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ABSTRACT
Objective To describe the association between 
intraoperative tissue oxygenation and postoperative 
troponin elevation in patients undergoing major spine 
surgery. We hypothesised that a decrease in intraoperative 
skeletal muscle tissue oxygenation (SmO2) was associated 
with the peak postoperative cardiac troponin value.
Design This is a prospective cohort study.
Setting Single- centre, University of California San 
Francisco Medical Center.
Participants Seventy adult patients undergoing major 
elective spine surgery.
Primary and secondary outcome measures High- 
sensitivity troponin T (hsTnT) was measured in plasma 
preoperatively and on the first and second day after 
surgery to assess the primary outcome of peak 
postoperative hsTnT. Secondary outcomes included MINS 
and intensive care unit (ICU) admission within 30 days. 
Skeletal cerebral tissue oxygenation and SmO2 was 
measured continuously with near- infrared spectroscopy 
during surgery. The primary exposure variable was time- 
weighted area under the curve (TW AUC) for SmO2.
Results Mean age was 65 (33–85) years and 59% were 
female. No significant association was found between TW 
AUC for SmO2 and peak hsTnT (Spearman’s correlation, 
rs=0.17, p=0.16). A total of 28 (40%) patients had MINS. 
ICU admission occurred in 14 (40%) in lower vs 25 (71%) 
in upper half of patients based on TW AUC for SmO2, 
p=0.008.
Conclusions Decrease in SmO2 was not a statistically 
significant predictor for peak troponin value following 
major spine surgery but is a potential predictor for other 
postoperative complications.
Trial registration number NCT03518372.

INTRODUCTION
Major non- cardiac surgery is associated with 
significant risks of postoperative complica-
tions which are sometimes asymptomatic 
such as covert stroke1 and myocardial infarc-
tion and injury.2 Cardiovascular events are 
the leading cause of morbidity and mortality3 
with myocardial injury after non- cardiac 
surgery (MINS) being a major contributor to 
further postoperative complications.4–7 MINS 

is frequently caused by ischaemia and can be 
diagnosed from elevated postoperative high- 
sensitivity cardiac troponin, in the absence 
of non- ischaemic factors for troponin eleva-
tion.8 The 30- day mortality is increased up 
to eightfold in patients with covert stroke 
compared with matched controls9 and stroke 
occurs in 9% of patients with MINS, making 
it a substantial public health problem.10 Peak 
postoperative cardiac troponin has a linear 
association with 30- day mortality.7 Each year, 
8 million surgical patients worldwide suffer 
from MINS but there is sparse knowledge 
about triggering causes and contributing 
factors to the magnitude of peak postopera-
tive cardiac troponin.5 11

Intraoperative tissue oxygen desaturation 
is common in patients undergoing major 
spine surgery12 probably because of the 
substantial blood loss and haemodynamic 
changes that occur in this type of operation. 
Tissue oxygenation (StO2) can be measured 
non- invasively with near- infrared spectros-
copy (NIRS). Previous studies found that a 
decrease in intraoperative StO2 was associ-
ated with wound infection, stroke and renal 
failure,13 and that decrease in skeletal muscle 
tissue oxygenation (SmO2) was a stronger 

Strengths and limitations of this study

 ► Prospective observational study including 70 pa-
tients undergoing major spine surgery.

 ► Contributing knowledge to potential predictors for 
myocardial injury and clinical implications of tissue 
oxygenation monitoring.

 ► Applying skeletal muscle tissue oxygenation as pri-
mary predictor, decreasing risk of cerebral autoreg-
ulation modification of outcomes.

 ► There is no clinical consensus of absolute threshold 
for tissue hypoxaemia, thus, population median for 
skeletal muscle tissue oxygenation was used as cut- 
off in this study.
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predictor for these complications than cerebral tissue 
oxygenation (ScO2) in spine surgery.12 However, current 
knowledge of how StO2 affects other important clinical 
outcomes, including MINS, is lacking. In this prospective 
cohort study, we hypothesised that a decrease in SmO2 was 
associated with higher peak postoperative high- sensitivity 
troponin T (hsTnT). The primary exposure variable was 
time- weighted area under the curve (TW AUC) for SmO2 
and the primary outcome was peak postoperative hsTnT. 
This study was conducted with the aim of examining the 
association between intraoperative StO2 and postoper-
ative troponin elevation in patients undergoing major 
spine surgery.

