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Simple Summary: Equine viral diseases remain a prominent concern for human and equine health
globally. Many of these viruses are of primary biosecurity concern to countries that import equines
where these viruses are not present. In addition, several equine viruses are zoonotic, which can have
a significant impact on human health. Current diagnostic techniques are both time consuming and
laboratory-based. The ability to accurately detect diseases will lead to better management, treatment
strategies, and health outcomes. This review outlines the current modern isothermal techniques for
diagnostics, such as loop-mediated isothermal amplification and insulated isothermal polymerase
chain reaction, and their application as point-of-care diagnostics for the equine industry.

Abstract: The global equine industry provides significant economic contributions worldwide, pro-
ducing approximately USD $300 billion annually. However, with the continuous national and
international movement and importation of horses, there is an ongoing threat of a viral outbreak
causing large epidemics and subsequent significant economic losses. Additionally, horses serve
as a host for several zoonotic diseases that could cause significant human health problems. The
ability to rapidly diagnose equine viral diseases early could lead to better management, treatment,
and biosecurity strategies. Current serological and molecular methods cannot be field-deployable
and are not suitable for resource-poor laboratories due to the requirement of expensive equipment
and trained personnel. Recently, isothermal nucleic acid amplification technologies, such as loop-
mediated isothermal amplification (LAMP) and insulated isothermal polymerase chain reaction
(iiPCR), have been developed to be utilized in-field, and provide rapid results within an hour. We will
review current isothermal diagnostic techniques available to diagnose equine viruses of biosecurity
and zoonotic concern and provide insight into their potential for in-field deployment.

Keywords: equine; viruses; loop-mediated isothermal amplification; insulated isothermal poly-
merase chain reaction; field-deployable; point-of-care testing

1. Introduction

Since their domestication, equines have been a pivotal part of history and continue
to provide fundamental economic value worldwide [1–3]. With an estimated global pop-
ulation of over 59 million domesticated horses [4], the global equine industry is valued
at approximately USD $300 billion annually [2,5]. The industry comprises of two main
categories: primary equine activities and secondary equine activities. Primary activities are
defined as sectors directly involved with equines, such as horse trainers, coaches, breeders,
professional competitors and jockeys, and clubs and associations. In contrast, the sec-
ondary sector is for services that are indirectly involved with equines, or provide external
services for equine owners, such as equine health professionals, and support industries
including transport and sale of horses [6]. These sectors provide essential services for
countries worldwide, significantly contributing to strong economic growth, particularly in
developing communities [3,7].
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In addition to the economic contributes, the global equine industry has an estimated
1.6 million full-time employees. In particular, the racing industry is the major contributor
with significant levels of employment, from trainers and jockeys to breeders [8]. With
over 160,000 races held worldwide annually [9], the economic substance of this industry is
apparent. Additionally, the racing industry provides longstanding culture and traditions
throughout the world. For example, the Melbourne Cup, held in Australia, is the most
renowned handicap Thoroughbred equine racing event of the year [10]. Over 22 countries
participate and import their Thoroughbreds to Australia for the racing seasons, reaching a
yearly global audience of over 700 million [11].

While the equine industry is extremely important economically and socially, as either
organized equine sport or companion animals, there is a range of zoonotic and non-
zoonotic viral infections that are harmful to both equine and human health [12–14]. For
example, Australia experienced an outbreak of equine influenza in 2007, affecting roughly
69,000 horses and resulting in a significant economic loss estimated at a current AUD
$571 million, with eradication alone costing an inflated $370 million [15]. Fortunately,
Australia was able to eradicate this virus; however, further worldwide viral outbreaks
continuously loom over the fate of the industry [14]. With continuous global movement,
importation and subsequent housing of large equine populations increasing worldwide, it
is essential to increase biosecurity measures and diagnostics against viral diseases to avoid
rapid transmission and spread [16].

Moreover, many of these diseases do not have effective treatment options; thus, there
is an increased demand to control and eradicate diseases through improved biosecurity
protocols [12,17,18]. The ability to accurately diagnose diseases early could lead to better
management and treatment strategies [16]. Diagnostic methods have been developed
over previous decades due to advances in biochemistry, molecular biology, and immunol-
ogy research [19] and continue to improve presently. These advancements, such as and
point-of-care (POC) diagnostics, are increasingly utilized and sought after for routine
diagnosis for equine viral infections [16]. While many molecular tests, such as polymerase
chain reaction (PCR), have been developed to detect equine viral infections, they are not
field-deployable, thus are unable to support rapid decision-making for disease control
and treatment [20–22]. To overcome these drawbacks current research has moved toward
isothermal nucleic amplification techniques, such as loop-mediated isothermal amplifica-
tion (LAMP) [23] and insulated isothermal polymerase chain reaction (iiPCR) [24]. Both
these methods utilize an enzymatic reaction to amplify nucleic acid, at a constant tempera-
ture [23,24]. LAMP and iiPCR have been previously demonstrated to be field deployable
POC diagnostic techniques, achieving results in less than an hour. These powerful tools
have been extensively researched for equine medicine, and continue to pave the way for
newer, more accessible diagnostic methods [23–29]. Here we review the field-deployable
technology, LAMP and iiPCR, and their application to diagnose equine viral infections.

2. Equine Viral Diseases of Biosecurity Concern

Despite strict global import and biosecurity policies, infectious disease outbreaks
continue to occur globally, particularly with equine viruses [13,30]. These outbreaks
have detrimental effects on the equine’s health and welfare and inhibit their regular
activity, subsequently harming the industry’s economy in the associated geographical
regions [15,17,20]. The World Organisation of Animal Health (OIE) releases a yearly
report stating the diseases of concern for terrestrial animals, which includes equine viral
pathogens [31,32]. This section outlines each of these viral diseases.

