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Abstract. Smoking is a major cause of lung cancer, and 
4‑(methylnitrosamino)‑1‑(3‑pyridyl)‑1‑butanone (NNK) is 
one of the most important carcinogens in cigarette smoke. 
NNK modulates the expression of peroxiredoxin (Prdx) I in 
lung cancer. Prdx1 is upregulated in lung squamous cell carci‑
noma and lung adenocarcinoma, and considered a potential 
biomarker for lung cancer. The current article reviewed the 
role and regulatory mechanisms of Prdx1 in NNK‑induced 
lung cancer cells. Prdx1 protects erythrocytes and DNA from 
NNK‑induced oxidative damage, prevents malignant trans‑
formation of cells and promotes cytotoxicity of natural killer 

cells, hence suppressing tumor formation. In addition, Prdx1 
has the ability to prevent NNK‑induced lung tumor metabolic 
activity and generation of large amount of reactive oxygen 
species (ROS) and ROS‑induced apoptosis, thus promoting 
tumor cell survival. In contrast to this, Prdx1, together with 
NNK, can promote the epithelial‑mesenchymal transition and 
migration of lung tumor cells. The signaling pathways asso‑
ciated with NNK and Prdx1 in lung cancer cells have been 
discussed in present review; however, numerous potential 
pathways are yet to be studied. To develop novel methods for 
treating NNK‑induced lung cancer, and improve the survival 
rate of patients with lung cancer, further research is needed 
to understand the complete mechanism associated with NNK.
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1. Introduction

Environmental risk factors, such as cigarette smoking and 
asbestos, lead to increased risk of lung cancer. Before the 
20th century, incidences of lung cancer were very rare, up to 
1898, only 140 cases of lung cancer were reported in the world 
medical literature (1). Since the start of tobacco usage, the 
morbidity and mortality rates of lung cancer have been gradu‑
ally rising (2,3), and according to WHO statistics, lung cancer 
has the highest incidence and mortality rate among the 36 most 
common cancers in the world in 2018 (3). Studies have shown 
that smoking is directly related to lung cancer (4). According to 
the statistical data from the World Health Organization, lung 
cancer was the leading cause of cancer‑associated death in 
2018; currently there are 300 million tobacco users worldwide, 
and there are 8 million deaths every year (3).

Multiple studies have shown that 4‑(methylnitrosamino)‑1
‑(3‑pyridyl)‑1‑butanone (NNK) is the most potent carcinogen 
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in tobacco that causes lung cancer (5,6). NNK can induce DNA 
strand breaks and DNA adduct formation, while its metabolism 
results in the generation of hydroxyl and other reactive oxygen 
radica9 ls, which in turn causes lung cancer (7). A study by 
Yeh et al (8) demonstrated that the incubation of A549 lung 
cancer cells with NNK results in increased levels of reactive 
oxygen species (ROS) formation (8). Furthermore, it has been 
shown that NNK induces oxidative stress by increasing ROS 
level in cells and promotes lung cancer progression, which 
may be associated with the changes in the expression of the 
genes related to ROS metabolism (9).

The antioxidant defense system in mammalian cells 
prevents excessive ROS accumulation (10) and maintains 
the intracellular redox balance. The peroxiredoxin (Prdx) 
family of proteins function in the cellular oxidative defense 
system, which eliminates ROS (11) and affects various cellular 
activities, such as cell proliferation, differentiation (12), 
apoptosis (13) and gene expression (14). Prdx1 inhibits 
NNK‑induced DNA damage and prevents the development of 
lung tumors (15‑17). NNK‑induced changes in the expression 
of peroxide redox proteins in lung cancer cells indicates that 
Prdx1 may be involved in the detoxification of ROS during 
NNK‑induced oxidative stress (17). Hence, Prdx1 protects 
the cells, DNA and proteins from NNK‑induced damage, 
and thus development of lung cancer. The interplay between 
NNK and Prdx1 has recently gained attention (12,16‑18), 
and an improved understanding of the role of Prdx1 in the 
development of NNK‑induced lung cancer may shed new 
light towards the development of therapeutic strategies against 
lung cancer.

