other RNAs and we therefore approximate
peak areas as being proportional to the number of ribo-
somes involved in the corresponding n-somes, neglecting
contributions from mRNA and tRNA.

The relationship between the number of ribosomes per
transcript and scaling factors for individual peaks can be
exploited to compute apparent polysome profiles from ri-
bosome footprinting data. The general workflow for gen-
erating modelled polysome profiles is outlined in Supple-
mental Figure S3. Unlike real polysome profiles, modelled
profiles lack information on non-translating ribosomes so
that the monosome, 60S and 40S peaks cannot be fully de-
termined in the latter. However, information on the propor-
tion of inactive ribosomes in the cell as well as the propor-
tion of inactive ribosomes split into their separate 40S and
60S subunits can be used to complete modelled profiles. In
fast growing yeast, the proportion of inactive ribosomes has
been experimentally estimated as 15% (31), and fitting to ex-
perimental profiles suggests that about 30% of these inactive
ribosomes split into separate subunits. In contrast, mam-
malian HEK293 cells show a higher proportion of non-
translating ribosomes split into separate subunits judging

by the relatively higher peaks for the 40S and 60S subunits
(Figure 4).

The application of the polysome modelling workflow to
Ribo-Seq datasets reported for yeast and HEK293 cells is
shown (Figure 4). For clarity, parts of the polysomes solely
predicted by sequencing data are shown in green, whereas
parts to which auxiliary data like the proportion of inactive
ribosomes contribute are shown in red. For the 80S peak,
two versions are shown in panels D and H of Figure 4, con-
trasting peaks modelled with (red) or without (green) inclu-
sion of non-translating ribosomes.

Polysome profiles from different types of cells show dis-
tinct features owing to different translation dynamics. Yeast
cells show a much less pronounced population of mRNAs
with high ribosome content than HEK293 cells, with ex-
perimental yeast profiles typically showing a profile max-
imum around the tri-some peak (Figure 4A) whereas the
mammalian cells show a profile maximum later in the gra-
dient (Figure 4E). These distinctive features are preserved
both in polysome models generated with selected individ-
ual datasets (Figure 4 B, C, F, G), as well as in the aver-
aged models generated with larger numbers of datasets (Fig-
ure 4D, H). This demonstrates that polysome profiles mod-
elled from Ribo-Seq datasets can faithfully present distinc-
tive features observed in experimental polysome profiles for
the same cell type.



e112 Nucleic Acids Research, 2022, Vol. 50, No. 19 PAGE 6 OF 13

Figure 4. Comparison of experimental polysome profiles with profiles modelled from ribosome footprinting datasets. All datasets analysed in this figure
represent control conditions where genetically wild-type cells were grown at optimal growth temperatures and in complete growth media. (A), representative
experimental yeast profile. (B, C) Modelled polysome profiles generated from individual yeast footprinting datasets. (D) A modelled polysome profile
generated from the average information in 37 yeast datasets used in this study. (E) Representative experimental dataset generated with cultured HEK293
cells. (F,G) Modelled polysome profiles generated from individual HEK293 datasets. (H) A modelled polysome profile generated from the average of seven
HEK293 datasets analysed in this study. All coloured profiles show peaks generated exclusively from information in footprinting datasets in green, and
peaks where additional information on the proportion of free ribosomal subunits contributed in red. In panels D and H, 80S peaks showing only translating
monosomes (green) or the total monosome population modelled assuming 15% non-translating ribosomes (red) are shown overlaid for comparison.

Visual assessment of published footprinting datasets using
modelled polysome profiles

The modelling workflow was applied to 37 published yeast
ribosome footprinting datasets (for details see Supplemen-
tal Table S1), all of which were generated as control ex-
periments within their respective studies with untreated or
parental yeast strains grown at 30◦C and in YPD or Syn-
thetic Complete medium. Thus, we expect these datasets
to report approximately comparable translational activity
profiles. Where RNA-Seq data were reported alongside the
Ribo-Seq experiments, these were used to generate RNA
copy number information, but where no such data were pro-
vided, typical transcript abundances were calculated from a
reference RNA-Seq dataset (see below).