METHODS
This prospective cohort study was conducted at the Univer-
sity of California, San Francisco (UCSF). This manuscript 
adheres to the applicable Strengthening the Reporting of 
Observational Studies in Epidemiology guidelines.

Patients
The patients were adults (≥18 years) undergoing elective 
spine surgery at UCSF from January to May 2018. The 
surgeries selected were scheduled to last for more than 
2 hours and included instrumentation. Exclusion criteria 
were: American Society of Anesthesiologists Physical 
Status Classification System score >IV, surgery for tumour 
or infection, emergent or urgent surgery.

Data collection
Patient characteristics, comorbidities, preoperative phys-
ical status and postoperative complications were extracted 
from the electronical medical record (KFB). Data were 
collected at two time points: prior to surgery and 30 
days after surgery. A follow- up phone call to the patient 
was made 30 days after surgery to verify postoperative 
outcomes. Baseline values were defined as the preincision 
value. Intraoperative values were defined as data from 
incision to end of procedure when last suture was placed. 
Study data were managed using the REDCap (Research 
Electronic Data Capture) tools hosted at UCSF.

Tissue oximetry
StO2 was monitored using a tissue oximeter based on NIRS 
(FORE- SIGHT Elite, CASMED, Branford, Connecticut, 
USA). Cerebral and leg skeletal muscle oxygenation was 
monitored via two cables connected to adhesive probes 
provided by the manufacturer. Probes were placed after 
tracheal intubation and a baseline was measured from 
placing of probe to incision. One probe was placed on 
the left side on the upper forehead to monitor one- 
sided frontal cortex ScO2. The second probe was placed 
on the left tibialis anterior muscle, four fingers below 
the tibial tuberosity and two fingers lateral to the ante-
rior edge of the tibial shaft, to monitor the SmO2 of the 
lower leg muscle. The oximeter generated a data point 
every 2 seconds. The anaesthesia team was blinded to 

the oximeter. Data from the oximeter were used for StO2 
indices derivation. Indices were maximum, minimum, 
median and TW AUC for SmO2 and ScO2, respectively. 
The primary exposure variable was TW AUC for SmO2. 
TW AUC was calculated for each participant as the area 
below the intraoperative median for the study population 
and divided by length of surgery. This was chosen because 
there is no international consensus on a universal base-
line level or normal range for StO2.

Troponin measurements
A total of three blood samples for hsTnT were drawn. First 
sample was drawn by the anaesthesiologist in the oper-
ating room after placement of the arterial line prior to 
surgery. Second and third sample were drawn by a phle-
botomist or nurse the first and second day after surgery, 
respectively. After the blood was drawn, the sample was 
centrifuged immediately and the plasma was divided into 
two cryo collecting tubes and placed in a −80°C freezer 
for storage. All plasma samples were sent to a specialised 
laboratory at Hennepin Medical Center (Minneapolis, 
Minnesota, USA) to be analysed for the Roche fifth gener-
ation, Elecsys hsTnT assay after the study was completed. 
The data collector was blinded to the results of hsTnT 
and laboratory personnel analysing the blood samples 
were blinded to patient data. Medical records and periop-
erative information (eg, ECG, laboratory values) were 
reviewed for patients with troponin elevation, to exclude 
a non- ischaemic aetiology.8