2. NNK

NNK, an aromatic compound, is the most potent carcinogen in 
tobacco smoke (19). In multiple organs, the nicotine in tobacco 
is rapidly metabolized by cytochrome (CY) P450. In the liver, 
it is hydroxylated by CYP2A26 at the 2'position to form an 
amino ketone intermediate, which is subsequently nitrosated 
to produce NNK (20). 

In vivo experiments show that NNK is metabolized by 
three methods: Carbonyl reduction, pyridine oxidation and 
α‑hydroxylation (21). In the carbonyl reduction process, 
NNK is carbonylated by 11β‑hydroxysteroid dehydrogenase 
to form 4‑(methylnitrosamino)‑1‑(3‑pyridyl)‑1‑butanol 
(NNAL), which is then metabolized by glucuronidation to 
produce NNAL‑glucuronic acid (22). During oxidation of 
pyridine nitrogen, CYP450 2B1 and CYP3A4 metabolize 
NNK to NNK‑N‑oxide (23). The α‑hydroxylation process 
includes two modes: Α‑hydroxylation of the methyl carbon 
adjacent to the N‑nitroso nitrogen and α‑hydroxylation of the 
methylene carbon adjacent to the N‑nitroso nitrogen. NNK 
is hydroxylated at the methyl group adjacent to N‑nitroso 
to form α‑hydroxymethyl‑NNK, which then decomposes 
to form formaldehyde and 4‑(3‑pyridyl)‑4‑oxobutane‑1‑ 
diazohydroxide. Finally, the latter reacts with water to 
form ketone alcohol. The methylene carbon of NNK can 
also be hydroxylated to generate an unstable α‑methylene 
hydroxyl‑NNK, which quickly decomposes to methane 
diazohydroxide and keto aldehyde, and finally keto aldehyde 
oxidizes to form keto acid (19) (Fig. 1). 

Using Syrian golden hamster tissue sections, it has been 
shown that lung tissue has a lower NNK total metabolic rate 
compared with that of kidney and liver tissues (24). The oxida‑
tive metabolism of NNK to DNA‑reactive intermediates by 
α‑hydroxylation accounts for 13‑31%, pyridine nitrogen oxida‑
tion accounts for 5‑22%, while carbonyl group reduction of 
NNK to NNAL accounts for 47‑81% of the total metabolism 
of NNK in the lung. The total metabolism of NNAL in all the 
tissues is ~10 times lower compared with that of NNK (24). 
The difference in the metabolic rate of various NNK metabo‑
lites is one of the reasons that the lung is more susceptible to 
the NNK carcinogen (24).

3. Prdx1

Prdxs, a class of antioxidant protective proteins, play an 
important role in the elimination of ROS and cancer develop‑
ment (25). Prdx1 is a member of the Prdxs family of proteins, 
which is primarily localized in the cytosol, as well as found 
in the nucleus, plasma, membrane and centrosome (11). Prdx1 
is considered to be an important antioxidant protein (15), and 
exerts an antioxidant effect by forming a homodimer. The 
Cys52 sulfhydryl group on one peptide chain and the Cys172 
sulfhydryl group on the other peptide chain are dehydroge‑
nated to form an intermolecular disulfide bond, Cys52S‑SCys172, 
which reduces peroxides by providing hydrogen ions, thereby 
detoxifying them (26). Prdx1 is highly sensitive to hydrogen 
peroxide (H2O2), among various peroxides (11). 

