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Abstract

This work addresses the problem of constructing a unified, topologically optimal connectivity-based brain atlas.
The proposed approach aggregates an ensemble partition from individual parcellations without label agreement,
providing a balance between sufficiently flexible individual parcellations and intuitive representation of the av-
erage topological structure of the connectome. The methods exploit a previously proposed dense connectivity
representation, first performing graph-based hierarchical parcellation of individual brains, and subsequently ag-
gregating the individual parcellations into a consensus parcellation. The search for consensus—based on the hard
ensemble (HE) algorithm—approximately minimizes the sum of cluster membership distances, effectively esti-
mating a pseudo-Karcher mean of individual parcellations. Computational stability, graph structure preservation,
and biological relevance of the simplified representation resulting from the proposed parcellation are assessed on
the Human Connectome Project data set. These aspects are assessed using (1) edge weight distribution diver-
gence with respect to the dense connectome representation, (2) interhemispheric symmetry, (3) network charac-
teristics’ stability and agreement with respect to individually and anatomically parcellated networks, and (4)
performance of the simplified connectome in a biological sex classification task. Ensemble parcellation was
found to be highly stable with respect to subject sampling, outperforming anatomical atlases and other
connectome-based parcellations in classification as well as preserving global connectome properties. The HE-
based parcellation also showed a degree of symmetry comparable with anatomical atlases and a high degree
of spatial contiguity without using explicit priors.

Keywords: brain atlas; connectivity-based parcellation; diffusion MRI; ensemble clustering; human connectome;
structural brain connectivity

Introduction

The ability to quantify how the human brain is inter-
connected in vivo has opened the door to a number of

possible analyses. Connectome markers ranging from the
simple graph descriptors such as edge weights and nodal de-
grees to sophisticated graph theoretical measures have all
been invoked in the study of the brain. At the time of this
writing, dozens of studies examining the effects of genetics

and disease on structural and functional brain connectivity
have been published (Horovitz and Horwitz, 2012; Jahan-
shad et al., 2013; Jiang et al., 2019; Lynall et al., 2010;
Shah et al., 2017; Sun et al., 2014; Xu et al., 2016). In nearly
all of these, brain parcellation plays a crucial role. Variations
in parcellation significantly impact connectome reproduc-
ibility, derived graph theoretical measures, and the relevance
of connectome measures with respect to biological questions
of interest (de Reus and van den Heuvel, 2013; Petrov et al.,
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2017). Global topological properties of individual connec-
tome models can vary substantially depending on the parcella-
tion or set of nodes used (de Reus and van den Heuvel, 2013).
This remains true even in the absence of any other variation, for
example, for an identical tractography reconstruction, or the
same resting state functional magnetic resonance imaging (rs-
fMRI) preprocessing and correlation approach.

In short, the utility and interpretability of in vivo connectome
measures depend to a great extent on the parcellation. For this
reason, in recent years, much attention has been given to both
parcellation-free approaches and parcellations derived specif-
ically to attain some desired property (Prasad et al., 2014) in
the implied connectivity graph. This approach uses individual
densely sampled connectomes to drive the parcellation di-
rectly, leading to a more compact, connectivity-aware set of
brain regions and resulting graph, as done in, for example, Par-
isot et al. (2016a). A comprehensive review of parcellation
methods and their effects on the derived connectome quality
is given in Arslan et al. (2018).

Because individual connectivity data are at once very infor-
mative and highly redundant, there is a great flexibility in how
parcellations can be derived from dense, high-resolution graphs
such as those based on vertices of a cortical surface mesh. It is
possible, for example, to derive (1) a unified population-based
atlas, (2) individual-level parcellations with cross-subject label
mapping, or (3) individual parcellations with no intersubject
label correspondence. While the first approach is appealing
for its simplicity and ease of interpretation, the second and
third may enable the researcher to reveal some individual as-
pect of the connectome that is lost in the aggregate atlas.

In this work, we attempt to bridge these three approaches
by first constructing maximally flexible hierarchical parcel-
lations, and then finding a unifying set of labels and parcels
to maximize individual agreement. Several early approaches
in connectivity-based parcellation relied on significant ana-
tomical assumptions by representing the connectome as a
vertex by anatomical region matrix (Draganski et al.,
2008), by constraining the new parcels to lie within existing
anatomical boundaries, or both (Lefranc et al., 2016). While
such approaches are reasonable and result in a lower compu-
tational burden, their use may obfuscate some low-level to-
pological features of individual connectomes. In particular,
our requirement for maximum flexibility implies a prefer-
ence for an anatomy-free dense connectome representation.