Outcomes
The primary outcome was defined as postoperative 
peak high- sensitivity cardiac troponin T (hsTnT). A 
secondary related outcome was MINS, initially defined 
as hsTnT ≥14 ng/L14 with factors for non- ischaemic 
aetiology excluded (eg, sepsis, kidney failure, heart 
failure). This MINS definition was registered at  Clin-
icalTrials. gov, but during the course of the study and 
prior to hsTnT analysis of the blood samples, new data 
were published, where MINS was defined as an elevated 
postoperative hsTnT (ie, 20 to <65 ng/L with an abso-
lute change ≥5 ng/L or a single hsTnT ≥65 ng/L) with 
factors for non- ischaemic aetiology excluded (eg, sepsis, 
kidney failure, heart failure).8 We, therefore, updated 
the protocol to the latter and current MINS definition. 
Other secondary outcomes were myocardial infarction, 
non- fatal cardiac arrest, new- onset arrhythmia (defined 
as new atrial fibrillation or other treatment requiring 
arrhythmia), heart failure, transient cerebral ischaemia, 
symptomatic stroke, sepsis, surgical site infection, pulmo-
nary complications (including pulmonary infection, 
pneumothorax, atelectasis, pulmonary embolus and 
other pulmonary complication), creatinine elevation 
(>1.3 mg/dL for men and >1.1 mg/dL for women), inten-
sive care unit (ICU) admission, length of hospital stay and 
mortality, all within 30 days after surgery. In addition, we 
analysed a composite outcome that consisted of all above 
mentioned postoperative complications.
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Sample size
Sample size calculations were based on clinical data and 
previous studies investigating StO2 as an outcome for 
postoperative complications.12 13 These studies evaluated 
all types of complications as primary outcome. Mean 
(SD) TW AUC for SmO2 was 1.59%×min×h-1 (2.35).12 
We estimated a minimal clinically relevant difference to 
be a 36% increase in TW AUC for SmO2 for participants 
with high peak hsTnT (with a cut- off of 14 ng/L based on 
the 99th percentile of a healthy population)15 compared 
with participants with low peak hsTnT. Using a power of 
80% and a significance level of 0.05, a sample size of 68 
participants for this study was needed. We anticipated a 
low number of drop- outs, as the study design was observa-
tional, resulting in a total sample size of 70 participants.

Statistical analysis
Results are presented as mean±SD and median (IQR) 
when appropriate. Revised Cardiac Risk Index (RCRI) 
and corresponding risk of cardiac complications at 30 
days after surgery were computed according to current 
criteria.16 Postoperative outcomes were compared strati-
fying the study population in two groups by median TW 
AUC for SmO2. Comparison between groups were based 
on χ2 tests for categorical variables, analysis of variance 
and Wilcoxon rank- sum test.

The primary analysis of the association between TW 
AUC for SmO2 and peak hsTnT was tested by Spearman 
correlation analysis. Univariable and multivariable 
logistic regression models were used in secondary anal-
yses to examine the associations of baseline characteris-
tics, intraoperative variables and StO2 indices with higher 
peak hsTnT which was dichotomised in high/low catego-
ries using median peak hsTnT in the study population as 
cut- off. Univariable and multivariable logistic regression 
was used to test the association between StO2 indices and 
MINS and the adjusted prediction for TW AUC for SmO2 
and MINS was calculated. Variables for adjustment in the 
multivariable analyses were age, sex, body mass index, 
smoking, diabetes, hypertension, previous stroke, chronic 
lung disease, arrhythmia, valvular disease, chronic kidney 
disease, length of surgery, osteotomy performed, esti-
mated blood loss, mean arterial blood pressure and mean 
heart rate.

Stata Statistical Software (release V.15; StataCorp) was 
used for all analyses.

Patient and public involvement
Patients or the public were not involved in the design, 
conduct, reporting or dissemination plans of this study.

RESULTS
A total of 70 patients undergoing spine surgery was 
included in this prospective cohort study. Mean age was 
65 (33; 85) years and 41 (59%) participants were female. 
Mean (95% CI) risk of cardiac complications at 30 days 
after surgery, calculated according to RCRI was 7.7 (7.0 

to 8.3) %. The median percentage estimated blood 
loss of estimated blood volume was 17 (IQR 8–31) %. 
A summary of patient characteristics, medical history, 
surgical information and values for StO2 are found in 
table 1.