In most cancer cells, such as breast, esophageal and 
lung cancer, Prdx1 can removes excess intracellular ROS, 
maintains ROS balance and protects the cells from oxida‑
tive stress‑induced DNA damage (27). Furthermore, by 
eliminating ROS, Prdx1 prevents oxidative stress‑induced 
mutations in the P53 and K‑Ras genes, thereby inhibiting 
tumor formation, suppressing lung cancer cell proliferation, 
invasion and migration, and increasing radiation sensitivity of 
the cancer cells (15,28). Cys52 is the active center of Prdx1 (29), 
which either reacts with H2O2 (30) or combines with heme; 
hence, Prdx1 is also called as heme‑binding protein 23 (31). 
Prdx1 acts as a scavenger for the cytoplasmic heme and 
has an important inhibitory effect on heme toxicity (32). 
Furthermore, Prdx1 enhances the immune activity of natural 
killer (NK) cells against tumor cells, and is also known as 
natural killer enhancement factor (11). It has been shown 
that Prdx1 can effectively prevent lung cancer progression by 
enhancing the tumor killing effects of NK cells (33,34). Prdx1 
is overexpressed in non‑small cell lung cancer (NSCLC) 
cells, which has been demonstrated to promote transforming 
growth factor‑β1 (TGF‑β1)‑induced epithelial mesenchymal 
transition (EMT) and A549 cell migration (35). In addition, 
the interaction between Prdx1 and nuclear erythroid 2‑related 
factor 2 (Nrf2) can significantly affect the proliferation of 
lung cancer cells (28,36). In a rat acute lung injury model, 
overexpression of Prdx1 increased the expression of proin‑
flammatory cytokines interleukin‑6 (IL‑6), IL‑8 and tumor 
necrosis factor‑α (37). Inflammatory factors play an important 
role in the development of lung cancer. In addition, Prdx I 
affects the proliferation, migration and invasion of lung cancer 
cells by regulating various cytokines, in turn modulating 
different cell signaling pathways (38,39).
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On one hand, Prdx1 protects macromolecules, such as 
proteins and DNA, from oxidative damage and suppresses 
malignant transformation of normal cells, thus preventing 
tumor development. On the other hand, Prdx1 inhibits 
ROS‑induced apoptosis of cancer cells and promotes tumor 
cell survival (27). Hence, understanding its mechanism of 
action may provide novel insights into the development of 
better therapeutic strategies for lung cancer.

Prdx1 and NNK affect the growth and development of lung 
cancer by acting on P53 and K‑Ras genes. NNK mainly 
undergoes metabolic activation through α‑methyl and 
α‑methylene hydroxylation, thereby producing DNA adducts 
and promoting cancer development. α‑methyl hydroxyl‑
ated metabolites of NNK can pyridyloxobutylate DNA and 
produce DNA pyridyloxobutyl adducts, whereas α‑methylene 
hydroxylation generates α‑methylenehydroxy‑NNK, methane 
diazohydroxide and methyldiazonium ions. These react with 
DNA and yield 7‑methyl guanine, O6‑methyl guanine and 
O4‑methyl thymine adducts (7). NNK induces oxidative 
stress by increasing the level of intracellular ROS, which in 
turn leads to the mutation of K‑Ras and P53 oncogenes. In 
addition, the NNK metabolites have been shown to result in 
the mutation of K‑Ras and P53 oncogenes in the lung. Thus, 
these deleterious effects of NNK on DNA may promote the 
development of lung cancer.

Prdx1 is considered a potential marker for NSCLC, and 
the interaction between Prdx1 and ROS plays an important 
role in the development of tumors (40). ROS plays a role in 
cell growth, differentiation, immune response and apop‑
tosis (41,42). Increase in intracellular levels of ROS activates 

the expression of P53 (15), which in turn induces the expres‑
sion of apoptotic factors, such as Bak and Bax, under oxidative 
stress, promotes the activation of caspases and finally activates 
the mitochondrial apoptotic signaling pathway (27). P53 in 
its active form suppresses the proliferation of abnormal cells, 
thereby exerting a tumor suppressor effect (43). In addition, 
P53 plays an important role in detecting DNA damage. P53 
status after reducing the expression of Prdx1 is the major 
determinant of tumor growth and response of lung cancer cells 
to treatment (15). K‑Ras mutations are known to cause uncon‑
trolled division of human lung adenocarcinoma cells (44‑46). 
Furthermore, K‑Ras mutations and ROS‑induced oxidative 
stress are the major causes of NSCLC development. Prdx1 
inhibits the activation of ROS/ERK/cyclin D1 pathway, thus 
results in Nrf2‑dependent inhibition of K‑Ras‑driven lung 
tumorigenesis (28). 