2.1. African Horse Sickness

African horse sickness (AHS) is a non-contagious arthropod-borne virus widely dis-
tributed across sub-Saharan Africa [33]. There are four forms of the disease: subclinical,
subacute or cardiac, acute respiratory, and mixed. Mortality rates vary with disease severity,
with the mixed and acute respiratory forms having the highest mortality rates at 70–80%
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and 95%, respectively [34]. As AHS is transmitted to a susceptible host via a mosquito
vector, mainly Culicoides species, the virus can quickly spread before containment [35,36].
Moreover, recent studies have warned that the distribution of AHS is expanding from en-
demic areas to regions with suitable climatic environments that are home to other mosquito
species which share ancestry with Culicoides species [35–37]. In fact, four horses in Thailand
during March 2020 tested positive for AHS after succumbing to infection just 12–24 h after
initially displaying symptoms, making quick diagnosis paramount [38]. Furthermore, the
government had to quickly implement control measures and utilize live attenuated vac-
cines [39]. Despite the availability and the continuous development of AHS vaccines [40],
many countries including Australia, still do not have approval for implementation to these
options [41], leaving them vulnerable to a potential outbreak without a means to control
the disease [36].

2.2. Equine Encephalomyelitis (Western)

While western equine encephalitis (WEE) persistence has been declining considerably
since the mid-20th century [42–45], this arbovirus remains on the OIE list of notifiable
diseases [31,32]. The choice to continually survey for this virus is attributed to the potential
for further significant and detrimental outbreaks [42]. The virus circulates in an enzootic
cycle between mosquitoes, specifically Culex species, and passerine birds. However, in-
fection of humans and equines can occur in the event of a spillover during peak vector
activity periods [42,46–48]. Cases have declined since the 1940s and 1950s, which saw peak
cases in humans and equines in America’s western region [42]. Clinical signs in horses
start with biphasic fever, followed by a range of neurological and behavioural symptoms,
including anorexia, ataxia, aggression, somnolence, aimless wandering, general depression,
and animals eventually succumb to the disease [49–51]. In humans, WEE infections can
result in neurological sequelae post-infection which places a severe strain on health care
system. Treatment costs for human infection varies between $21,000 and $3 million per
case [42,52]. There is no specific antiviral treatment for both humans and equines, with sup-
portive care the only available option [48,51,53]. The recommended diagnostic techniques
for WEE include virus isolation and reverse-transcription PCR (RT-PCR) [31]; however,
development is in progress for a nucleic acid sequence-based amplification (NASBA) assay
that could provide a more rapid means of detection and be used for field samples [54].
However, this assay is yet to be validated.

2.3. Equine Infectious Anaemia

Equine infectious anaemia (EIA) is a non-contagious disease of equids; however,
equines and ponies are more susceptible to severe clinical infection of this virus. This
globally prevalent disease causes all infected equids to become life-long carriers [55–58].
Transmission occurs through blood-feeding vectors, specifically horseflies and deerflies,
blood-contaminated fomites, and in utero via transplacental transmission [55,59,60]. Clin-
ical signs vary depending on the strain virulence and susceptibility of the equid host.
Majority of cases occur in three phases; the acute or initial phase, followed by a chronic
phase, and finally the inapparent, or long-term asymptomatic phase [55,57,61]. Clinical
symptoms typically appear within seven to thirty days post-infection, with fever, depres-
sion, and possible thrombocytopenia; however, signs may be mild and can be overlooked,
resulting in misdiagnosis or underreporting [55,57,62]. Equines experience reoccurring
episodes of fever, increased heart and respiratory rates, anaemia, muscle weakness, and
loss of condition for around one year following initial infection [55]. Equines will then
become chronic life-long carriers with no apparent symptoms [57]. EIA has caused severe
outbreaks throughout Europe and has re-emerged in countries after multiple years of
disease absence [63]. Diagnostics are exclusively performed by serological techniques,
including enzyme-linked immunosorbent assay (ELISA) [59,61,64]; however, only the agar
gel immunodiffusion (AGID) assay remains OIE approved [31,59]. Despite this recom-
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mendation, the AGID assay can require a secondary test for validation [31] and is not
appropriate for equines in the acute phase of infection as viral load is too low [65].

2.4. Equine Influenza

Equine influenza (EI) is reported as the most important globally distributed respira-
tory disease in equines [66]. The fatality rates are contributed to the secondary bacterial
infection; however, the prognosis typically relies on the individual immune status [67]. EI
is highly contagious and has multiple transmission pathways, including contaminated
fomites. Furthermore, there is no specific treatment, and despite an available vaccine,
significant outbreaks continue to occur [66]. As previously stated, Australia experienced
an EI outbreak in 2007 that lasted for five months affecting roughly 69,000 horses [15,68].
The magnitude of the outbreak affected 9,600 properties, including companion equine
households, business incomes, and horse associations [69]. The strict biosecurity measures
were implemented and remain ongoing; however, a recent survey of 1,224 horse owners
directly involved in the 2007 outbreak reported that 32% of participants were not in favor
of continuous biosecurity measures. More concerningly, approximately 30% of participants
had low biosecurity compliance, stating they implemented biosecurity procedures “not
often” or “never” [30]. This complacency, or lack of understanding, further enhances the
risk of outbreaks throughout the equine industry [70]. More recently, the United States
has had waves of annual epidemics in 2015, 2016, and 2017, affecting 23, 16, and 22 states,
respectively [66].

Additionally, in 2018, Chile experienced a re-emergence of the H3N8 EI strain, which
had not previously been detected since 2012. Further genetic testing confirmed that this
virus had high homology with other viruses that had been in circulation in Europe and
Asia [71]. It is apparent that EI is continuously present almost globally, and outbreaks
will continue to fluctuate without adequate means of rapid diagnostics to quickly and
efficiently intervene [66,70,72].