Incidence of MINS and major outcomes
The median peak hsTnT was 19 (IQR 10–30) ng/L and 
based on a hsTnT of 20 to <65 ng/L with an absolute 
change ≥5 ng/L or a single hsTnT ≥65 ng/L, 28 (40%) 
participants had MINS (table 2). The number of partic-
ipants with any postoperative complications were 41 
(59%) and when MINS was included as a complication, 
52 (74%) of participants had one or more postoperative 
complications (table 2). Estimated blood loss and length 
of surgery was associated with MINS (OR (95% CI): 1.001 
(1.000 to 1.002), p=0.002 and 1.007 (1.002 to 1.011), 
p=0.004, respectively).

Relationships of StO2 to MINS and other outcomes
In the univariable correlation analysis of TW AUC for 
SmO2 and peak hsTnT, no significant association was 
found (rs=0.17, p=0.16, figure 1). There was a statisti-
cally significant association between higher TW AUC 
for SmO2 and the composite outcome of postoperative 
complications (participants in lower half: 21 (60%) vs 
participants in upper half: 31 (89%), p=0.006, table 2) 
but when logistic regression was performed, this associa-
tion was not significant. Furthermore, a statistically signif-
icant association between higher TW AUC for SmO2 and 
ICU admission was found (participants in lower half: 14 
(40%) vs participants in upper half: 25 (71%), p=0.008, 
table 2). There were no other statistically significant 
differences in outcomes between the two groups based 
on median TW AUC for SmO2. When testing the StO2 
indices as predictors for higher peak hsTnT by logistic 
regression, the univariable analysis found that for every 
1% increase in median and maximum SmO2, the odds of 
having high peak hsTnT decreased (OR (95% CI): 0.93 
(0.87 to 0.996), p=0.039 and 0.92 (0.85 to 0.99), p=0.025, 
respectively, table 3). After multivariable adjustment for 
baseline and clinical variables, median and maximum 
SmO2 were not independent predictors for higher peak 
hsTnT (table 3). None of the StO2 indices were found 
to be significant predictors for MINS (table 3). Adjusted 
predicted probability was calculated based on univariable 
logistic regression and showed increasing probability 
for MINS with increasing TW AUC for SmO2 (figure 2) 
although this was not statistically significant (OR 
(95% CI): 1.00 (0.99 to 1.01), p=0.74). Although this was 
not systematically assessed for the purpose of this study, 
only one participant presented with ischaemic symptoms 
on the first two postoperative days according to medical 
records. This patient was not diagnosed with clinical 
myocardial infarction after examination, although hsTnT 
was 31 ng/L.
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DISCUSSION
In a prospective cohort study of 70 participants, we inves-
tigated intraoperative StO2 as predictor for myocardial 
injury after spine surgery. We found that SmO2 and ScO2 
were not independent predictors for elevated hsTnT 
or MINS. However, in exploratory analyses, some other 
indices for SmO2 were associated with higher peak hsTnT, 
whereas ScO2 indices were not.

StO2 is a result of the oxygen supply and demand of 
the specific tissue and is determined by multiple physio-
logical factors including oxygen saturation, haemoglobin 
(Hgb) concentration and cardiac output.17 Measure-
ment of StO2 with NIRS has been investigated in previous 
studies as predictor for a number of different outcomes. 
Several studies have examined cerebral oxygenation 
in patients undergoing cardiac surgery, whereas few 
studies have investigated SmO2 as predictor for clinical 
outcomes. In patients undergoing cardiac surgery, ScO2 
was found to be associated with stroke, cognitive decline, 
length of hospital stay and mortality.18 19 One study found 
that decrease in ScO2 was not a predictor for delirium 
in elderly patients.20 A recent meta- analysis of 10 trials 
with a total of 1466 patients, found that NIRS- based algo-
rithms for ScO2 did not reduce mortality or organ injury 
affecting the heart, brain or kidneys.21 Despite the lack of 
evident benefit for ScO2- guided clinical algorithms, ScO2 
monitoring is routinely used in cardiac surgery.