Toward this end, we use a continuous representation of dif-
fusion MRI (dMRI)-based brain connectivity (Moyer et al.,
2017a) as our initial dense connectome. Continuous connec-
tivity is a parcellation-free representation of tractography-
based or ‘‘structural’’ connectomes that uses a generalization
of the Poisson point process. Once individual parcellations are
computed, we obtain a group-wise parcellation using a parti-
tion ensemble algorithm. The primary novelty of the approach
comes from its ability to find an average partition without
label correspondence in individual parcellations. Individual
partitions retain the ability to compactly represent the unique
topological structure of the connectome, while the average can
be cast as a Karcher mean with respect to a measure of label
agreement (Fig. 1).

All experiments are performed on 425 subjects from the
Human Connectome Project (HCP). The ensemble construc-
tion procedure is stable and approximates the average parcella-
tion well. Individual connectomes implied by the ensemble

parcellation are shown to be more faithful and more compact
representations of the underlying dense connectome than two
popular anatomical atlases. We also compare our proposed
method to the traditional means of constructing average parti-
tions, namely by parcellating some aggregate graph structure
constructed from individual graphs (Craddock et al., 2012; Par-
isot et al., 2016b). We use two realizations of this idea. In both
cases, the ensemble partition shows better performance.

Materials and Methods

In this section, we introduce methods for obtaining individ-
ual and group cortical parcellations from a set of N subjects.
Throughout the article we work with two different entities,
both represented as a network: brain surface mesh, denoted
by M, and structural connectivity network, denoted by
W. Individual brain surfaces are registered to the same refer-
ence (Glasser et al., 2013), and therefore, all subjects’ sur-
faces share the same set of nodes v1 . . . vK . Individual
connectivity network Wi is represented as a K · K adja-
cency matrix constructed on the same set of nodes. Every
edge Wi

u, v represents how two cortical points u and v are con-
nected in subject i. Thus, we have one-to-one correspondence
between vertices of individual connectomes and the cortical
surface mesh.

Continuous connectome

The continuous connectome (ConCon) model treats each
tract as an observation of an inhomogeneous symmetric Pois-
son point process with the intensity function given
byk : O ·O! Rþ [ f0g, where O denotes the union of
two disjoint topologically spherical brain hemispheres repre-
senting cortical white matter boundaries. In practice, Con-
Con can be treated as a discrete connectivity graph with
nodes defined by mesh vertices, that is, k(x, y) is an analogue
of an adjacency matrix. From this representation, a coarser
discrete connectivity graph can be computed from any corti-
cal parcellation C. We follow the definitions from Moyer
et al. (2017a) and call C = fEugu = 1, ..., L a parcellation of O
if E1, . . . , EL � O such that [Z

u = 1 Eu =O and Eu \ Ev = 0
for u 6¼ v, where L is the number of parcels. Edges between
regions Eu, Ev can then be computed by the integration of the
intensity function:

x(Eu, Ev) =
Z

Eu

Z
Ev

k(x, y) dx dy: (1)

Due to properties of the Poisson process, x(Eu, Ev) is the
expected number of observed tracts between Eu and Ev. In the
context of connectomics, this is the expected edge strength.

Individual parcellation

To obtain subject-level parcellation of M, we cluster ver-
tices of the associated W. The resulting clustering C is repre-
sented by a vector of length K : C = fc1, . . . , cKg, such that cj

is the ‘‘color’’ or assigned cluster index of node yj of network W.
We treat partitions that are different up to cluster index per-
mutation as equivalent; for example, [1,1,1,0,0], [0,0,0,1,1],
and [2,2,2,5,5] all represent the same partition of five objects.
As the nodes of W and vertices of M are homologous across
all subjects, we treat clusters of W as parcels of M (Fig. 1E,
F). The process of applying a parcellation onto matrix W is
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represented in Figure 2A and B. Throughout the article, we
use the terms ‘‘cluster,’’ ‘‘community,’’ ‘‘parcel,’’ and
‘‘color’’ (‘‘node color’’) interchangeably. We note that
none of the individual or consensus connectome-based clus-
tering approaches described below uses explicit contiguity
priors. A cluster may contain several spatially disjoint group-
ings of mesh vertices.

Intuitively, graph clustering seeks to group graph nodes
into clusters in such a way that nodes within the same cluster
are densely connected, while intercluster connections are
sparse. In this way, the original graph topology is preserved
with the benefit of a more parsimonious representation.
There are several ways to formalize this intuition. Here, we
cluster subject-level connectomes by optimizing their
graph modularity score, defined for a given clustering C as

Q(W , C) =
1

m
+
K

u, v

Wu, v�
dudv

m

� �
d(u, v), (2)

where du = +K

l
Wu, v is the degree of node u, and d(u, v) is the

Kronecker delta.
We use the Louvain modularity algorithm (Blondel et al.,

2008), as it has shown good results in multiple neuroimaging

studies (Kurmukov et al., 2017; Meunier et al., 2010; Nico-
lini et al., 2017; Taylor et al., 2017; Williams et al., 2019).
We note that the overall goal of this work—approximating
average parcellations—is agnostic with respect to the indi-
vidual clustering algorithm. The Louvain approach initial-
izes all nodes as separate clusters and applies an iterative
two-step procedure. The first step performs a greedy modu-
larity optimization by iteratively clustering nodes so long
as the new membership assignment increases the modularity
score. The second step builds a new metagraph, whose nodes
are communities from the previous step, while the edges are
defined as in Equation (1). The algorithm cycles over these
steps iteratively, until further cluster merging ceases to in-
crease modularity (Blondel et al., 2008).