2.5. Equine Viral Arteritis

Equine viral arteritis (EVA) significantly impacts the breeding sector of the equine
industry, as the disease affects both the respiratory and reproductive status of the animal.
EVA incidences have been increasing over the past 20 years [73]. While the majority of
cases are subclinical, serious long-term effects cause significant production losses [74]. The
disease is rarely fatal in healthy horses; however, 50%–60% of infected pregnant mares can
experience abortion [75,76]. In addition, stallions can be long-term carriers while remaining
asymptomatic [74]. Like many other equine viral diseases, there is no affective treatment,
restricting countries to rely on biosecurity measures [77]. EVA can be spread through
venereal mechanisms; leaving breeding programs at a high transmission risk, which is a
prominent industry in many countries. Long-term carrier stallions may have to undergo
castration to prohibit accidental transmission to mares, and removing them from breeding
programs [77,78]. The disease has already caused a reduction in commercial value of
horses, with higher costs for breeding and commercialization of semen and embryos [77].
This was particularly evident in 2007 when France experienced an outbreak of EVA due to
the distribution of infected semen, causing the disease to spread into 17 premises. It was
suspected that horizontal transmission occurred via farm employees. This outbreak was
deemed the most significant of its kind, with considerable economic disruptions [79]. While
the use and advocation of vaccine programs can help alleviate the burden, persistently
importing infected equines remains highly problematic for vulnerable countries [73].

2.6. Equine Rhinopneumonitis (Caused by EHV-1)

Equine rhinopneumonitis caused by equine herpesvirus type 1 (EHV-1) is globally
distributed, particularly in regions with a significant equine presence [80–82]. Additionally,
equine rhinopneumonitis can be caused by equine herpesvirus type 4 (EHV-4), furthering
exacerbating the prevalence of this disease [80,83,84]. Despite the availability of both
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live and inactivated vaccines for EHV-1, the persistence of this virus remains [85,86].
While transmission is predominantly via the respiratory route, contact or ingestion of
contaminated fomites or contact through foetuses or placenta of an infected mare is possi-
ble [81,82,85,87]. Due to the inapparent respiratory clinical signs, it is often misdiagnosed as
other viral or bacterial diseases, leaving equine populations susceptible to the introduction
of the virus [82,88].

Additionally, younger equines appear to be highly susceptible to infection, with
80%–90% of animals less than two years old carrying this respiratory disease [89]. While
non-steroidal anti-inflammatory drugs (NSAIDs) may assist in elevating symptoms, there
is no specific cure for disease elimination [85,89]. Despite the sporadic recovery from
infection, horses can often develop a secondary infection that can be fatal [90]. Despite the
development of a PCR diagnostic assay, virus isolation is still required for comparative
analysis to other diseases, making accurate disease identification laborious [31,84].

3. Zoonotic Equine Viral Diseases of Concern
3.1. Hendra Virus

Hendra virus (HeV) is a well-documented zoonotic equine virus that has been a promi-
nent concern for the equine industry [91]. While this emerging, highly transmissible virus
is exclusively isolated to Australia, it has caused several outbreaks and is predominantly
fatal. The primary vector of HeV is fruit bats; although the exact mechanism of transmis-
sion to equines is not fully understood. However, it is thought that equines potentially
consume contaminated fruit bat droppings via their feed. Transmission among equines and
subsequently to humans is through either direct (via secretions) or indirect (via fomites)
routes [92]. The disease presents as influenza-like symptoms with rapid deterioration [93].
There is no specific treatment or cure for HeV, and progression can lead to septic pneumo-
nia, and more recently found, encephalitis [91,94]. In 2008, five equines and two human
infection cases occurred in Queensland, Australia. As a result, many veterinary clinics had
to close due to the ramifications of acquiring the virus [95]. Despite the currently available
vaccine targeting equine HeV, there is no vaccine available for humans, leaving all equine
industry personnel vulnerable to infection. The suggested prevention for human infections
to avoid infected horses and maintaining personal hygiene [91,93,96]. With the limited
feasibility to this approach it is reasonable to expect another HeV outbreak. An outbreak of
HeV would infer severe economic losses from the cancellation of events and prohibition of
animal movement [91,96].

3.2. Japanese Encephalitis

Typically known as a significant human neurological disease, the Japanese encephalitis
virus (JeV) also infects equines with three clinical syndromes: transient, lethargic, and
hyperexcitable type [97,98]. Horses infected with either transient or lethargic type typically
recover within a week; however, death is common with the hyperexcitable type [99]. In
addition to encephalitis, clinical signs in equines can also include a fluctuating fever,
decreased appetite, jaundice and haemorrhaging in the mucous membranes, staggering,
and sweating [97]. While this disease is not globally distributed, many populated countries
in Asia encounter a combined 70,000 human cases per year with 10,000 of these being
fatal [100]. Limited barriers separating endemic and JeV-free countries, coupled with
the ease of mosquito vector transmission and limited availability of vaccines in non-
endemic countries, make the risk of outbreaks significantly high [101]. Additionally,
accurate detection of viral prevalence is problematic due to a short duration of viraemia
and asymptomatic infections [100].

3.3. Ross River Virus

Ross River virus (RRV) is the most widespread and significant arbovirus in Australia
and neighboring islands, such as Fiji and the Cook Islands, frequently causing large
epidemics in humans and equines [102]. There has been an increase in incidences of
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infection across Australia due to recent flooding and climatic changes optimal to harbor the
mosquito vector [103–105]. RRV can infect equines and humans through mosquito bites
and causes various symptoms ranging from distal limb oedema and arthritis to neurological
diseases [106–108]. Additionally, infected equines reluctantly move during infection due to
debilitating joint pain, causing a significant reduction in production and performance [108].
The prescribed treatment for equines includes NSAIDs therapy considering there is no
available vaccine [109]. The majority of infection reports state that recovery on average
takes two to five days; however, recently prolonged recoveries of up to five months to
a year have been noted. Not only is RRV a significant concern for human and equine
health, the equine industry could also infer potential economic losses in the millions,
attributed to restrictions on movement and trade, loss of performance in infected equines,
and wastage [107]. Australia’s favorable environmental and ecological conditions have
facilitated an endemic state that encounters reoccurring outbreaks; with a likelihood of
climatic change enhancing the global occurrence of optimal conditions for the spread
of disease. Subsequently, increased outbreaks would cause the implementation of strict
biosecurity measures to ensure both human and animal welfare; resulting in restrictions on
animal movement, production, and quarantining in turn causing undoubtable economic
losses [106].