While many of the investigated datasets resulted in mod-
elled polysome profiles that closely resemble an experimen-
tal reference profile, this was not the case for all datasets
(individual modelled profiles for all yeast datasets are pre-
sented in Supplemental Figure S4). To visualise differences
between the generated profiles efficiently, we used a hier-
archical clustering approach to define three clusters where
the similarity to other profiles within the cluster was greater
than similarity to profiles in other clusters (Figure 5A, B).
Interestingly, this analysis revealed heterogeneity in the rel-
ative content of very highly ribosome-associated mRNAs
in the datasets. In the three clusters, the modelled content
of high polysomes increases with each cluster, with a corre-
sponding decrease in low polysomes.
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Figure 5. Comparison of modelled polysome profiles from 37 published yeast ribosome footprinting datasets. (A) Hierarchical clustering based on modelled
polysome profiles was used to group datasets by similarity. The dashed red line indicates the similarity threshold used to define specific clusters. Polysome
profiles were modelled based on the RNA data accompanying the Ribo-Seq datasets, except for datasets indicated by # where no RNA-Seq data were
provided. (B) Meta polysomes (averaged polysome profiles) for each of the three clusters identified in (A) are represented as black dots, grey lines represent
the experimental profile for comparison. The P-values evaluate the root mean square deviation (RMSD) in peak volumes between two datasets, and give the
probability of observing a similar RMSD in comparisons between two known good datasets. (C) Visualization of the change in modelled polysomes when
accompanying RNA-Seq data were replaced with a reference RNA-Seq dataset (see text for discussion). The graph shows the RMSD-derived P-values for
comparison with the experimental dataset obtained when polysomes were modelled using the accompanying RNA-Seq data (open circles) or the reference
data (closed circles). Colour indicates the direction of change, where green indicates that use of the reference data improves similarity to the experimental
profile, and red indicates that similarity is worse with the reference data. (D) Plotted polysome profiles for selected pairs of analyses relying on own or
reference RNA-Seq data. Black dots represent the modelled profiles, grey lines the experimental dataset for comparison.

We sought to develop a quantitative measure that could
support the qualitative visual interpretation of differences
between modelled polysome profiles. In modelled profiles
the peak volumes are normalised to the total area under
the curve, making the root mean square deviation (RMSD)
a useful measure for quantifying differences between pro-
files. When the 37 modelled yeast profiles were compared
to the experimental reference profile, RMSD values ranged
from 0.006 to 0.04. To make these numbers more intuitively
interpretable, we derived an RMSD-based P-value, defined
as the probability of observing a particular RMSD value
in all pairwise comparisons for a reference known good col-
lection of datasets (see the Materials and Methods section
and analyses below for details). Figure 5B shows the cor-
responding p-values for the meta-profiles for each cluster in
comparison to the experimental yeast profile, thereby quan-
titatively supporting the visual analysis that the difference
between modelled polysome profiles and the experimental
dataset increase with increasing cluster number.

Previous studies have shown that analyses of ribosome
footprinting data can be skewed by biases in the accom-
panying RNA-Seq datasets (39). For example, poly(A)-
selection can systematically bias against RNAs that are
more prone to nuclease attack or physical breaking, or that
have shorter poly(A) tails. Because poly(A) selection can-
not be applied to Ribo-Seq samples, in combined RNA-

Seq/Ribo-Seq experiments this could reduce the appar-
ent abundance of such RNAs while correctly reporting the
numbers of ribosomes bound to them, thereby reporting
non-physiologically high ribosome loads. When we calcu-
lated apparent ribosome loads in datasets by dividing the
number of ribosome protected fragments per transcript in
the Ribo-Seq data by the abundance of that transcript in the
accompanying RNA-Seq data, we observed that datasets
in clusters 2 and 3, in contrast to those in cluster 1, re-
ported very high and frequently physically impossible ribo-
some loads (Supplemental Figure S5). This indicates that
distinct biases between RNA- and Ribo-Seq data may be
one of the reasons leading to the apparent excess of heavy
polysomes in some datasets.