The algorithm produces so-called hard clusters, or a parti-
tion: a set of disjoint communities, where every node is
assigned to no more than one cluster. Since Louvain modu-
larity tends to produce relatively large communities, we fol-
low the hierarchical brain concept (Kurmukov et al., 2016;
Meunier et al., 2010), repeating the clustering procedure re-
cursively. After the initial parcellation, we further cluster
each individual parcel as an independent graph. In this work,
we repeat the process three times; Figure 8 shows the resulting

FIG. 1. Overview of the
proposed method. Individual
continuous connectomes (B)
are clustered independently
(C). Individual partitions are
then ensembled, using the
hard ensemble algorithm.
The resulting ensemble par-
tition (D) could be mapped
onto the original mesh sur-
face resulting in a unified
parcellation (E). Color
images are available online.
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individual parcellation for a sample subject, at all three levels.
For each dense ‘‘continuous’’ connectome Wi, this procedure
yields a three-level hierarchically embedded partition:
CI , CII , CIII . To prevent individual regions from becoming too
small, we forbid subdivision of parcels containing fewer than
1% of all vertices.

We obtain partitions, and their corresponding connectome
models [Eq. (1)], for every subject individually and indepen-
dently at each refinement level. The number of nodes in the
new connectome model corresponds to the number of com-
munities in the individual parcellation C. In general, differ-
ent subjects have different numbers of nodes without node
correspondence across the data set.

Ensemble clustering

Anatomical parcellations of different brains by the same
atlas differ only in geometry. In this case, region labels
are homologous across subjects and the notion of an average
anatomical parcellation is equivalent to a registration prob-
lem. However, as we saw in the previous section, this is not
the case for connectivity-based parcellations. Region labels
are arbitrary and simple averaging of subject-level cluster
assignments for each vertex is not possible. To address
this, we turn to the concept of ensemble clustering. The
goal of ensemble clustering is to aggregate multiple parti-
tions of the same or homologous set of objects, in our case
the mesh vertices across a set of registered cortical surface
models. Formally, we wish to find a unifying partition
from multiple individual partitions C1, . . . , CN of a set of ar-
bitrary objects v1 . . . vK . We define the average partition of
all Ci as the Karcher mean over some partition distance
d( � , � ):

C� = arg min
C

+
N

i = 1

d(Ci, C)2, (3)

where C� denotes the desired average partition. Finding C� is
generally NP-complete (Vega-Pons and Ruiz-Shulcloper,
2011), but several algorithms enable approximate solutions.
Here, we use the hard ensemble (HE) approach (Dimitriadou
et al., 2002). The HE algorithm is based on a greedy optimi-
zation of Equation (3). Partition distance d( � , � ) is defined
as the difference in membership functions up to permutation:

d(Pi, Pj)2 =
1

KL
+
K

k = 1

+
L

l = 1

Pi
k, l�P

j
k, l

� �2

: (4)

Here Pi, Pj are binary membership matrices of size
K · L (L � K) encoding two different data partitions,
where L is the total number of communities in partition C:

Pk, l = 1 if C(k) = l

0 otherwise

�
: (5)

For disjoint clusters, each row of P contains only one non-
zero entry. As with the vectorial representation C, P is de-
fined up to label index permutation, that is, up to any
column permutation p: The optimization procedure is per-
formed with respect to all possible p: In practice, as generally
Li 6¼ Lj, we set L = max(Li, LJ) and pad the matrix with fewer
clusters with all-zero columns.

HE combines multiple partitions Ci, . . . , CN successively.
First averaging a pair of subjects to obtain C�12, we proceed to
find a weighted average C�123 of C�12 and subject C3, and so on
until subject CN is averaged with C�1...(N� 1) to obtain
C� = C�1...N . The HE optimization procedure is order-

FIG. 2. Piecewise constant connectome approximation. Individual ConCon s (A) are projected onto a ‘‘discrete’’ low-
resolution representation (B), which in turn is dilated into a piecewise constant approximation of the original continuous con-
nectivity map (ConCon; C). ConCon continuous connectome. Color images are available online.
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dependent: averaging C1, C2, C3 and C2, C3, C1 may yield
different results. We address this problem in the Experimen-
tal Pipeline section.