3.4. West Nile Virus

West Nile virus (WNV) is closely related to JeV; however, seldom causes encephalitis
in humans and equines [110,111]. In fact, most infected humans will be asymptomatic,
with only around 20% of cases resulting in influenza-like symptoms [112,113]; nevertheless,
viral infections can still be fatal [114]. For equines, clinical signs can include neurological
disease, such as encephalitis and ataxia, as along with the loss of appetite, depression,
and, infrequently, fever [115–117]. While there is a vaccine available for equines [118,119],
the risk for expansive transmission and cross-species spread is foreseeable, due to the
broad range of hosts, such as reptiles, mammals, birds, and ticks [120]. The main trans-
mission mechanism is via carrier mosquitoes after biting an infected host, namely the
Corvidae family of birds [112]. A mosquito then can infect several animals and bird
species, including equines and humans, which are incidental hosts [120]. Jointly with the
ease of transmissibility, WNV has a wide geographical distribution throughout Africa,
Europe, West Asia, Australia, and North America, giving a high probability of global
spread [110,121]. Considering there is no specific WNV treatment, supportive care is rec-
ommended until the infection subdues, typically spontaneously [111]. Currently, detection
relies on nested and real-time reverse transcription PCR (real-time RT-PCR) [31,122,123].
However serological diagnosis, such as seroconversion, is more reliable, as current molecu-
lar tools are unable to provide accurate diagnostics due to their sensitivities and the low
viremia associated with WNV infections [31]. While control programs are dependent on
surveillance, particularly of deceased crows [120,124] and vaccine for equines [118,119],
this does not entirely protect humans [120]. Ultimately, the concurrent broad host range
and vast geographical distribution of WNV has the potential for a global outbreak with
significant impact [121,125].

4. Current Diagnostic Techniques for Equine Viral Diseases

Diagnostics in the equine industry are vital to restrict the spread of infectious dis-
eases [19], particularly with frequent and high equine movement [16]. Due to this substan-
tial amount of transport nationally and internationally, the OIE has provided a list of 117
diseases of concern for terrestrial animals; six of these include equine viruses (Table 1) [32].
Additionally, OIE has produced a reference guide for terrestrial animal diagnostics to
promote the use of “gold-standard” testing worldwide [31]. Table 1 presents the current
gold standard diagnostic techniques for each of the named equine viruses and zoonotic
equine viruses of concern.
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Table 1. OIE [32] notifiable equine viruses and zoonotic viruses of biosecurity concern with their
prescribed “gold-standard” diagnostic tests for confirmation of disease [31].

Disease Prescribed Diagnostic Test/s [31]

OIE listed notifiable equine viral diseases [32]

African horse sickness RT-PCR 1

Virus isolation

Equine encephalomyelitis (Western) RT-PCR
Virus isolation

Equine infectious anaemia AGID 2

Equine influenza ELISA 3

RT-PCR

Equine viral arteritis

CF 4

PCR
VN 5

Virus isolation

Equine viral rhinopneumonitis (EHV-1)
PCR
VN

Virus isolation

Zoonotic equine viral diseases of concern

Hendra virus RT-PCR
Virus isolation

Japanese encephalitis RT-PCR
Virus isolation

Ross River virus RT-PCR [126]
Virus isolation [126]

West Nile virus RT-PCR
1 Reverse-transcription polymerase chain reaction, 2 agar gel immunodiffusion assay, 3 enzyme-linked immunosor-
bent assay, 4 complement fixation, 5 virus neutralization.

4.1. Serological Diagnostics

Serological assays are used for an array of diagnostics in equine medicine, including
viral diseases. These assays detect antibodies of a specific infection from the serum, pro-
viding an indirect mean of diagnosis [127]. Serological analysis is commonly utilized in
equine medicine for diagnostics, due to the attractive advantages they provide
mboxciteB16-animals-1300066,B31-animals-1300066,B127-animals-1300066. The use of sero-
logical assays allows for detection of samples with low quantity of antigens, visualization
with the naked eye, and can also be used on a wide range of pathogens [16,127]. How-
ever, drawbacks of these assays must be considered. Firstly, many of these assays have
a high probability of either false-positive or false-negative results [127]. Secondly, sero-
logical assays often are required be coupled with a secondary detection method for an
official confirmation. Additionally, as with other types of diagnostics, the assays often
require specialized equipment, and are time consuming and labor intensive, either due
to the assay procedure or subsequently from a secondary diagnostic test for confirma-
tion [16,128,129]. However, despite these drawbacks these assay techniques remain a
well-established technique in veterinary medicine [127]. One common diagnostic tech-
nique is ELISA, an assay that detects specific immune responses with the use of antibodies,
antigens, and enzymes [16]. ELISA is considered a convenient, safe, and reproducible
diagnostic technique, with several different variations, such as dot-ELISA and falcon as-
say screening test-ELISA (FAST-ELISA). These developments have allowed for a quicker
assay that is cost-efficient with results that can be easily interpretative [129]. ELISA has
been proven as a reliable diagnostic tool for equine influenza, and its use is advocated by
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OIE [31,127]. Despite serological assays being well-established in veterinary diagnostics,
many of these assays are being replaced with newer molecular technologies [16].

4.2. Molecular Diagnostics

Molecular diagnostics have been continuously evolving, providing more sensitive
detection of nucleic acid [130]. As a result, these tools have been increasingly favored and
utilized in equine medicine for clinical diagnostics. PCR has been the most advocated
molecular tool, with the greatest success [16]. PCR tests can detect various organisms,
including slow-growing or challenging to cultivate organisms, overcoming limitations in
previously used diagnostic tools [131]. Furthermore, PCR provides other advantages such
as rapid time to gain results, the sensitivity to detect smaller quantities of microorganisms
and is not reliant on the host’s immune response [54,132,133].

Nevertheless, this method comes with drawbacks, including reaction inhibition from
substances within samples, such as urea, varying techniques and protocols, frequency
of false-negatives and false-positives, a high risk of contamination, and the requirement
of expensive equipment and experienced personnel [54,134,135]. Additionally, as PCR is
based on nucleic acid amplification, the results can only confirm the presence or absence of
pathogenic DNA in the sample [136,137]. Yet, PCR is still considered a powerful tool that is
utilized consistently in equine medicine [138]. Advancements in PCR-based technologies
have been developed throughout recent years and have expanded diagnostic capabilities
for detecting clinical infections, particularly for viruses [139].