To further investigate these findings, we established a ref-
erence dataset using a small number of RNA-Seq datasets
from studies yielding modelled profiles closely matching ex-
perimental ones. In an iterative process, we selected datasets
with an RMSD to the experimental profile below 0.02 (cor-
responding to RMSD-derived P-values above 0.1) that also
showed the most consistent RNA expression levels between
them (correlation coefficients > 0.7). When we re-modelled
polysome profiles with this new RNA reference dataset, the
similarity to the experimental data improved substantially
in many cases (Figure 5C). Interestingly, for a small num-
ber of datasets (seven out of 37) the reference decreased the
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similarity between modelled and experimental profiles, al-
though for three of these the change was negligible. Where
the reference dataset increased the similarity between mod-
elled and experimental profiles, it did so specifically by ad-
justing the heavy polysome content of the profiles (Fig-
ure 5D), indicating that the underlying cause for excess
heavy polysomes in the modelled profiles is frequently as-
sociated with the RNA-Seq part of the datasets. When we
re-clustered all modelled polysomes based on the new ref-
erence RNA-Seq dataset and applied the same clustering
threshold as in Figure 5A, 32 of the 37 datasets formed a
single cluster of profiles that were similar to the experimen-
tal dataset, whereas five datasets still showed profiles with
clear differences to experimental data (Supplemental Fig-
ure S7). Of these five separately clustering datasets, two still
yielded modelled profiles with an excess of heavy polysomes,
whereas three yielded modelled profiles that appeared de-
pleted for heavy polysomes.

We further validated that most ribosome profiles give bi-
ologically meaningful data when analysed with an improved
reference RNA-Seq dataset by mapping where datasets re-
ported transcripts with strong physical constraints on ribo-
some occupancy. This analysis revealed that both RPL41
(a very short transcript where ribosome occupancy is lim-
ited by ORF length) and GCN4 (a known translationally
repressed transcript) are correctly reported as having very
low ribosome densities, whereas longer and actively trans-
lated ORFs are reported as being more strongly ribosome
associated (Supplemental Figure S6). Aside from validat-
ing that most Ribo-Seq datasets yield data consistent with
known biological properties of transcripts when analysed
with sound RNA-Seq datasets, this analysis also validates
the data analysis pipeline we use for modelling the polysome
profiles.

To explore why some datasets yield modelled polysome
profiles that differed from experimental ones even when
analysed with the reference dataset, we traced the transla-
tional states of individual transcripts in two selected outlier
datasets and compared them to a comparator dataset from
the main cluster (GSE87614, Figure 6). For the selected
dataset with excess heavy polysomes, we observed a higher
number of transcripts in the highest ribosome density re-
gion than for the comparator dataset (orange data points
in Figure 6A). In the comparator dataset, these same tran-
scripts show much lower ribosome densities. Since in these
analyses the Ribo-Seq data from each dataset were paired
with the reference RNA-Seq dataset, these differences can
clearly be attributed to the Ribo-Seq data and indicate that
GSE108778 reports biased numbers of ribosome-protected
fragments for at least some transcripts.

For a second dataset, GSE100626, which yielded a well
matching modelled profile when analysed with its accom-
panying RNA-Seq dataset but apparent depletion of heavy
polysomes when analysed with refence data, we observed
similar transcript-specific ribosome density patterns as for
the comparator when analysed with its own RNA-Seq data
(Figure 6B). However, with the reference RNA dataset the
entire population of transcripts shifts to a region of low ri-
bosome density. The dynamics of this change are exempli-
fied by the subset of 307 transcripts coloured in blue, which
contain all transcripts with ribosome loads of ten or higher

in the analysis relying on the datasets own RNA-Seq data.
In the analysis with the reference RNA dataset, these tran-
scripts shift to higher abundance and consequently lower
ribosome loads (since the same number of ribosome foot-
prints is now divided by a larger number of transcripts). In
the comparator dataset analysed with the reference RNA-
Seq data, the same subset of transcripts shows a broader
distribution across the upper two thirds of the range of ri-
bosome densities.