Partitions based on aggregate graphs

To compare ensemble clustering to the standard methods of
uniformly partitioning disparate graphs, we adapt two separate
previously used approaches. The first is a simple average graph
clustering. We compute the average ConCon: W� = 1

N
+

i
Wi,

and cluster it using the Louvain approach over three hierarchi-
cal levels, just as we do for individual connectomes (Individual
Parcellation section). We refer to this method as ‘‘Average.’’

The second aggregate-based method is the cluster-based
similarity partitioning algorithm (CSPA) (Strehl and Ghosh,
2002). CSPA defines the similarity between objects based
on their co-occurrence in the same cluster across different
partitions:

S(va, vb) = +
N

i = 1

d(Ci(a), Ci(b)): (6)

Here d again is the Kronecker delta, and Ci(a), Ci(b) repre-
sent colors of objects va, vb. Effectively, S(va, vb) is the num-
ber of individual partitions that assign va and vb to the same
cluster. By clustering the graph S, CSPA obtains an approx-
imate consensus partition.

Although several authors have used CSPA without men-
tioning it explicitly (Arslan et al., 2015; Craddock et al.,
2012), their pipeline differs somewhat from ours, as CSPA,
like HE, is also agnostic with respect to the clustering algo-
rithm. For consistency, we again use the three-level Louvain
modularity approach.

Comparison metrics

In this section, we describe approaches to assess the qual-
ity of a unified parcellation. The first quality measure is the
distance between the original continuous Poisson function
k(x, y) and its piecewise constant approximation, given by
the following:

c(x, y) =
1

jEijjEjj
x(Ei, Ej), (7)

where x 2 Ei and y 2 Ej, and jEij, jEjj are the expected nodal
degrees of regions Ei, Ej.

The natural way to compare two statistical distributions is
to measure the distance between their probability density
functions. Following Parisot et al. (2015), we use Kullback–
Leibler (KL) divergence (Kullback and Leibler, 1951):

KL(k, c) =
Z

u 2 O ·O

k(u)log
k(u)

c(u)
du: (8)

The intuition here is that networks derived using a ‘‘bet-
ter’’ parcellation should have lower KL values with respect
to the continuous representation, since they are better at cap-
turing internal graph structure. Importantly, networks de-
rived from parcellations with more parcels generally have
lower KL at the cost of less compact representation.

To assess parcellation agreement objectively, that is, with-
out using the metric in the Ensemble Clustering section, we
use Adjusted Mutual Information (AMI) (Vinh et al., 2009),

a normalized variant of Mutual Information (MI). AMI mea-
sures the similarity between two partitions, with the value of
1 corresponding to identical partitions and values close to
zero corresponding to partitions that are very different.
Given two different partitions X and Y, we build a K · K ma-
trix T whose rows and columns correspond to clusters of X
and Y, respectively. Tij = jXi \ Yjj, or the number of objects
that are both in cluster i of partition X and in cluster j of par-
tition Y. MI is then defined as usual:

MI(X, Y) = +
LX

i

+
LY

j

pijlog
pij

pipj

, (9)

where LX , LY are the numbers of clusters in X and Y, pi = jXij
K

,

and pij = Tij

K
. Among multiple options to adjust MI for chance,

we use AMImax:

AMImax(X, Y) =
MI(X, Y)�E(MI(X, Y))

max(H(X), H(Y))�E(MI(X, Y))
, (10)

where H(X) = � +ZX

i
pilog pi is the entropy, and the expec-

tation is computed based on the permutation model as in
Vinh et al. (2009). MI and AMI are well suited for our pur-
pose, as these measures are invariant to permutations of re-
gion indices just like our partition aggregation.

We use AMI in several contexts: to assess unified parcella-
tion similarity to individual partitions, to compare different
parcellations between themselves, and to assess HE ensem-
bling stability with respect to the averaging order. Further-
more, as our left and right cortical meshes are in symmetric
register, we use AMI to measure parcellation symmetry.
We also introduce an exploratory measure of anatomical-
and connectome-based parcellation agreement. We use the
Sorensen–Dice score to measure overlap between regions
of an anatomical atlas and the ensemble parcellation. For
every anatomical atlas region Xi, we compute its minimal
cover of ensemble regions Y� =

S
min Yj2Y Yj 3 Xi � Y�, that

is, the minimal subset of regions Yj in parcellation Y, such
that X � Y�: Parcellation agreement is then the Dice score be-
tween Xi and Y�:

Dice =
2jXi \ Y�j
jXij þ jY�j

: (11)

An additional potentially valuable property of a parcellation
is the spatial contiguity of its resident parcels. Although it is
a desirable property, unlike several previous approaches, we
do not enforce it explicitly. To assess contiguity, we use the
percentage of mesh vertices that are assigned to a spatially
contiguous, simply connected parcel, that is, a label that de-
fines exactly one piece of the cortex.