Cerebral and skeletal muscle tissue have different phys-
iological characteristics. Meng et al12 found that SmO2 
was a stronger predictor than ScO2 for composite post-
operative outcomes, including myocardial injury, stroke, 
pulmonary complications and creatinine elevation. 
Although findings in the current study were statistically 
insignificant, the exploratory analyses yielded a stronger 
association between SmO2 and outcomes as compared 
with ScO2. This aligns with the theory that SmO2 is a 
leading indicator for global desaturation due to low auto-
regulation in skeletal muscle tissue compared with the 
higher level of autoregulation in cerebral tissue.22 Of 
note, skeletal and myocardial autoregulation may not be 
the same and it is possible that myocardial autoregulation 
shows similar patterns to cerebral autoregulation in some 
physiological instances. The importance of preserved 
cerebral autoregulation is substantial. Brain tissue is more 
sensitive to hypoxia than skeletal muscle.17 One study 
showed that impaired cerebrovascular autoregulation was 

Table 1 Participant characteristics and intraoperative data

Variables Participants n=70

Demographics

  Age, years 65 (33; 85)

  Sex, female 41 (59%)

  BMI, kg/m2 28.8 (24.4; 32.9)

ASA

  I 1 (1%)

  II 37 (53%)

  III 31 (44%)

  IV 1 (1%)

Smoking

  Never 37 (53%)

  Current 3 (4%)

  Former 30 (43%)

Medical history

  Stroke 5 (7%)

  TCI 3 (4%)

  Hypertension 36 (51%)

  Diabetes mellitus 8 (11%)

  Chronic lung disease* 15 (21%)

  Sleep apnoea 16 (23%)

  Arrhythmia 11 (16%)

  Valvular disease 6 (9%)

  Coronary artery disease 8 (11%)

  Creatinine elevation 2 (3%)

RCRI class

  I 49 (70%)

  II 15 (21%)

  III 6 (9%)

  IV 0

Surgical information

  Length of surgery, minutes 264 (201; 405)

  Osteotomy performed 35 (50%)

  Estimated blood loss, mL 753 (400; 1400)

  Mean arterial pressure, mmHg 83±9

  Heart rate, bpm 69±11

Tissue oximetry

  SmO2 median, % 75 (70; 79)

  SmO2 minimum, % 66 (61; 70)

  SmO2 maximum, % 84 (78; 88)

  TW AUC for SmO2, %×min/hour 98 (9; 298)

  ScO2 median, % 66 (62; 71)

  ScO2 minimum, % 60 (56; 65)

  ScO2 maximum, % 77 (72;82)

  TW AUC for ScO2, %*min*h-1 33 (0.06;131)

Continued

Variables Participants n=70

Data are mean±SD for normally distributed variables and median 
(IQR) for variables with skewed distributions.
*Includes asthma and chronic obstructive pulmonary disease.
ASA, American society of Anesthesiologists; BMI, body mass 
index; RCRI, Revised Cardiac Risk Index; ScO2, cerebral tissue 
oxygenation; SmO2, skeletal muscle tissue oxygenation; TCI, 
transient cerebral ischaemia; TW AUC, time- weighted area under 
the curve.

Table 1 Continued
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associated with increased morbidity and mortality within 
30 days from surgery in patients undergoing major non- 
cardiac surgery.23 A study in healthy subjects suggested 
SmO2 to be an early indicator for impending cardiovas-
cular collapse and showed that SmO2 declined in parallel 
with stroke volume.24 Perfusion of skeletal muscle tissue 
follows the same linearity in decline with decreasing 
cardiac output whereas cerebral tissue perfusion only 

decreases approximately one- third of cardiac output.25 
This study found TW AUC for SmO2 to be almost three 
times larger than TW AUC for ScO2 (98% vs 33%×min/
hour) indicating autoregulation in brain tissue. Of note, 
spine surgery patients at UCSF almost all receive anaes-
thetics that include very low amounts of inhalational 
anaesthetics, probably preserving brain autoregulation of 
blood flow. Despite these findings, the clinical implica-
tions of SmO2 monitoring is still yet to be determined. 
TW AUC for SmO2 was chosen as a predictor in this study 
as it maximises sensitivity by including all available data 
for the specific parameter (magnitude and duration of 
desaturation as well as covering the entire duration of 
surgery). Furthermore, it minimises the effect of poten-
tial error measurements on the StO2 value but because 
TW AUC for SmO2 is a calculated value it currently has 
limitations in regards of clinical utility.