Given that GSE100626 uses a strain background (SK1)
and growth medium (YPD) that in other studies yields sim-
ilar data to other strains, it is unlikely that these shifts re-
flect genuine biological gene expression differences. Instead,
a more parsimonious explanation for these shifts is that
in GSE100626 a subset of transcripts is represented lower
than in the comparator in both the RNA-Seq and Ribo-Seq
parts of the data. This balanced bias leads to a modelled
polysome profile that appears physiological, but the bias is
exposed when the profile is modelled with a less biased ref-
erence RNA-Seq dataset.

Error sources in published footprinting datasets

The results described above establish that modelled
polysome profiles can be used as efficient visual aids to
identify problematic ribosome footprinting datasets. The vi-
sual evaluation of modelled profiles can be aided by nu-
merical measures such as the RMSD-derived P-values val-
ues for comparison between profiles. In additional analy-
ses we aimed to determine which general dataset features
establish the match between modelled and experimental
polysome profiles. Datasets can be evaluated via different
quality measures such as base and sequence quality-scores,
read-depths and coverage. In addition, previous work (35)
showed that the nature of ribosome protected mRNA frag-
ments in different datasets displays different biases with re-
spect to information in the A-site (which is expected), but
also with respect to the sequence at the fragment 5′- and 3′-
ends (which is likely related to differing nuclease efficiency
in different sequence contexts). We assembled a context
dataset that gathered both standard quality measures and
measures of biases in ribosome-protected fragments, and
analysed whether any of these quality features could predict
the subset of datasets yielding poorly matching modelled
polysome profiles when analysed with the reference mRNA
data. We used two independent approaches for this, namely
standard statistical tests (Figure 7A) and a decision-tree
based approach (Extremely Randomised Trees (36), Figure
7B). Both approaches highlighted that the per-base qual-
ity score of the Ribo-Seq datasets is an important predic-
tor, with low scores predicting a greater difference between
modelled and experimental profiles. The next best predic-
tors are periodicity and 3′-sequence bias of the ribosome
protected fragments, although these two have much less pre-
dictive power than the per-base quality score. This analy-
sis links features of modelled polysome profiles clearly to
quality parameters of their originating Ribo-Seq datasets.
It points to the importance of sequence quality for gen-
erating interpretable datasets, but also suggests that qual-
ity can be more subtly influenced by other experimental
parameters.
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Figure 6. Correlation of transcript-specific ribosome densities between ribosome footprinting datasets. All data represent analyses with the reference RNA-
Seq dataset except for the first column in panel B where RNA-Seq data accompanying the Ribo-Seq dataset were used. The top panels show modelled
polysome profiles (black) with an experimental profile (grey) shown for comparison. Middle, RNA abundances plotted against ribosome densities for
individual transcripts. Bottom, binned frequencies of ribosome densities for individual genes. (A), GSE108778 is a dataset displaying an apparent excess
of heavy polysomes. The dataset contains a population of transcripts with low abundance but high ribosome loads (coloured orange). In GSE87614, a
reference dataset where modelled polysomes show a high degree of similarity to an experimental profile, the same population of RNAs shows much lower
ribosome densities. (B), GSE106626 is a dataset showing a well fitting modelled polysome profile when analysed with its accompanying RNA-Seq dataset,
but a poorer fit when analysed with the reference RNA-Seq dataset. The 307 transcripts with the highest ribosome load (coloured in blue) correspond to a
population that is also relatively ribosome dense in GSE87614, but that appear much less ribosome dense when GSE106626 is analysed with the reference
dataset. The most parsimonious explanation for this behaviour is a balanced transcript bias in both the RNA-Seq and Ribo-Seq data of this dataset.

Several studies have directly compared how different ex-
perimental parameters affect Ribo-Seq data, including nu-
clease selection (40), library preparation protocols (41) and
cycloheximide concentrations (42). Nuclease selection and
library preparation protocols directly affect some of the pa-
rameters related to sequence bias of ribosome protected
fragments described in the previous paragraph, and we
therefore asked whether different protocols would directly
change the nature of the resulting modelled polysome pro-
files (Figure 7C–E).