It has been observed that brain networks differ from vari-
ous canonical networks of the same size mean nodal degree,
for example, random, preferential attachment, or lattice net-
works, in specific ways (Bullmore and Sporns, 2009). It is
known, for example, that connectomes are small-world net-
works, characterized by relatively high modularity and rela-
tively short path lengths (Fornito et al., 2013). It then stands
to reason that an appropriate unified parcellation will pre-
serve these properties over some limited range of graph res-
olutions with respect to subject-optimized partitions. To test
this, we take network properties derived from individual
connectome-based partitions, and assess how well these are
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preserved when a unified partition is applied instead. An optimal
partition should preserve these exactly, while a good partition
should at least lead to a strong correlation between the ground
truth values and consensus-based estimates. Here, we use two
network characteristics: clustering coefficient (CC) and average
path length (APL) (Rubinov and Sporns, 2010). Finally, we as-
sess biological relevance of the simplified connectome represen-
tation using the receiver operating characteristic area under the
curve (ROC AUC) score in a sex classification task.

Data preprocessing

We analyzed data from 425 subjects: 167 men, mean age
28.0 (3.7), 258 women, mean age 29.3 (3.6) from the HCP
S900 release (Van Essen et al., 2013). We reconstruct
each subject’s ConCon following the protocol in Moyer
et al. (2017a). T1- (T1w) and diffusion-weighted images
(DWI) were rigidly aligned to MNI 152 space. The HCP co-
hort has the following acquisition parameters: (1) T1w: flip
angle: 8�; TI: 1000 msec; TE: 2.14 msec; TR: 2400 msec;
voxel: 0.7 · 0.7 · 0.7 mm3; (2) DWI: flip angle: 78�; TE:
89.5 msec; TR: 5520 msec; 90 directions at each b-value;
b-values: 1000, 2000, and 3000 sec/mm2; voxel size:
1.25 · 1.25 · 1.25 mm3.

All images were corrected for gradient nonuniformity.
DWI was also corrected for motion and eddy current distor-
tion. Cortical surface extraction, spherical registration, and
labeling were performed using FreeSurfer version 5.3

recon-all (Fischl et al., 1999). All surfaces and labels were
remeshed and resampled in the common spherical domain
using a fifth-order icosahedral mesh (10,242 vertices) to con-
struct meshes of reasonable resolution with dense vertex-to-
vertex correspondence. Probabilistic streamline tractography
was performed in 1.25 mm isotropic MNI 152 space using
Dipy’s implementation of constrained spherical deconvolu-
tion (Tournier et al., 2008) with a harmonic order of 8. We
seeded tract streamlines at two random locations in each
likely white matter voxel based on FSL FAST segmentation
(Zhang et al., 2001). Streamline tracking followed random di-
rections proportionally to the orientation distribution function
at each step, starting bidirectionally from the seed. Only tracts
longer than 5 mm with end-points in likely gray matter were
retained. The ConCon construction was performed using kernel
density estimation as per Moyer et al. (2017a), with a preset
kernel parameter r = 5 · 10� 3.

Experimental pipeline

It is generally established that all tractography reconstruc-
tions contain a substantial portion of false-positive tract
models and connections, and this issue is commonly miti-
gated in practice by applying an arbitrary sparsity threshold
(Thomas et al., 2014). To ensure that our method is robust
with respect to network sparsity, we performed all experi-
ments at 10 different network sparsity levels. We thresholded
each ConCon representation to contain from 10% of the

Table 1. Parcellation Stability with Respect to Different Metrics

Parcellation
No.

of regions
Subject sampling

similarity
Intramethod

similarity APL
Clustering
coefficient

HE3 86 (2) 0.83 (0.3) 0.91(0.03) 1041.8 (0.1) 1029.0 (0.3)
Aver3 89 (3) 0.85 (0.07) 0.95 (0.05) 1041.7 (0.1) 1029.5 (0.3)
CSPA3 10 (1) 0.71 (0.08) 0.83 (0.02) 104178.6 (0.4) 10274.6 (7.0)
Individual3 96 (7) (�) 0.83 (0.05) 1041.3 (0.2) 10210.1 (0.3)
Desikan 68 (�) 0.99 (0.00) 1.0 (�) 1043.3 (0.3) 1028.6 (0.3)
Destrieux 148 (�) 0.98 (0.00) 1.0 (�) 104.8 (0.1) 1029.1 (0.2)

Values in the table are mean and (standard deviation). For ‘‘number of clusters,’’ the std is measured over different edge thresholds; for
‘‘subject sampling,’’ std is measured over different samples; ‘‘intramethod similarity’’ represents average similarity between parcellations
obtained using the same method, but different edge thresholds (e.g., HE3with 10%, 20%, ., 100% edges left), measured in terms of AMI.
APL and CC are measured for a single threshold (10%), averaged over all subjects.

AMI, Adjusted Mutual Information; APL, average path length; CC, clustering coefficient.