StO2 was not statistically significant associated with 
MINS in the current study but other indicators of 
supply- demand mismatch, that is, estimated blood loss 
and length of surgery, were significantly associated with 
MINS and peak hsTnT. These are established predictors 
for MINS26 and contributes to the understanding of the 
pathophysiology for elevated troponin.27

In general, the majority of MINS are undetected (80%) 
as patients do not have ischaemic symptoms.4 10 In this 
study, only one participant presented with ischaemic 
symptoms. The type of surgery the participants underwent 

Table 2 Summary of postoperative outcomes within 30 days after spinal surgery

Postoperative complications
Lower half TW AUC 
for SmO2, N=35

Upper half TW AUC for 
SmO2, N=35 P value

TW AUC for SmO2, (%×min×h-1 9 (1; 53) 298 (189; 586) <0.001

Peak hsTnT, ng/L 17 (9; 26) 24 (10; 33) 0.15

MINS 12 (34%) 16 (46%) 0.33

Myocardial infarction 0 0 –

Non- fatal cardiac arrest 0 0 –

New- onset arrhythmia 1 (3%) 2 (6%) 0.56

Heart failure 0 0 –

TCI 0 0 –

Stroke 0 0 –

Sepsis 1 (3%) 1 (3%) 1.00

Surgical site infection 2 (6%) 2 (6%) 1.00

Pulmonary complications 4 (11%) 3 (9%) 0.69

Creatinine elevation 1 (3%) 1 (3%) 1.00

ICU admission 14 (40%) 25 (71%) 0.008

Length of postoperative hospitalisation 6 (4; 7) 6 (6; 8) 0.056

  Mortality 0 0 –

Composite outcome 21 (60%) 31 (89%) 0.006

Data are mean±SD for normally distributed variables and median (IQR) for variables with skewed distributions). P values are based on χ2- 
tests, ANOVA and Wilcoxon rank- sum tests.
ANOVA, analysis of variance; hsTnT, high- sensitivity troponin T; ICU, intensive care unit; MINS, myocardial injury after non- cardiac surgery; 
SmO2, skeletal muscle tissue oxygenation; TCI, transient cerebral ischaemia; TW AUC, time- weighted area under the curve.

Figure 1 Relationship between time- weighted area under 
the curve (TW AUC) for skeletal muscle tissue oxygenation 
(SmO2) and peak value of high- sensitivity troponin T (hsTnT) 
measured within the first 2 days after surgery.
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was comprehensive and many participants were treated 
with strong analgesics postoperatively which could be a 
contributing factor to the lack of ischaemic symptoms 
in the participants with MINS. The incidence of MINS 
among the participants in this study was 40%. In compar-
ison the general incidence of MINS in patients under-
going non- cardiac surgery is 8%4 but this is not restricted 
to major surgery only and the incidence depends on the 
cut- off for troponin elevation used. Other groups found 
similar high incidence of MINS.28

Study limitations
As this was an observational cohort study it was not 
designed to determine causality between StO2 and post-
operative myocardial injury. The study was not powered 
for all secondary outcomes, as we based the power 

calculation on a study with the outcome composite post-
operative complications that included less severe compli-
cations (constipation, oliguria, etc).12

We found a high incidence of MINS in this study but 
the number of serious outcome events (eg, death, stroke, 
non- fatal cardiac, myocardial infarction) were sparse in 
the 30- day follow- up period. The participants underwent 
spine surgery which was not emergent, conducted as 
cancer treatment/tumour resection or indicated by any 
life- threatening condition. Thus, it is possible that partici-
pants were in a better physical condition when scheduled 
for this type of elective surgery than for other major non- 
cardiac surgical procedures. Changes in blood pressure 
and heart rate may trigger MINS. Extensive analyses of 
associations between these parameters an MINS were not 
possible in this study.