Recently, PCR has been developed for real-time evaluation of results by utilizing
intercalating dyes or target-specific probes [140], minimising handling of PCR products
throughout the procedure, therefore reducing the risk of contamination [141]. In addition,
many PCR assays have been described to utilize real-time PCR coupled with reverse-
transcription, termed real-time RT-PCR [138]. Thus, this technique is now quickly replacing
diagnostics that were previously [31,142,143] performed by conventional PCR.

Molecular diagnostics are a promising tool for detection of viral infections, but they
can be misinterpreted by inexperienced personnel and are not applicable for in-field use or
in poorly resourced laboratories, limiting their global disease surveillance application [138].

5. Isothermal Techniques

Isothermal techniques are driven by enzymatic reactions to amplify nucleic acid at a
single temperature, thus allowing POC or field-deployable testing [144,145]. Additionally,
some of these techniques do not require samples to be purified, allowing for direct use of
living cells from field obtainable samples [145]. This advantage has influenced diagnostic
technique development to further exploit isothermal conditions over conventional methods
such as PCR, which requires various temperature cycles to complete amplification. Multiple
isothermal technologies are currently available, with unique features and template types
(Table 2) [146].

Despite promising and extensive research into isothermal techniques for pathogenic
detection, equine diagnostic technology for viruses has been limited to two isothermal
technologies, LAMP and iiPCR (Figure 1). This is probably due to several different com-
panies producing commercial reagents for both LAMP and iiPCR assays. This has al-
lowed researchers to develop assays for the detection of different viruses. However, the
benefits of lower costs, low energy requirement, method simplicity, and ease of field de-
ployment of isothermal technologies justify further research for diagnostics for equine
medicine [23,24,149,155,156].
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Figure 1. Comparison of polymerase chain reaction (PCR) insulated isothermal polymerase chain 
reaction (iiPCR) and loop-mediates isothermal amplification (LAMP) procedures. (a) PCR proce-
dure is as follows; 1. sample is collected; 2. sample is purified; 3. contents for PCR are mixed includ-
ing the purified sample, forward and reverse primers, and master mix buffer which includes Taq 
polymerase and dNTPs; 4. the reaction is ran on a thermocycler for ≥90 min cycling through three 
temperatures for the denaturation, annealing and extension stages; 5. PCR products are subjected 
to agarose gel electrophoresis for approximately 35 min at 100 amps to visualize results. (b) iiPCR 
follows a similar starting procedure to PCR where, 1. samples are collected, and 2. purified, 3. con-
tents are mixed as such for PCR. However, reaction is conduced within capillary tubes with a copper 
ring at the base and lid, where the mixture is heated underneath to create a temperature gradient 
through convection; reactions last for around 1 h. This can be achieved through two options: 4.1. an 
automated portable machine, POCKIT™ (GeneReach USA, Lexington, MA, USA) where results are 
displayed in real time; alternatively, 4.2. an insulated box that requires the products to undergo 
(4.2.2) agarose gel electrophoresis for approximately 35 min at 100 amps to visualize results. (c) The 
LAMP procedure is as follows, 1. samples are collected and 2. mixed with 4–6 primers (F3, B3, for-
ward inner primer and backward inner primer, and optional loop primers). LAMP can tolerate im-
purities in samples and therefore do not required to be purified. 3. The mixture is heated at a single 
temp temperature for typically ≤30 min. This can also be achieved by two options: 3.1. an automated 
machine, Genie III™, (OptiGene Horsham, Eng, UK), where results are displayed in real time; alter-
natively, 3.2. a heat source, such as a water bath, where products are visualized through (3.2.2) flu-
orescence for approximately 5 min to observe a color change. Created with BioRender.com 

6. Application of LAMP for Equine Viral Diseases 
6.1. Principles of LAMP 

LAMP was designed to overcome associated drawbacks of traditional serological 
and molecular diagnostics. Unlike other assays, LAMP does not require expensive equip-
ment, trained personnel, laborious methods making it easily deployed in resource-poor 
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Figure 1. Comparison of polymerase chain reaction (PCR) insulated isothermal polymerase chain reaction (iiPCR) and
loop-mediates isothermal amplification (LAMP) procedures. (a) PCR procedure is as follows; 1. sample is collected; 2.
sample is purified; 3. contents for PCR are mixed including the purified sample, forward and reverse primers, and master
mix buffer which includes Taq polymerase and dNTPs; 4. the reaction is ran on a thermocycler for ≥90 min cycling through
three temperatures for the denaturation, annealing and extension stages; 5. PCR products are subjected to agarose gel
electrophoresis for approximately 35 min at 100 amps to visualize results. (b) iiPCR follows a similar starting procedure to
PCR where, 1. samples are collected, and 2. purified, 3. contents are mixed as such for PCR. However, reaction is conduced
within capillary tubes with a copper ring at the base and lid, where the mixture is heated underneath to create a temperature
gradient through convection; reactions last for around 1 h. This can be achieved through two options: 4.1. an automated
portable machine, POCKIT™ (GeneReach USA, Lexington, MA, USA) where results are displayed in real time; alternatively,
4.2. an insulated box that requires the products to undergo (4.2.2) agarose gel electrophoresis for approximately 35 min at
100 amps to visualize results. (c) The LAMP procedure is as follows, 1. samples are collected and 2. mixed with 4–6 primers
(F3, B3, forward inner primer and backward inner primer, and optional loop primers). LAMP can tolerate impurities in
samples and therefore do not required to be purified. 3. The mixture is heated at a single temp temperature for typically
≤30 min. This can also be achieved by two options: 3.1. an automated machine, Genie III™, (OptiGene Horsham, Eng, UK),
where results are displayed in real time; alternatively, 3.2. a heat source, such as a water bath, where products are visualized
through (3.2.2) fluorescence for approximately 5 min to observe a color change. Created with BioRender.com.

Table 2. Summary of developed isothermal techniques.