NNK may promote lung cancer development by increasing 
the intracellular ROS level and inducing mutations in impor‑
tant oncogenes. Prdx1 effectively eliminates excess ROS and 
prevents gene mutations caused by oxidative damage of DNA. 
Prdx1 prevents the occurrence of mutations in the P53 gene, 
enabling it to detect and repair damaged DNA. Furthermore, 
activation of the Nrf2 pathway results in upregulation of 
Prdx1. Prdx1 inhibits the ROS/ERK/cyclin D1 signaling 
pathway and suppresses the development of lung tumors 
(Fig. 2) (42,43,47,48).

Prdx1 and NNK affect the growth and development of 
lung cancer by reacting with heme and hemoglobin. It has 
been demonstrated that NNK‑induced DNA damage is 
significantly reduced by antioxidants (BHT), catalase and 

Figure 1. Metabolic process of NNK, including three major metabolic methods of NNK: Carbonyl reduction, pyridine oxidation and α‑hydroxylation. Modified 
a previous study (7). NNK, NNK(4‑(methylnitrosamino)‑1‑(3‑pyridyl)‑1‑butanone); NNAL, NNAL(4‑(methylnitrosamino)‑1‑(3‑pyridyl)‑1‑butanol).
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superoxide dismutase (SOD) in A549 cells. The order of 
the effectiveness has been indicated to be BHT > catalase 
> SOD (8). Thus, it is speculated that NNK mainly induces 
generation of H2O2 (8,49,50). The α‑methyl hydroxylation of 
NNK results in the formation of unstable α‑hydroxymethyl 
NNK. The decomposition of a‑hydroxymethyl NNK results 
in the formation of electrophilic 4‑(3‑pyridyl)‑4‑oxybutyl 
diazoxide, which can react with hemoglobin to form hemo‑
globin adduct (7,51). NNK α‑methyl hydroxylation results in 
globulin methylation and pyridyloxybutylation (15), and the 
hemoglobin adduct formed by pyridyloxybutylation releases 
4‑hydroxy‑1‑(3‑pyridyl)‑1‑butanone by alkaline hydrolysis (51). 
Studies have shown that keto alcohol‑releasing adducts 
were formed by treatment of hemoglobin with NNK (51‑53). 
Phenylethyl isothiocyanate treatment can significantly inhibit 
NNK‑mediated lung tumorigenesis by reducing the release of 
ketone alcohol products (54). 

Prdx1 can bind to heme (53), which is abundant in red 
blood cells. Furthermore, heme is widely distributed in 
organelles, such as the nucleus, endoplasmic reticulum and 
plasma membrane (55,56), and it is involved in a processes 
in mammalian cells, including respiration, metabolism, 
transcription, DNA binding and protein degradation (55,57). 
Heme is synthesized in mitochondria and loosely bound to 
Prdx1 (31), which is proposed to facilitate the transport of 
heme to other organelles (55,56,58). Heme is insoluble in 
aqueous solutions and is toxic to the cells (59), and the toxicity 
is further manifested by the generation of ROS (57). However, 

binding of heme to Prdx1 reduces heme toxicity and promotes 
H2O2‑mediated heme degradation (60). Thus, Prdx1 protects 
free heme from peroxidation but loses its peroxidase activity 
when bound to heme (31). NNK induces the generation H2O2 
and Prdx1 is more sensitive to H2O2. H2O2 causes erythrocyte 
lysis, leading to the release of large amounts of heme and 
hemoglobin (61). Heme interacts with oxygen to produce 
ROS (62), which further destroys red blood cells. The binding 
of heme and Prdx1 reduces heme cytotoxicity; however, Prdx1 
loses its ROS scavenging ability. NNK metabolites produce 
adducts with hemoglobin, thereby promoting the development 
of lung tumors, and Prdx1 plays a role in ROS scavenging, 
which in turn protects red blood cells from oxidative damage 
and inhibits lung tumorigenesis (Fig. 3).