Table 2. Parcellation Properties’ Comparison

Parcellation
No.

of clusters
Similarity with

subject parcellation
Hemisphere

symmetry
Spatial

contiguity

HE1 8.4 (1) 0.53 (0.06) 0.25 (0.01) 0.93 (0.00)
HE2 31 (2) 0.65 (0.02) 0.57 (0.01) 0.94 (0.00)
HE3 86 (2) 0.70 (0.01) 0.66 (0.01) 0.95 (0.00)
Aver1 8 (1) 0.50 (0.05) 0.23 (0.00) 0.87 (0.08)
Aver2 33 (1) 0.64 (0.02) 0.52 (0.01) 0.89 (0.04)
Aver3 89 (3) 0.68 (0.01) 0.60 (0.01) 0.92 (0.01)
CSPA1 7 (1) 0.48 (0.06) 0.18 (0.03) 0.95 (0.02)
CSPA2 8 (1) 0.41 (0.02) 0.25 (0.01) 0.91 (0.06)
CSPA3 10 (1) 0.40 (0.01) 0.35 (0.02) 0.93 (0.05)

Results are averaged over all sparsity levels. Best and second-best result in every column is bold. Index denotes partition hierarchy level
(e.g., HE2 is the parcellation derived using HE from individual partitions at level 2).

CSPA, cluster-based similarity partitioning algorithm; HE, hard ensemble.
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original edges (heaviest 10% edges) to 100% ( = no thresh-
old) of the original density edges, in 10% increments.

In our experiments, we examine three important aspects of
group parcellation. The first two are essential tests for any
concept of averaging. The third aspect is related to connec-
tomic analysis. In this context, applying a parcellation is a

method to decrease dimensionality, and often to decrease
noise, that is, reduce false-positive and false-negative
edges (Zalesky et al., 2016) and thus increase the signal-to-
noise ratio. In summary, an optimal parcellation should:

1. Be stable with respect to sample permutations or aver-
aging random subsamples.

2. Be ‘‘in the middle’’ of the sample based on reasonable
metrics.

3. Accurately approximate the structural connectivity of
the brain.

We start by applying the three-level Louvain approach to
ConCons. Next, we aggregate individual subject partitions
and obtain consensus clustering using both CSPA and HE.
We also compute the average connectome and cluster it
using the Louvain algorithm. Finally, we apply Desikan–
Killiany (DK) (Desikan et al., 2006) and Destrieux (Destrieux
et al., 2010) parcellations. All network-based parcellation
types are constructed from networks at each of the 10 sparsity
levels. In total, for every ConCon representation, we obtain
110 low-resolution or ‘‘discrete’’ connectomes.

To measure intrinsic parcellation stability, we sample 100
random splits of HCP sample and compute an ensemble for
each split. We compare all ensembles pairwise using AMI
for a total of 100 · 99=2 = 4950 comparisons. Finally, as
the HE algorithm depends on averaging order, we randomly
permute the subject order 100 times and proceeded as above
with all pairwise comparisons.

We test the goodness-of-fit of our ensemble procedure
based on two concepts:

1. Intrinsic label agreement.
2. Stability of global network characteristics (Rubinov

and Sporns, 2010).

We take the mean AMI between a unified parcellation C�

and all individual partitions, 1
N

+N

i
AMI(Ci, C�), as a measure

of ‘‘ensemble goodness.’’ We compare global network

FIG. 3. Similarity between different parcellations
(AMI · 100). Values are averages across all sparsity levels.
Diagonal values show average similarity between parcella-
tions obtained using the same method, but different network
sparsity levels. Note that anatomical parcellations do not de-
pend on the individual connectome construction. AMI,
Adjusted Mutual Information.

FIG. 4. Pearson correlation ( · 100) between global network characteristics derived from different parcellations within the
HCP sample. Left: Average path length; Right: Average clustering coefficient. ‘‘Individual’’ corresponds to level 3 individual
subject parcellation. HCP, Human Connectome Project.
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characteristics for connectomes derived using subject-level
parcellations and ensemble parcellation. To assess network
property preservation, we use the KL divergence on edge
weight distributions. For sex classification, we use logistic
regression with l1 penalty, using edge weights as features.
To avoid overfitting, we derive an ensemble parcellation
using one half of all subjects and apply it to the other half.
Classification results are estimated on the second half of
the data. We validate the results using a bilevel k-fold proce-
dure: the first level is used to obtain the optimal Lasso param-
eter, and the second to assess classification performance.

Additional parcellation assessments include the following:

1. Interhemispheric symmetry in the ensemble parcella-
tion, as our original cortical mesh representations are
in symmetric vertex-wise register.

2. Spatial contiguity of the resulting group atlas.
3. Similarity between connectivity-driven parcellations

(HE, CSPA, and Aver) and anatomical parcellations
(DK and Destrieux).

All code was written in Python 3.7.3 and R 3.6.1, using the
sklearn (Pedregosa et al., 2011), igraph (Csardi and Nepusz,
2006), and clue (Hornik, 2005) packages. All source code is
available online https://github.com/kurmukovai/connectivity-
brain-parcellation.