Technique Template Temperature 1 Enzyme Reference

Helicase-dependent
amplification (HDA) DNA 65 ◦C Helicase [147]

Insulated isothermal PCR
(iiPCR) DNA 95 ◦C Taq DNA

polymerase [24]

Insulated isothermal
reverse-transcription PCR

(iiRT-PCR)
RNA 95 ◦C Taq DNA polymerase

M-MLV reverse transcription [148]

Loop-mediated isothermal
amplification (LAMP) DNA 65 ◦C Bst DNA polymerase [23]
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Table 2. Cont.

Technique Template Temperature 1 Enzyme Reference

Reverse transcription
loop-mediated isothermal
amplification (RT-LAMP)

RNA 65 ◦C
Bst DNA polymerase

AMV reverse
transcription

[149]

Multiple displacement
amplification (MDA) DNA 30 ◦C Φ29 DNA polymerase [150]

Nucleic acid sequence-based
amplification (NASBA) RNA 50 ◦C

T7 RNA polymerase
RNase H

AMV reverse transcription
[151]

Rolling circular amplification
(RCA) DNA 30 ◦C

Phi29
Bst DNA polymerase

Vent exo-DNA polymerase
T7 RNA polymerase

[152]

Recombinase polymerase
amplification (RPA)

DNA
RNA 37 ◦C DNA polymerase [153]

Strand displacement
amplification (SDA) DNA 60 ◦C DNA polymerase [154]

1 Average temperature used in respective assays.

6. Application of LAMP for Equine Viral Diseases
6.1. Principles of LAMP

LAMP was designed to overcome associated drawbacks of traditional serological
and molecular diagnostics. Unlike other assays, LAMP does not require expensive equip-
ment, trained personnel, laborious methods making it easily deployed in resource-poor
settings [23]. This technique is relevant for various applications, such as rapid, sensitive,
and specific diagnostics, genetic, and POC testing [20,21]. In addition, the DNA template
does not need to be denatured, which is a requirement of conventional PCR [156], and
results can be visualized with the naked eye. This reduces the number of required steps
and subsequent downstream processing time and the possibility of cross-contamination, an
issue common to other diagnostic techniques [157,158]. LAMP utilizes four to six primers
that recognize six to eight distinct regions of a target sequence, enhancing the rapidity of
the assay which is performed at a constant temperature (Figure 1) [23]. This application
has proven to be a reliable diagnostic technique for a diverse range of pathogens, including
equine infectious diseases [21,25,26,159,160].

6.2. Application of LAMP for Equine Viral Diseases

Due to the wide success of the currently available LAMP assays, there is continuous
development of this technology for various applications. One such technique is incorporat-
ing a reverse-transcription to detect RNA viruses, coined RT-LAMP [27,149,161,162]. In
addition to conventional LAMP, this approach has been utilized for numerous equine viral
disease (Table 3).

Table 3. Current LAMP assays developed for equine viral diseases.

Disease Type Vector-Borne Target Gene Sample Detection
Limit

In-
Field Ref

African horse
sickness dsRNA Yes—Midges,

Mosquito Vp7 Horse—Blood n/a Yes [163]

Equine
herpesvirus 1 dsDNA No

Glycoprotein
C

Horse—Nasal
swab 1 1 pfu/rxn

No 1 [164]
Glycoprotein

E
Horse—Nasal

swab 1 1 pfu/rxn
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Table 3. Cont.

Disease Type Vector-Borne Target Gene Sample Detection
Limit

In-
Field Ref

Equine
herpesvirus 4 dsDNA No Glycoprotein

C
Horse—Nasal

swab 1 1 pfu/rxn No 1 [164]

Equine infectious
anaemia ssRNA Yes—Horse and

deer flies Gag nsP Recombinant
plasmid 0.1 pfu/rxn No [165]

Equine influenza
(H3N8) ssRNA No HA Horse—Nasal

swab
10−5

copies/rxn
Yes [166]

Equine influenza
(H7N7) ssRNA No HA Horse—Nasal

swab
10−4

copies/rxn
Yes [167]

Equine
coronavirus ssRNA No Nucleocapsid

Horse—Nasal
swab, fecal

samples

101.8

copies/rxn
Yes [168]

Hendra virus ssRNA No P Horse—Nasal
swab 1

10−5

copies/rxn No 1 [26]

St Louis
encephalitis ssRNA Yes—mosquito UTR Mosquito <0.1 pfu/rxn Yes [159]

Western equine
encephalitis ssRNA Yes—mosquito nsP4 Mosquito 100 pfu/ml Yes [159]

West Nile virus ssRNA Yes—mosquito E Mosquito 0.1 pfu/ml Yes 2 [149]
1 Experimentally infected animals, 2 secondary experiment.

Nemoto et al. [164] developed a LAMP assay to detect both equine herpesvirus type
1 (EHV-1) and 4 (EHV-4), as well as differentiating between the wild-type EHV-1 (∆gE)
strain, which is the non-neuropathogenic strain [169]. This assay detected glycoprotein C
(gC) in both viruses for diagnostic purposes and EHV-1 glycoprotein E (gE) for distinction
from the wild-type strain, which has a deletion at the gE gene. This assay reported similar
sensitivity compared to PCR, but at a lower cost, and a time to positive between 30 min
to 1 h when ran at a constant temperature of 60–65 ◦C. The results were visualized by
gel electrophoresis and by eye through observation of a color change. The detection limit
for EHV-1 and EHV-4 showed high sensitivity at 1 and 0.1 plaque-forming unit (pfu)
per reaction, respectively, with no cross-reaction towards other viral and bacterial equine
diseases. Therefore, this LAMP assay has the potential to replace current PCR diagnostic
assays to accurately determine equine herpesvirus [164].

RT-LAMP was developed to detect RNA viruses, which performs synthesis of DNA
for detection concurrently with amplification [149]. This technique was also adopted by
Nemoto and colleagues to develop two novel assays detecting equine influenza strains
H3N8 [166] and H7N7 [167]. Both assays were designed to target the HA gene of influenza
from nasal swab samples acquired in the field from horses presenting with a fever (≥38 ◦C).
The assays were specific to differentiate the separate strains. The assay was 3 to 10 times
more sensitive than the commercial serological ELISA test (Espline Influenza A&B-N ELISA
test (Fujirebio, Japan)).