Prdx1 and NNK affect the growth and development of lung 
cancer by acting on alveolar macrophages (AMs) and NK 
cells. NNK metabolites inhibit AM‑mediated production of 
interleukin‑12 (IL‑12), nitric oxide and TNF; however, they 
also induce the production of IL‑10 (63), which may promote 
the growth and development of lung tumors (64). Additionally, 
NNK has an inhibitory effect on TNF‑dependent cytotoxicity 
of AMs (49). Furthermore, metabolites produced by NNK 
α‑methyl hydroxylation may be involved in the regulation of 
AM function. For example, keto acid inhibits IL‑12 production 
by AMs, while keto alcohol may inhibit the AM production 
of TNF and IL‑12 (65). NNK may induce the expression of 
cyclooxygenase 2 (COX‑2) and upregulate prostaglandin E2 

Figure 2. Effects of Prdx1 and NNK on P53 and K‑Ras genes in lung cancer cells. NNK stimulates the production of ROS and Prdx1 scavenges ROS, which 
affects the development of lung cancer through DNA damage. Prdx1, peroxiredoxin I); NNK, 4‑(methylnitrosamino)‑1‑(3‑pyridyl)‑1‑butanone; Nrf2, nucleo‑
some 2‑related factor 2; ARE, antioxidant response element; ROS, reactive oxygen species; keap1, kelch‑like ECH‑associated protein‑1.



ONCOLOGY LETTERS  21:  465,  2021 5

(PGE2); PGE2 in turn upregulates IL‑10 (63,66). Nicotinic 
acetylcholine receptors (nAChRs) are present in immune 
cells (67), and NNK has high affinity towards nAChRs. Thus, 
interaction of NNK and nAChRs may activate the produc‑
tion of IL‑10 (68). Moreover, IL‑10 suppresses the production 
of IL‑12 (69), and inhibition of IL‑12 leads to decreased 
expression of interferon‑γ (70,71). Furthermore, IL‑12 is 
mainly produced by phagocytes (monocytes/macrophages 
and neutrophils) and dendritic cells (72) and enhances the 
cytotoxicity of AM and NK cells (73). NK cells are a group 
of lymphocytes that can kill tumor cells (74). Therefore, it can 
be speculated that NNK attenuates the toxic effects of NK 
cells on tumor cells and further promotes the development 
of lung cancer.

All six Prdxs are expressed by human lung cells; however, 
AMs mainly express Prdx1 and III (75). Prdx1 may affect 
the production of pro‑inflammatory cytokines in macro‑
phages (76) and has the ability to enhance NK cell toxicity 
in vitro. Furthermore, it has been reported that free thiol 
groups are required to maintain NK cell toxicity against 
tumor cells (42). The alkylation of free sulfhydryl groups in 
Prdx1 upon reduction decreases its ability to enhance NK cell 
toxicity, further indicating the requirement of free thiol groups 
for enhanced cytotoxicity of NK cells (16). Therefore, Prdx1 
not only protects the cells from oxidative damage, but also 
selectively promotes the killing effect of AM and NK cells in 
certain tumors. 

NNK may activate AMs to produce H2O2. NNK inhibits 
the production of IL‑12 and TNF by AMs, thereby reducing the 
cytotoxicity of AMs and NKs against the tumor cells. Prdx1 
is expressed mainly in AMs and may play a role in immune 
regulation by affecting inflammatory factors. Prdx1 may 
inhibit lung tumors by enhancing the killing effect of NK cells. 
However, the exact role of NNK and Prdx1 in AM‑mediated 
killing of tumor cells is still unclear (Fig. 4) (64,70,74‑76).

Prdx1 and NNK affect EMT. Long‑term exposure of lung 
alveolar cells to NNK results in their proliferation and 
eventually malignant transformation (77). After the cells are 
exposed to NNK, the expression of intracellular β‑catenin and 
F‑actin decrease, whereas that of fibronectin, vimentin and 
matrix metalloproteinase‑2 increase. This in turn promotes 
EMT (77). EMT is a process by which epithelial cells are 
transformed into the mesenchymal phenotype, which increases 
their invasion and migration capabilities. Morphologically, the 
epithelial cells are loosely connected and the cytoskeleton 
structure is reorganized. The EMT process is accompanied 
by various changes in protein expression, including a decrease 
in E‑cadherin and an increase in fibronectin expression 
levels (77). Low E‑cadherin expression decreases cell adhe‑
sion, and downregulation of E‑cadherin is also considered 
as a sign of EMT (78). NNK and ROS induce EMT through 
different signaling pathways (79). In cancer cells, NNK may 
promote the production of ROS, such as H2O2, which in turn 