With the published data using different nucleases to di-
gest away non-ribosome protected RNA, modelled profiles
changed subtly in their relative content of light and heavy
polysome (Figure 7C). With datasets employing differ-
ent library preparation methods, modelled polysome pro-
files were remarkably constant, with the exception of the
‘non-random’ method which led to a clear gain of heavy
polysome content in the profile (Figure 7D). Both findings
suggest that processes linked to fragment end formation
can affect the quality of Ribo-Seq data, consistent with re-
ported results (35) and with the limited association between
RMSD values, 3′-fragment bias and periodicity observed
above, and that at least some of these issues can be visualised
by modelling polysome profiles from the datasets. Datasets
using different cycloheximide concentrations also resulted
in subtle changes (Figure 7E), although they showed no sys-
tematic pattern that correlated clearly with cycloheximide
concentration. The observed changes may or may not there-
fore be actual results of the protocol modification.

Polysome profiles from datasets generated under conditions
of translational control

We have so far discussed polysome modelling as a tool for
assessing dataset integrity, by analysing Ribo-Seq datasets
generated under well-defined control conditions where an-
cillary parameters such as the proportion of free ribosomes
and transcript abundances are known, and where represen-
tative experimental datasets exist that can serve as reference
for comparing to modelled profiles. It is also possible to use
polysome modelling to visualise Ribo-Seq datasets gener-
ated under different non-control experimental conditions
where translation is regulated, but this either requires de-
termining ancillary parameters for such datasets, or restrict-
ing analyses to those aspects of the modelled polysomes for
which ancillary parameters are not required. We illustrate
this by comparing profiles for the Ribo-Seq datasets gener-
ated by Ingolia et al. (11) under amino acid replete and star-
vation conditions side-by-side (Figure 8). Both Ribo-Seq
datasets are analysed with their accompanying RNA-Seq
datasets, which for the replete condition leads to some ex-
cess heavy polysome content as discussed above (the dataset
for this study is GSE13750). Because we do not know the
proportion of free ribosomes during amino acid starvation,
the polysomes in Figure 8 are modelled for both conditions
without taking free ribosomes into account. Despite this
limitation, significant transfer of ribosomes from heavier to
lighter fractions is observed, consistent with the strong initi-
ation block caused by amino acid starvation. One hallmark
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Figure 7. (A, B) The relationship between dataset quality and modelled polysome profiles in 37 yeast datasets. (A) Plots of dataset quality parameters
against modelled profile similarity to an experimental profile (RMSD). Red datapoints identify the five datasets that cluster separately in Supplemental
Figure S6, i.e. that still show differences to the experimental polysome profile when analysed with the reference RNA-Seq dataset. p-values show the
significance of differences between red and grey datapoints (two-tailed t-test with Holm–Sidak multi-sample correction). (B) A decision tree was trained
to predict datasets shown as red dots in panel A, using the complete set of dataset quality parameters as predictors. The contribution of each individual
parameter to the trained model (‘coefficient’) is shown. (C–E) The apparent excess content of heavily ribosome associated transcripts is more sensitive
to processes involved in fragment end formation than to cycloheximide concentrations. Modelled polysomes (back dots) are shown superimposed to an
experimental polysome trace (grey lines) for datasets that generated polysome footprinting data using different nucleases (C) Different library preparation
methods (D) or different cycloheximide concentrations (E) with otherwise invariant conditions. Changing the nature of the nuclease (C) or the library
preparation method leads to stronger changes in apparent heavy polysome peaks than altering the cycloheximide concentration (E).
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Figure 8. Comparison of modelled polysome profiles for Ribo-Seq
datasets generated with cells grown in amino acid replete (black) or starved
(red) conditions from GSE13750. Profiles were modelled without inclusion
of non-translating ribosomes as discussed in the text.

of strong initiation blocks is the transfer of ribosomes from
the translating into the non-translating pool which is read-
ily visible in experimental polysome profiles by a strongly
enlarged 80S peak during amino acid starvation, illustrated
for example in Figure 1 in Costello et al. (43). This trans-
fer of ribosomes into the 80S pool is not apparent in the
modelled profiles because non-translating ribosomes are
not captured by the Ribo-Seq approach. Importantly, this
is a consequence of the Ribo-Seq method which is simply
reflected in (but not caused by) our polysome modelling ap-
proach. Although we have not explored this in detail, where
experimental polysome profiles are available the compari-
son between modelled and experimental profiles would al-
low inferring some parameters of interest such as the pro-
portion of ribosomes transferred into the non-translating
state.