Additionally, H3N8 RT-LAMP assay was ten times more sensitive than the previously
developed RT-PCR test, while the H7N7 RT-LAMP compared the same as the RT-PCR. The
H3N8 assay detected 35 additional positive samples that were not positively identified by
both the RT-PCR and the Espline Influenza A&B-N test. The detection limit for H3N8 and
H7N7 during RT-LAMP was 10−5 and 10−4 copies per reaction, respectively, achieved a
positive threshold in roughly 60 min. The results of these assays were visually determined
by turbidity, allowing for identification without specialized equipment. This approach for
detection shows the simplicity that LAMP assays offer and the ability for in-field diagnostics
and large-scale surveillance. The authors recommend combining these RT-LAMP assays
into a panel diagnostic test to differentiate between the two strains [166,167].
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Furthermore, Fowler et al. [163] utilized RT-LAMP to develop rapid detection of
African horse sickness (AHS), resulting in a similar sensitivity to a previously developed
AHS real-time RT-PCR. By targeting the structurally conserved VP7 gene that forms the
outer capsid, the assay could detect the viral DNA within 30 min. The results were visual-
ized by DNA intercalating dyes, contained in the reaction master mix (ISO-001, OptiGene
Ltd., Horsham, UK). Despite the ease of visualization, the paper suggested adapting the
assay to use real-time fluorescence for ease of application in-field, adopted from previous
experiments [170,171]. To convert the assay to an in-field diagnostic technique, it was
recommended to use lyophilized reagents and eliminate the RNA extraction procedure by
implementing an automated extraction procedure, as utilized by Waters et al. [170] and
Howson et al. [171].

In 2018, Han et al. [165] presented a preliminary study of a RT-LAMP assay for
equine infectious anemia. This study employed detected the gag non-structural protein
(gag nsP) of the virus, using a recombinant plasmid, pMD-19T-gag, rather than field or
clinical samples. While this assay has a longer reaction time of two hours to detection 100
copies/µL, it provides a starting point for further development. As this assay only included
four primers, it is possible to decrease the assay time through the use of loop primers.
Promisingly, the RT-LAMP assay did not detect other pathogens, showing high specificity,
which can be further validated through the testing of clinical samples. Furthermore, results
were visualized through a color change, allowing for the possibility of conversion to a field
deployable diagnostic technique.

Wheeler et al. [159] developed a panel of RT-LAMP assays for the detection of St.
Louis encephalitis virus (SLEV) and western equine encephalitis (WEEV), which addi-
tionally incorporated a previously developed assay for WNV [149]. While a multiplex
reverse transcription-quantitative polymerase chain reaction (RT-qPCR) has been devel-
oped for these viruses [172], it is not field-deployable [167]. The developed RT-LAMP
targeted the non-structural protein 4 (nsP4) gene for WEEV, and the 3′ untranslated re-
gion (3′-UTR) for SEEV, and had a detection limit the same as the previously developed
WNV RT-LAMP at 0.1 pfu per reaction [149,159]. Despite having a sensitivity marginally
less than the previously developed RT-qPCR assay, both the SLEV and WEEV assays were
performed in less than 30 min [159], and WNV RT-LAMP in under 17 min [149], supremely
faster than the RT-qPCR assay. As this panel assay was performed on mosquitos in the
field, it can be deployed as a large-scale surveillance program and as a rapid diagnostic
technique [149,159].

Additionally, Foord et al. [26] developed a LAMP assay that was able to detect the
conserved P-gene of Hendra virus before clinical signs appeared. This assay also compared
utilizing a lateral flow device (LFD) to agarose gel electrophoresis for visual detection.
While the LFD was not as sensitive in comparison to the gel, it was able to show results in
five minutes, providing further confirmation of LAMP’s field deployable abilities. Further-
more, the LAMP assay was able to detect additional positive results that was previously
deemed “indeterminate” using a TaqMan assay. The authors suggest the simple procedure
allow for LAMP to be employed in resource-poor environments. In addition, the capability
of detecting positive cases prior to the onset of symptoms is ideal for critical situations,
such as a Hendra virus outbreak, that require immediate results.

These developed assays show that both LAMP and RT-LAMP can be performed
in-field as POC diagnostic technique. However, while various LAMP assays have been
developed to detect viruses of concern to equines, both with high sensitivity and specificity,
excluding the WNV RT-LAMP assay [149,159], none of these assays has been commercial-
ized. The reasoning for this lack of commercially available assays remains unclear.

7. Application of iiPCR for Equine Viral Diseases
7.1. Principles of iiPCR

iiPCR is a recently developed assay involving an isothermal convective device [24].
The technique amplifies nucleic acids like PCR; however, it replaces the use of an expen-
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sive thermocycler with a simpler, portable, insulated device that consists of a copper ring
attached to polycarbonate capillary tubes (R-tube™) underneath (Figure 1). The thermal
convective device allows for reagents to proceed through gradient temperatures within
the single tube [173], thus performing the required denaturation, annealing, and extension
steps in a portable manner. Additionally, the insulation protects the assay from environ-
mental influence, permitting its use in the field [24]. iiPCR has been analyzed as more
sensitive than RT-PCR, achieving results within 1 h [155] through simple and cost-effective
procedures [29,173,174].

7.2. Applications of iiPCR for Equine Viral Diseases

The iiPCR technique has been implemented for several equine viral diseases (Table 4).
As seen in RT-LAMP, reverse-transcription has been integrated with iiPCR (iiRT-PCR) to
detect RNA viruses through the generation of amplified cDNA [155].

Table 4. Current LAMP assays developed for equine viral diseases.