Figure 3. Effects of Prdx1 and NNK on heme and hemoglobin in lung cancer cells. In the blood, NNK interacts with hemoglobin, Prdx1 interacts with heme 
and they jointly affect the occurrence and development of lung cancer. Prdx1, peroxiredoxin I; NNK, 4‑(methylnitrosamino)‑1‑(3‑pyridyl)‑1‑butanone; ROS, 
reactive oxygen species.
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activates c‑Src (80,81), leading to cytoskeletal modifica‑
tions (79) and initiation of EMT (82). Most tissues usually 
do not express COX‑2 or express it at a low level (83). The 
induced expression of COX‑2 inhibits apoptosis and increases 
the migration potential of cancer cells (84). The combination 
of NNK and a7‑nAChR can induce the expression of COX‑2, 
which upregulates fibronectin and promotes EMT (79). 

Furthermore, Prdx1 is a type of peroxidase reductase, which 
can play the role of scavenging ROS, thus inhibiting the EMT 
process. It has been observed that Prdx 1 can promote EMT in 
breast (85), pancreatic (86) and colon cancer (87). Furthermore, 
high expression levels of Prdx1 downregulates E‑cadherin, 
whereas, at lower levels it upregulates E‑cadherin in A549 lung 
adenocarcinoma cells (88). TGF‑β1 is a pleiotropic cytokine 
that is involved in apoptosis, differentiation and proliferation 
of cells and is the primary inducer of EMT (83,89‑91). It has 
been shown that the overexpression of Prdx1 in lung cancer 
cells significantly enhances TGF‑β1‑mediated EMT and cell 
migration (92). 

In A549 lung cancer cells, NNK treatment results in a 
significant increase in Prdx1 expression. NNK not only results 
in ROS production, but also upregulates the expression of 
fibronectin via COX‑2 and promotes EMT. Prdx1 can play 
a role in scavenging ROS, and Prdx1 can also inhibit EMT 
process by scavenging ROS caused by NNK. Additionally, 
high levels of Prdx1 results in upregulation of E‑cadherin, 
which promotes EMT (Fig. 5) (77‑82,84,85).

Signaling pathways associated with Prdx1 and NNK in lung 
cancer cells. NADPH oxidase of Nox family is expressed in 

both normal and cancer cells, and is related to ROS produc‑
tion and tumorigenicity in various cancer cells. For example, 
Nox1 is highly expressed in human colon cancer and prostate 
cancer, and lung cancer A549 cells also express Nox1, 2 and 
4 (16,93). NNK induces the expression of NOX protein and 
results in the production of large amount of ROS, which causes 
damage to protein and DNA through oxidative stress. In A549 
lung cancer cells, NNK‑mediated generation of ROS through 
NOX activates phosphatidylinositol‑3‑kinase (PI3K)/protein 
kinase B (AKT) and Wnt signaling pathways, which leads to 
the development of drug resistance in lung cancer cells (16) 
and is associated with lower survival rate of patients with 
stage 1 lung tumors in Tumor‑Node‑Metastasis staging 
system (94). NNK increases the expression of thromboxane 
A2 (TxA2) and Tx receptor in lung cancer cells by elevating 
COX and Tx synthase expression (95). NNK has been shown 
to promote adhesion and invasion of CL1.0 cells through 
α7‑nAChR/ERK/Contactin 1 signaling (96). Furthermore, 
NNK prevents PH domain leucine‑rich repeat‑containing 
protein phosphatase 2‑mediated AKT dephosphorylation, 
activates AKT to inhibit E‑cadherin expression and promotes 
lung cancer cell migration (97). The combination of NNK 
and α7‑nAChRs activates c‑Src and protein kinase C, and 
promotes the dissociation of phosphorylated Bad from Bcl‑xl, 
which in turn inhibits apoptosis (98).