In summary, when data from ribosome footprinting
datasets are projected into modelled polysome profiles,
these agree well with profiles from independent sucrose
density gradient analyses, suggesting that both approaches
yield consistent information on the translational state of
cells. While this validates both approaches in general, a sub-
set of ribosome footprinting datasets suggest unphysiolog-
ical levels of transcripts with high ribosome loads. In most
cases this is appears to be the result of under-reported tran-
scripts in the RNA-Seq data accompanying the Ribo-Seq
datasets, whereas for a small number of cases this reflects
issues in the Ribo-Seq data themselves. We link such issues
to the quality of the reported sequences, as well as diverse
experimental parameters including the end-formation pro-
cesses that give rise to the ribosome-protected fragments.
The visualisation of datasets as modelled polysome profiles
provides a convenient means for the rapid visual assessment
of dataset integrity and can reveal issues that would other-
wise only emerge through in depth data analyses.

DISCUSSION

The unprecedented detail with which ribosome footprinting
reveals transcriptome-wide translational activity has revo-
lutionised our understanding of translational control. De-

spite the great power of this approach, various technical as-
pects continue to be debated including the use of cyclohex-
imide (15,44), library preparation methods (16,17) and sta-
tistical approaches to evaluating data (20,45,46). Moreover,
for a subset of problems addressed in footprinting studies,
the data appear to be variable between related studies. An
example of this are codon decoding times, which have been
addressed by various studies in different organisms with-
out a clear and consistent picture emerging. This naturally
raises questions over where such variability comes from.

The initial motivation for our study was to investigate to
what degree information in footprinting data reflects infor-
mation in polysome profiles, a longer established approach
that gives simpler and generally well understood read-outs.
By computationally reducing the information content of
footprinting data to that of polysome profiles and then visu-
alising this information in the familiar format of experimen-
tal polysome profile traces, we show that patterns of trans-
lation revealed by both approaches are consistent in prin-
ciple (Figure 4). This further validates both techniques as
approaches for assaying transcriptome-wide ribosome den-
sities. However, our analyses also reveal clear heterogene-
ity between published ribosome footprinting datasets, espe-
cially regarding the nature of heavily ribosome-associated
transcripts.

Since no absolute reference exists that could be used to
assign a ‘correct’ polysome profile, it is not possible to un-
ambiguously decide from this comparison alone which of
the datasets is the most physiologically relevant. For exam-
ple, heavy polysomes might be somehow obscured in ex-
perimental profiles due to the strong compression of peaks
in the denser parts of the gradient, in which case mod-
elled profiles with higher content of heavy polysomes might
be more physiologically relevant. However, our additional
analyses suggest that datasets displaying an apparent ex-
cess of heavy polysomes show additional and unambigu-
ous artefacts, such as a high proportion of ribosome den-
sities per transcript that exceed the theoretical upper lim-
its of one ribosome every 10 codons (Supplemental Figure
S5). In contrast, the datasets where modelled polysome pro-
files are most consistent with experimental profiles show
the lowest proportion of transcripts with unphysiological
ribosome loads. This suggests that experimental polysome
profiles reflect the actual physiological transcriptome, and
that footprinting datasets most consistent with experimen-
tal polysome profiles likely also reflect physiological trans-
lation.