Results

Table 1 summarizes stability results with respect to edge
thresholding (network sparsity) and subject sampling for
all parcellations at level 3. The mean (std) AMI between
HE parcellations with different subject order is 0.91 (0.02),
implying a negligible effect of subject order. Average and
HE approaches are stable in all cases, while CSPA is notice-
ably less stable with respect to subject sampling. CSPA, as
implemented here, produces far ‘‘cruder’’ parcellations,
that is, parcellations with substantially fewer regions, than
the corresponding individual parcellations. The mean (std)
number of regions in individual partitions was 9 (2), 35
(4), 96 (7) for CI , CII , CIII , respectively. CSPA produces

FIG. 5. Classification performance in terms of ROC AUC
(higher is better). Numbers above each box indicate the number
of regions in the parcellation. Every box corresponds to a single
method with the method-optimal sparsity threshold. Distribu-
tion is measured using fivefold cross-validation. ROC AUC,
receiver operating characteristic area under the curve.

FIG. 6. ConCon approximation goodness, in terms of KL
divergence (lower is better). Numbers above each box indi-
cate the number of regions in the parcellation. Each box cor-
responds to a whole HCP sample average for the given
method at the 10% sparsity level. KL, Kullback–Leibler.

FIG. 7. Group parcellation. All images correspond to the
right hemisphere. HE, average and CSPA parcellations
were derived from networks with 10% strongest edges.
Color is random. CSPA, Cluster-based Similarity Partition-
ing Algorithm. Color images are available online.
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seven regions for CI, 8 for CII , and 10 for CIII . This can be
partially explained by Louvain’s tendency to produce few
large parcels. We show all CIII parcellations of 10%-sparse
networks in Figure 7.

Mean AMI with respect to individual parcellations was
highest for HE3, followed closely by Aver3 (Table 2).
Table 1 shows mean network characteristics for all level 3
connectome-based and anatomical partitions used in this
work. There is generally agreement within two standard devi-
ations between anatomical atlas-based CC measures and
connectome-derived ones, except for CSPA. Path length
(APL) was also on the same order across methods with some-
what more disagreement, again with the exception of CSPA,
which produced an order of magnitude larger estimates of
both measures. At the subject level, there was strong correla-
tion between CC/APL derived from the HE3 partition and the
anatomical as well as the individual connectome-based parti-
tions. Figure 4 demonstrates correlations between individual,
ensemble, and anatomical networks. It is noteworthy that HE3

shows the highest correlation among the connectome-based

aggregate partitions with both anatomical and individual net-
works for both measures, except for individual versus
Aver3APL correlation where it is very close. The ensemble
partition appears to strike an optimal balance between ana-
tomical and individual connectome-based parcellations. Bio-
logical sex classification is summarized in Figure 5.
Surprisingly, even a parcellation with a small number of re-
gions (HE2) performs nearly as well at this task as partitions
with substantially more regions. HE3 and Aver3 show the best
classification results, slightly outperforming the anatomical
atlas networks.

Results for piecewise-constant approximations of con-
tinuous connectivity based on cortical parcellations are
shown in Figure 6. KL divergence is generally smaller
for parcellations with more regions. However, our best par-
cellation, HE3, has just over half of the number of regions
in the Destrieux atlas, although the two are nearly equal in
approximating dense networks. This holds true for HE2

when compared with the DK parcellation. This result sug-
gests that the intrinsic connectivity structure of the original

FIG. 8. Hierarchical par-
cellation. Left: an individual
parcellation; Right: group
parcellation. All parcellations
were derived from networks
with 10% strongest edges.
Note that regions of succes-
sive HE parcellations (E–D,
F–E, and F–D) are not ex-
actly hierarchically embed-
ded, as they were obtained
from the ensembling proce-
dure. Subject-level parcella-
tions are hierarchically
embedded by construction
(B–A, C–B, and C–A). Color
is random. Color images are
available online.
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ConCon representation is captured at least as well by the
ensemble-based network, but with fewer parcels.

Finally, we analyze some natural parcellation properties.
Table 2 shows that both HE and Average have high hemi-
spheric symmetry and region contiguity. We also observe
that the resulting connectivity parcellations are in many
ways similar to anatomical parcellations, as shown in Fig-
ure 3. For example, the similarity between HE3 and DK is
about the same as the level of similarity between DK and
Destrieux.

Discussion

Recently, several approaches to construct connectome-
based parcellations have been proposed. Central to many
of these is some notion of graph clustering, with some en-
abling local or node-based group-level analysis based on a
group partition, and others focusing on normalizing graph
metrics without a unified parcellation. Variations on the
first approach include clustering some aggregate graphs
over corresponding nodes, including consensus clustering
(Arslan and Rueckert, 2015; Arslan et al., 2015; Craddock
et al., 2012), or using a multiview spectral clustering over
several graphs simultaneously (Bickel and Scheffer, 2004;
Parisot et al., 2016b).