In tumor cells, Prdx1 has been reported to eliminate large 
quantities of ROS produced by tumor cell metabolism and 
thus, suppresses tumor cell death. Additionally, Prdx1 inhibits 
the oxidative stress‑induced PI3K/AKT signaling pathway by 
eliminating ROS. It is known that the ROS‑induced activation 

Figure 4. Effects of Prdx1 and NNK on AM and NK cells. NNK can reduce the toxicity of AM and NK cells to lung cancer cells, while Prdx1 can stimulate NK 
cells to kill lung cancer cells. Prdx1, peroxiredoxin I; NNK, 4‑(methylnitrosamino)‑1‑(3‑pyridyl)‑1‑butanone; AM, alveolar macrophages; NK, natural killer 
cells; IL, interleukin; nAChRs, nicotinic acetylcholine receptors; MIP, macrophage inflammatory protein; PGE2, prostaglandin E2; COX, cyclooxygenase.
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Figure 5. Effects of Prdx1 and NNK on EMT of A549 lung cancer cells. In lung cancer cells, NNK can promote EMT process, Prdx1 can inhibit EMT process 
by scavenging ROS, but high level of Prdx1 can promote EMT process. Prdx1, peroxiredoxin I; NNK, 4‑(methylnitrosamino)‑1‑(3‑pyridyl)‑1‑butanone; EMT, 
epithelial‑mesenchymal transition; nAChRs, nicotinic acetylcholine receptors; ROS, reactive oxygen species; COX, cyclo‑oxygenase.

Figure 6. Signaling pathway of Prdx1 and NNK. NNK and Prdx1 are involved in the regulation of signaling pathways in the development of lung cancer cells. 
NOX, NADPH oxidase; TxA2, thromboxane A2; PGH2, prostaglandin H2; COX, cyclooxygenase; NNK, 4‑(methylnitrosamino)‑1‑(3‑pyridyl)‑1‑butanone; TP, 
thromboxane receptor; PCNA, proliferating cell nuclear antigen; CREB, cyclic AMP response element‑binding protein; CRE, cyclic AMP response element; 
ROS, reactive oxygen species; PHLPP2, pleckstrin homology domain leucine‑rich repeat protein phosphatase 2; PKCI, protein kinase C interacting protein.



SUN et al:  REGULATORY FUNCTION OF PRDX1 ON NNK‑INDUCED LUNG CANCER8

of PI3K/AKT is due to the oxidative inactivation of phospha‑
tase and tensin homolog (PTEN) protein (99). Furthermore, 
Prdx1 protects PTEN lipid phosphatase activity from 
oxidative inactivation, thereby preventing AKT from driving 
tumor cell proliferation and inducing apoptosis (26). C‑Abl 
plays a vital role in oxidative stress‑induced cell death (100). 
Prdx1 can be used as a physiological inhibitor of C‑Abl (18) to 
inhibit apoptosis induced by the C‑Abl/P38/MAPK signaling 
pathway. 

NNK induces Nox protein to produce ROS, and activates 
the PI3K/Akt signaling pathway; however, NNK inhibits 
the same pathway by removing ROS or preventing oxidative 
inactivation of phosphatase and PTEN. In addition, NNK 
activates α7‑nAChRs and downstream signaling pathways, 
and hence promotes apoptosis and migration of lung cancer 
cells. Furthermore, both NNK and Prdx1 can regulate apop‑
tosis‑related proteins and thus, control the apoptosis of lung 
cancer cells (99,101‑103) (Fig. 6).

4. Conclusions

In conclusion, on the one hand, Prdx1 has the ability to protect 
erythrocytes and DNA from NNK‑induced oxidative damage, 
prevent malignant transformation of cells and promote cyto‑
toxicity of NK cells, suppressing tumor formation. In addition, 
Prdx1 prevents NNK‑induced generation of large amount 
of ROS and hence, ROS‑induced apoptosis, and promotes 
tumor cell survival. On the other hand, together with NNK, 
Prdx1 promotes EMT and migration of lung tumor cells. The 
signaling pathways of NNK and Prdx1 in lung cancer cells 
are intricate, and the associated mechanisms are yet to be 
explored.
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