Ribo-Seq has been extensively critiqued as a technique,
and existing studies have pointed to potential artefacts in
Ribo-Seq datasets such as changes in the relative flux of ri-
bosomes along different parts of transcripts (18) or have
highlighted how distorting influences of strong ribosomal
pause sites affect the interpretation of Ribo-Seq data at nu-
cleotide resolution (19). Consequently the interpretation of
such data at very high resolution remains challenging (20).
The approaches leading to these insights required the de-
velopment or application of complex statistical methodol-
ogy (20), and they primarily focus on methods for trans-
lating Ribo-Seq data into biological insights. Our method
differs from these previous approaches in that it is based
on a different set of assumptions about the data (namely
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that ribosome occupancies on transcripts are equally rep-
resented in Ribo-Seq and polysome profiling approaches),
and in that we use the projection of Ribo-Seq data into a
familiar visual format (rather than complex statistical ap-
proaches) as the principal means for evaluation. It also fo-
cuses on dataset integrity, rather than approaches for draw-
ing conclusion from the datasets. We believe that the ability
to assess datasets rapidly using modelled polysomes profiles
as a visual tool will be a useful basis for the routine qual-
ity control of ribosome footprinting analyses, and would
be very complementary when employed jointly with the ro-
bust analysis tools developed by others. We have demon-
strated the validity of this approach for a simple eukaryotic
model (yeast) and for mammalian cells, but we anticipate
that the approach will work equally for all single-cell based
eukaryotic systems that yield robust polysome profiles. It is
unlikely to work for prokaryotic cells because the coupled
transcription and translation reactions physically link tran-
scripts with different ribosome densities.

The software providing the functionality for generating
modelled profiles and for calculating the RMSD-derived
P-values for profile comparisons is available as a conve-
nient python package distributed via the Python Package
Index (PyPI, https://pypi.org/project/polyan/), and we
provide detailed instructions for its use via protocols.io
(https://www.protocols.io/view/using-polyan-a-python-
package-for-modelling-polyso-5jyl8mz28g2w). The deci-
sion as to when a ribosome footprinting dataset should be
regarded with caution is to some degree subject to context
and it is therefore difficult to provide clear advice in this
respect. However, a reasonable strategy based on the results
shown above would be to assess new datasets by visualising
them both with their own RNA-Seq data (if available) as
well as the reference dataset which is provided as part of the
software; and calculating P-values against a ‘known good’
dataset which is equally provided as part of the software or
which may be generated by the user. We would suggest that
whenever P-values thus calculated approach 0.05, further
and more detailed investigations as to how the dataset
differs from the ‘known good’ reference is advisable.

In summary, our analyses show that many ribosome foot-
printing datasets agree well with translational activity pat-
terns suggested by independent sucrose density gradient
analyses. While this validates the ribosome footprinting ap-
proach in general, some ribosome footprinting datasets sug-
gest non-physiologically high ribosome association of tran-
scripts which contradicts evidence from both other datasets
generated under comparable conditions, and from sucrose
density gradients. The processes that lead to end formation
in DNA fragment libraries may be one contributing source
that can lead to such artefacts. Modelled polysome profiles
provide a convenient means for the rapid visual assessment
of data integrity in polysome footprinting datasets which
can reveal some, although not all, such artefacts.
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Sfakianos,A., Grosso,S., De-Lima-Hedayioglu,F., Mallucci,G.R.,
von der Haar,T. et al. (2020) Control of translation elongation in
health and disease. Dis. ModelsMech., 13, dmm043208.

6. Britten,R.J. and Roberts,R.B. (1960) High-Resolution density
gradient sedimentation analysis. Science, 131, 32–33.

7. Infante,A.A. and Nemer,M. (1967) Accumulation of newly
synthesized RNA templates in a unique class of polyribosomes
during embryogenesis. Proc. Natl. Acad. Sci. U.S.A., 58, 681–688.

8. Marcus,L., Ris,H., Halvorson,H.O., Bretthauer,R.K. and
Bock,R.M. (1967) Occurrence, isolation, and characterization of
polyribosomes in yeast. J. Cell Biol., 34, 505–512.