Disease Type Vector-Borne Target Gene Sample Detection
Limit In-Field Ref

Equine viral arteritis ssRNA No ORF7 Horse—Tissue,
semen 10 copies/rxn Yes [155]

Equine herpesvirus 3 dsDNA No gG Horse—Perineal and
genital swabs 6 copies/rxn Yes [175]

Equine herpesvirus
myeloencephalopathy

(EHM) caused by
EHV-1

dsDNA No ORF3 Horse—Tissue 13 copies/rxn Yes [176]

Equine infectious
anaemia ssRNA Yes—Horse and

deer flies
5′ UTR Exon 1

of tat gene Horse—Tissue 8 copies/rxn Yes [177]

Equine influenza
(H3N8) ssRNA No HA Horse—Nasal swab 11 copies/rxn Yes [148]

Advancements of this technique have resulted in developing a portable machine that
allows for automatic detection, termed POCKIT™ Nucleic Acid Analyzer by GeneReach
USA (GeneReach USA, Lexington, MA, USA). This lightweight machine detects amplicons
using hydrolysis technology recognizing fluorescent signals [173]. Carossino et al. [155]
utilized this technology to develop a iiRT-PCR assay to detect EVA. This assay reported
to have significant accuracy with a detection limit of 10 copies per reaction in one hour.
Furthermore, compared to a previously developed RT-qPCR diagnostic test for EVA [178],
the iiRT-PCR assay was ten-fold more sensitive. Therefore, this iiRT-PCR further exhibited
the potential of future assays to be exploited in field for POC diagnostics.

Additionally, the assay did not encounter inhibition when using tissue samples that
had been previously observed with the developed RT-qPCR assay [155]. The robustness
of iiPCR and iiRT-PCR assays are advantageous as promising alternatives for diagnostic
and control implementation [155,175,176]. However, despite numerous successful assays
developed for equine infectious diseases, commercially available kits using the POCKIT™
Nucleic Acid Analyzer (GeneReach USA, Lexington, MA, USA) have been restricted to
the aquaculture industry. Thus, for further traction of this technique and technology,
commercialization should be made applicable to the equine industry.

8. Future Applications of LAMP and iiPCR for Equine Viral Diseases

Field deployable and POC assays for disease detection are becoming increasingly
sought after [179–181], particularly for livestock and large animals to avoid transport-
related stress and cost [182–184]. These portable diagnostic techniques allow for sampling
and testing to take place pen-side or in the field without a laboratory [183], subsequently
eliminating the transportation process and providing results in real-time for immedi-
ate treatment and control of infectious diseases [185,186]. Both LAMP and iiPCR are
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ideal for field-deployable diagnostics owing to their robustness, cost-efficiency, accessi-
bility, and portable instruments, and are advantageous over conventional PCR assays
(Table 5) [181,187,188].

Table 5. Comparison of conventional PCR to iiPCR and LAMP assays and procedures.

Properties PCR iiPCR LAMP

Temperature Cycles through 3 temperatures
55–95 ◦C

Constant temperature drives
temperature gradient

15–30 ◦C

Constant temperature
60–65 ◦C

Equipment Thermocycler Specialized reaction tube
Fluorescence-based detector Heat source

Field-deployable No Yes Yes

Reaction time At least 90 min ≤60 min <30 min

Sensitivity Starts at nanograms Starts at nanograms Starts at femtograms

Specificity
Requires specific primer

design
Prone to errors

Requires specific primer design
Prone to errors

Tolerates combination of primer
designs

Visualization Only through gel
electrophoresis Real-time available Real-time available

Template prep Requires purification Requires purification Tolerates impurities

Cost $$$ $$ $

Both LAMP and iiPCR have portable machines that are lightweight (roughly 5 kg),
robust, and only require an AC voltage or car battery to operate [189]. In addition, these
machines are paving the way for newer diagnostic techniques, providing countless oppor-
tunities for alternative diagnostic technologies [181,188].

It should be noted that the feasibility of these assays is still dependent on sampling
techniques and preparations [189]. Comparability, LAMP can tolerate sample impurities
and inhibitory substances as it has been developed to eliminate nucleic acid extraction steps
altogether [190,191], whereas iiPCR still requires nucleic acid purification [189]. In addition,
inhibitors of PCR, can interfere with the assay results rendering them inaccurate and often
false-negative outcomes. Therefore, sampling techniques that are in-field appropriate is a
rapidly expanding area of research. Research groups have developed extraction systems
that could isolate total nucleic acids through column-based methods. Despite these methods
being described as user-friendly [192], contamination and degradation of RNA was still
an issue, attributed to extensive manual handling throughout sample processing [189].
Thus, a field-deployable fully automated extraction system was developed by GeneReach,
coined the Taco™ mini extraction system [193]. This machine can handle an array of
samples, including more complex tissue and swab samples, to completely extract nucleic
acids from up to eight samples concurrently. This magnetic beads-based tool is relatively
inexpensive, compacted, and lightweight allowing for immediate use and practical storage
after use [155,177,189,193]. However, this process adds an extra 45 min of processing to the
assay, and while inexpensive, additional machinery is not suited to resource-poor facilities.
The more intricate nucleic acid extraction requirements of iiPCR are hindering its POC
application in comparison to the practical LAMP.

9. Conclusions

With an estimated value of USD $300 billion annually, involving more than 59 million
domestic horses and 1.6 million full-time employees, it is essential to protect the global
equine industry from disease outbreaks. Despite strict worldwide biosecurity procedures,
the threat of a viral outbreak, including zoonotic diseases, remains imminent. Due to the
increasing amount of national and international movement and subsequent dense housing
of horse populations, the spread of viral diseases could be rapid and devastating, particu-
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larly with asymptomatic carriers. Current “gold-standard” diagnostic techniques, such as
serological and molecular technology, remain prominent within the industry; however, they
come with several drawbacks that limit their use, particularly in resource-poor settings.
Newer isothermal techniques, such as LAMP and iiPCR, allow for rapid diagnosis and offer
the opportunity to be field-deployable. However, further research is required to ultimately
eliminate laborious procedures, particularly in nucleic acid extraction. While LAMP has
been developed to tolerate sample impurities and does not require extraction steps, iiPCR
continues to rely on extra machinery to provide an automated extraction technique. Never-
theless, the use of these methodologies remains advantageous over traditional methods
for POC testing, based on their rapidity, sensitivity, specificity, and inexpensiveness. Thus,
there is strong reasoning to develop new diagnostics using isothermal technology as alter-
natives to traditional techniques for rapid disease identification and quick implementation
of control measures.
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