The simplest of these methods clusters a connectome that
comprised average edge weights in the sample. While easy to
perform, this method leads to unified parcellations that ig-
nore individual topological network differences (Lefranc
et al., 2016). In some sense, this approach achieves high sen-
sitivity but low specificity. Consensus clustering of aggre-
gate graphs, such as CSPA, is another straightforward and
well-studied approach. Here the issue is stability. As we
have shown, consensus clustering relies on constructing a
metagraph of cluster agreements. The results often vary sub-
stantially depending on the sample of connectomes. As with
any optimization stability issue, well-defined priors, such as
spatial constraints (Arslan and Rueckert, 2015), can partially
alleviate this issue, but at the cost of imposing additional as-
sumptions. With such methods, we often observe regions that
are remarkably uniform in size and shape in contrast to
known architectonic subdivisions of the cortex. An improve-
ment on these approaches, multiview clustering allows one

to find a clustering structure from multiple data sets simulta-
neously. This method is primarily developed for spectral
clustering approaches and similarly lacks flexibility, for ex-
ample, tending to find equally sized communities—a com-
mon issue with spectral clustering.

The approaches above share one additional shortcoming:
the number of regions in a given parcellation must be prede-
fined by the user. A desirable property for a group parcella-
tion algorithm is the ability to optimize not only the
composition but also the number of the regions automatically
for network representation. An example of such an approach
for individual connectome parcellation is given in Moyer
et al. (2017b), where the authors exploit the ConCon Poisson
process representation in a Bayesian nonparametric mixture
model of connectivity. In this work, we instead sought a
group parcellation method that addresses the issues above,
automatically selects the number of regions, and preserves
individual network properties.

Ensemble clustering offers a reasonable balance between
these requirements. Using ensemble clustering in the context
of brain parcellation is particularly interesting as it is agnos-
tic to the choice of a specific clustering algorithm. To the best
of our knowledge, this is the first application of ensemble
clustering in this context. The Louvain + HE combination
appears particularly potent, marrying the modularity maxi-
mization that is natural for cortical connectomes with a flex-
ible ensemble partitioning that balances individual topology
preservation and unified parcellation. It is worth stressing
that the ensemble parcellation results in spatially contiguous
parcels, without any specific constraints. Most prior work used
spatial constraints to ensure this property, while Louvain +
HE appear to derive reasonably contiguous regions solely
from brain connectivity.

As a final exploratory analysis, we compare minimal cov-
ering of the ensemble connectome parcels over their corre-
sponding DK regions. The dice score between anatomical
regions and their minimal connectomic coverings may be
interpreted as follows: where the agreement is high, the ana-
tomical regions capture well the modular decomposition of
corticocortical connectivity. Conversely, where the agree-
ment is low, cortical connectivity modules do not explain an-
atomical partitioning. A number of reasons can be postulated
for regional differences in this measure. Here, we suggest

FIG. 9. Overlap between the
Desikan-Killiany atlas and the mini-
mal ensemble parcellation covering.
Anatomical regions in best agreement
are the left lateral occipital sulcus
(Dice = 0.83) and the left superior
frontal gyrus (Dice = 0.73). Color
images are available online.
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two ideas. (1) Tractography quality varies with region (Tho-
mas et al., 2014). (2) Areas dominated by corticocortical
connections are more likely to agree with connectome mod-
ules. On the contrary, areas with increased connectivity to
noncortical regions, for example, deep gray matter regions
and the peripheral nervous system, are less likely to agree
with parcels based only on connections to other parts of
the cortex. Figure 9 appears to validate the second hypothe-
sis: occipital and frontal areas have generally high agree-
ment, while the sensory-motor strip and temporal areas
have low agreement.

Conclusion

We have presented an approach for generating unified
connectivity-based human brain parcellations based on en-
semble clustering. The method is based on finding a pseudo-
Karcher mean over a set of individual partitions. Our ap-
proach outperforms standard anatomical parcellations
based on several important metrics, including agreement
with dense connectomes, improved relevance to biological
questions, and improved symmetry. As our approach is en-
tirely data-driven and requires no agreement between indi-
vidual parcellation labels; it combines both the flexibility
of individual parcellations and the interpretability of simple
unified atlases. Experiments on independent groups show
high reproducibility of the proposed parcellation, even
though the ensembling procedure has several potential sour-
ces of uncertainty.

The analysis presented here is largely exploratory, and
several questions remain open. Among these are robustness
with respect to dMRI resolution and tractography type, sta-
bility with respect to different cohorts and individual parcel-
lation types, and the effect of increasing sample size on the
overall composition of the unified parcellation. Future explo-
ration will address these questions, potentially developing a
cohort-specific and cross-cohort meta-averaging procedure
for large multisite brain connectivity studies.
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