9. Georgiev,O.I., Nikolaev,N., Hadjiolov,A.A., Skryabin,K.G.,
Zakharyev,V.M. and Bayev,A.A. (1981) The structure of the yeast
ribosomal RNA genes. 4. Complete sequence of the 25 S rRNA gene
from Saccharomyces cerevisiae. Nucleic Acids Res., 9, 6953–6958.

10. Hurowitz,E.H. and Brown,P.O. (2003) Genome-wdie analysis of
mRNA lengths in Saccharomyces cerevisiae. Genome Biol., 5, R2.

11. Ingolia,N.T., Ghaemmaghami,S., Newman,J.R.S. and Weissman,J.S.
(2009) Genome-Wide analysis in vivo of translation with nucleotide
resolution using ribosome profiling. Science, 324, 218–223.

12. Iwasaki,S. and Ingolia,N.T. (2017) The growing toolbox for protein
synthesis studies. Trends Biochem. Sci, 42, 612–624.

13. Hussmann,J.A., Patchett,S., Johnson,A., Sawyer,S. and Press,W.H.
(2015) Understanding biases in ribosome profiling experiments
reveals signatures of translation dynamics in yeast. PLoS Genet., 11,
e1005732.

14. Requião,R.D., de Souza,H.J.A., Rossetto,S., Domitrovic,T. and
Palhano,F.L. (2016) Increased ribosome density associated to
positively charged residues is evident in ribosome profiling
experiments performed in the absence of translation inhibitors. RNA
Biol., 13, 561–568.

15. Duncan,C.D.S. and Mata,J. (2017) Effects of cycloheximide on the
interpretation of ribosome profiling experiments in
Schizosaccharomyces pombe. Sci. Rep., 7, 10331.

16. Lecanda,A., Nilges,B.S., Sharma,P., Nedialkova,D.D., Schwarz,J.,
Vaquerizas,J.M. and Leidel,S.A. (2016) Dual randomization of

https://pypi.org/project/polyan/
https://www.protocols.io/view/using-polyan-a-python-package-for-modelling-polyso-5jyl8mz28g2w
https://github.com/tobiasvonderhaar/polysomes
https://pypi.org/project/polyan/
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkac705#supplementary-data


PAGE 13 OF 13 Nucleic Acids Research, 2022, Vol. 50, No. 19 e112

oligonucleotides to reduce the bias in ribosome-profiling libraries.
Methods, 107, 89–97.

17. Gerashchenko,M.V. and Gladyshev,V.N. (2017) Ribonuclease
selection for ribosome profiling. Nucleic Acids Res., 45, e6.

18. Dana,A. and Tuller,T. (2012) Determinants of translation elongation
speed and ribosomal profiling biases in mouse embryonic stem cells.
PLoS Comput. Biol., 8, e1002755.

19. Dana,A. and Tuller,T. (2014) The effect of tRNA levels on decoding
times of mRNA codons. Nucleic Acids Res., 42, 9171–9181.

20. Diament,A. and Tuller,T. (2016) Estimation of ribosome profiling
performance and reproducibility at various levels of resolution. Biol.
Direct, 11, 24.

21. von der Haar,T. and McCarthy,J.E.G. (2002) Intracellular translation
initiation factor levels in Saccharomyces cerevisiae and their role in
cap-complex function: translation initiation factor levels in yeast.
Mol. Microbiol., 46, 531–544.

22. Brachmann,C.B., Davies,A., Cost,G.J., Caputo,E., Li,J., Hieter,P. and
Boeke,J.D. (1998) Designer deletion strains derived from
Saccharomyces cerevisiae S288C: a useful set of strains and plasmids
for PCR-mediated gene disruption and other applications. Yeast, 14,
115–132.

23. Bastide,A., Peretti,D., Knight,J.R.P., Grosso,S., Spriggs,R.V.,
Pichon,X., Sbarrato,T., Roobol,A., Roobol,J., Vito,D. et al. (2017)
RTN3 is a novel cold-induced protein and mediates neuroprotective
effects of RBM3. Curr. Biol., 27, 638–650.

24. Kluyver,T., Ragan-Kelley,B., Pérez,F., Granger,B., Busssonnier,M.,
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