The NIRS method is non- invasive and tracks StO2 
continuously. However, limitations in regard to the tech-
nology has been presented and includes bias regarding 
skin pigmentation, gender and assumed mixture of 
venous and arterial blood.29 With the equipment used in 
this study it was not possible to obtain data on different 
Hgb fractions (total Hgb, oxy- Hgb and deoxy- Hgb), which 
could potentially have qualified the analysis even further. 
Total blood loss was included in the predefined model to 
predict MINS but relative changes in Hgb concentrations, 
including those caused by transfusions, was not accounted 
for. Interindividual differences in saturation contributes 
to the difficulty of determining an absolute threshold for 
tissue hypoxia. In the calculation of the primary predictor 
of TW AUC for SmO2 we used the population median 
for intraoperative SmO2 as cut- off. The choice of cut- off 
should be considered when interpreting results of studies 
investigating the impact of StO2.

In summary, in this study StO2 was not a statistically 
significant predictor for peak postoperative hsTnT but 

Table 3 StO2 measures as predictors for higher peak hsTnT and MINS

StO2 indices

High peak hsTnT versus low peak hsTnT MINS versus no MINS

Univariable
OR (95% CI) P value

Multivariable
OR (95% CI) P value

Univariable
OR (95% CI) P value

Median SmO2, % 0.93 (0.87 to 0.996) 0.039 0.92 (0.82 to 1.04) 0.18 0.96 (0.76 to 1.21) 0.75

Minimum SmO2, % 0.97 (0.92 to 1.01) 0.16 0.94 (0.86 to 1.03) 0.20 0.95 (0.75 to 1.22) 0.70

Maximum SmO2, % 0.92 (0.85 to 0.99) 0.025 0.90 (0.80 to 1.02) 0.11 0.90 (0.70 to 1.15) 0.41

TW AUC SmO2, %×min×h-1 1.00 (1.00 to 1.00) 0.15 1.00 (1.00 to 1.01) 0.22 1.00 (0.99 to 1.01) 0.74

Median ScO2, % 0.99 (0.91 to 1.06) 0.70 0.92 (0.79 to 1.06) 0.24 0.79 (0.59 to 1.07) 0.13

Minimum ScO2, % 0.96 (0.91 to 1.03) 0.26 0.83 (0.69 to 0.98) 0.030 0.10 (0.00 to 5.34) 0.26

Maximum ScO2, % 0.97 (0.90 to 1.05) 0.47 0.99 (0.94 to 1.05) 0.82 1.01 (0.96 to 1.06) 0.76

TW AUC ScO2, %×min×h-1 1.00 (1.00 to 1.01) 0.32 1.00 (1.00 to 1.01) 0.33 1.00 (1.00 to 1.01) 0.32

This table shows the odds of having an outcome (high peak hsTnT or MINS, respectively) for every 1%/one unit increase in the specific 
StO2 variable. Multivariable analysis is adjusted for age, sex, BMI, smoking, diabetes, hypertension, previous stroke, chronic lung disease, 
arrhythmia, valvular disease, chronic kidney disease, length of surgery, osteotomy performed, estimated blood loss, mean arterial blood 
pressure and mean heart rate.
BMI, body mass index; hsTnT, high- sensitivity troponin T; MINS, myocardial injury after non- cardiac surgery; ScO2, cerebral tissue 
oxygenation; SmO2, skeletal muscle tissue oxygenation; StO2, tissue oxygenation; TW AUC, time- weighted area under the curve.

Figure 2 Adjusted prediction curve for time- weighted 
area under the curve (TW AUC) for skeletal muscle tissue 
oxygenation (SmO2) as predictor for myocardial injury after 
non- cardiac surgery (MINS).
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is a potential predictor for other postoperative compli-
cations. Future studies should focus on determining a 
threshold for StO2 taking interindividual factors into 
account and apply NIRS technology with the ability of 
detecting different Hgb fractions. The frequency of MINS 
was high (40%) and related to blood loss, suggesting 
supply- demand mismatch aetiology in spine surgery. 
StO2 did not have the power to predict myocardial injury 
but other intraoperative indicators for supply- demand 
mismatch should be considered as potential predictors 
for MINS in future studies.
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