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The switch from IgM to IgG (or IgA, IgE) synthesis has been studied in both 
normal and neoplastic Ig-secreting cells (1-6). Evidence suggests that DNA 
rearrangements precede isotype switching. The nature of the signals that induce 
isotype switching are not understood, although T cells (7-13), T cell-derived 
lymphokines (14-20), and mitogens (20-22) can influence switching in activated 
B cells. 

We have previously (16) described a T cell-derived lymphokine termed "B 
cell differentiation factor for IgG" (BCDF3,), l that induces increased levels of 
IgG1 secretion in lipopolysaccharide (LPS)-stimulated splenic B cells. T cell 
supernatants (SN) containing BCDF3, also contain lymphokines that suppress the 
secretion of IgG3 (23) and IgG2 (24, 25). These changes in IgG secretion are 
accompanied by corresponding changes in the steady state levels of mRNA for 
each IgG subclass (23). BCDF3,-containing SN do not act on cells that bear 
surface IgG (sIgG) at the initiation of culture (16). Furthermore, BCDF7 does 
not bind to Sepharose-coupled IgM, IgD, or IgG (25). The cell surface receptor 
for BCDF3,, then, is probably not sIg. 

The mechanism of action of BCDF3, is unclear. It might induce growth of an 
sIgG + subset of B cells. Alternatively, BCDF3" might induce sIgG- B cells to 
secrete IgG1. In the present studies, we have examined the effects of a BCDFT- 
containing T cell SN on normal B cells in a limiting dilution culture system. Our 
results suggest that BCDF3,-containing SN induce IgG1 secretion in a subset of 
sIgG- B cells already committed to a differentiation pathway leading to IgG1 
secretion. These cells do not arise from precursors of IgG3-secreting cells. 

Materials and  Methods  
Animals. We used female C57BL/6 × DBA/2 F~ (BDF1) mice (The Jackson Labora- 

tory, Bar Harbor, ME) 8-16 wk old. Lewis rats (Harlan Sprague Dawley, Inc., Indianapolis, 
IN), used at 3-6 wk, were a source of thymus cells. Rats were given tetracycline in their 
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drinking water (500 mg/pint) for the first 2 wk after arrival to prevent mycoplasma 
infections. 

Cell Preparation. T cell-depleted spleen cells (B cells) were prepared by treating cell 
suspensions with anti-Thy-1.2 monocionai antibody HO-13.4 and baby rabbit complement 
(Pel-Freez Biologicals, Rogers, AR). This treatment abolished the proliferative response 
to concanavalin A (Con A). Rats were anesthetized with ether and exsanguinated from 
the axillary artery before removal of the thymus. Thymus cell suspensions were used as 
filler cells in the limiting dilution cultures. 

Specificity of the Anti-3" Antisera Used for Fluorescence. F(ab')2 fragments of rabbit anti- 
3' antibodies were prepared as described previously (26). Lymphoma cell lines were used 
for fluorescence analysis of these anti-3" antibodies. An IgG2a-bearing subclone of A20 
(27) was obtained from Dr. Charlotte Word, UTHSC, Dallas. Two subclones, BCL~a 
(sIgG1 +, sIgM ÷) and BCL2b (sIgM+), derived from the in vitro BCL~ cell line (28), were 
provided by Dr. Yung-Wu Chen, UTHSC, Dallas (manuscript in preparation). An in vitro 
adapted clone of the AKR/J B iymphoma 225 was developed by Dr. K. Brooks, UTHSC, 
Dallas, from the in vivo lymphoma obtained from Dr. E. Ritchie, M. D. Anderson Hospital, 
Houston. This clone expresses sIgM and sIgD (K. Brooks, personal communication). 

Two control experiments were performed to establish the reactivity of the anti-3' sera 
with sIgG: (a) Two cell lines bearing sIgG (A20 and BCL~), normal splenic B cells 
stimulated with LPS for 5 d, and control slgG- cell lines (BCL2b and AKR/J-225) were 
stained with F(ab')~ rabbit anti-mouse 3' chain (RAM3') and fluorescein isothiocyanate- 
goat anti-rabbit Ig (FITC-GARIg). Stained cells were analyzed on an Ortho 50H cyto- 
fluorograph (Ortho Diagnostic Systems, Inc., Westwood, MA). The slgG ÷ cell lines were 
strongly positive, and the day-5 LPS blasts contained ~20% sIgG ÷ cells. The intensity of 
staining of the LPS blasts was similar to that of the sIgG ÷ cell lines, and <5% of the sIgG- 
cells and cells stained with FITC-GARIg alone were positive. (b) 6-d LPS blasts were 
stained, sorted into sIgG + and sIgG- populations, and analyzed for IgG3 plaque-forming 
cells (PFC). The staining had no effect on the total number of PFC obtained (25 PFC/10 ~ 
cells). The sorted sIgG + cells gave a 5.5-fold higher PFC response than the sIgG- cells. 
Thus, staining with our antisera effectively identified and separated the sIgG ÷ cells in the 
sorting procedure. 

Culture Conditions. For limiting dilution cultures, varying numbers of splenic B cells 
were cultured with 3 × 106 thymus cells/ml in RPMI 1640 medium with 20 mM Hepes, 
penicillin (50 u/ml), streptomycin (50 ug/ml), gentamycin (10 ug/ml), L-glutamine (2 raM) 
(Gibco Laboratories, Grand Island, NY), 50 #M 2-mercaptoethanol, and 10% fetal calf 
serum (Hyclone; Sterile Systems, Inc. Logan, UT). 96-well, flat-bottomed microtiter plates 
(Costar, Cambridge, MA) were used. 48 wells, containing 0.2 ml cultures, were used for 
each concentration of B cells plated. A group containing no splenic B cells was included 
in each experiment to determine the background response from the thymus filler cells. 
This background was subtracted from the response of groups containing splenic B cells. 
Ig secretion was usually not observed. Cultures were incubated at 37°C in a humidified 
atmosphere of 83% N2, 7% O~, and 10% CO2 for 6 d. B cells were stimulated with 20 
•g/ml LPS (Salmonella typhosa; Difco Laboratories Inc., Detroit, MI) with or without a 
source of BCDF3'. BCDF3"-containing SN was added after 1 d of culture. In some 
experiments, B cells were cultured at a concentration of 2.5 × I0 ~ cells/ml with 20 #g/ml 
LPS for 2-3 d. This was done in 75-cm ~ tissue culture flasks (Corning Glass Works, 
Corning, NY) to generate blasts for cell sorting. 

T Cell SN. Cells from the cloned alloreactive AKR anti-C57BL/6 T cell line, PK 7.1, 
were maintained in culture as previously described (29). We induced lymphokine secretion 
by pulsing cells with 10 #g/ml Con A for 4 h, washing, and reculturing cells for 24 h in 
Con A-free medium. Such SN contain B cell growth factor (BCGF), B cell differentiation 
factor for IgM (BCDFu) and IgG (BCDF3"), colony-stimulating factors, and histamine- 
producing-cell-stimulating factor (HCSF or interleukin 3 [IL-3]), but not 3"-interferon, or 
conventional (30) T cell-replacing factor (TRF) (16, 29, 31). 

PFC Assay. We performed reverse PFC assays in 96-well microtiter plates (Linbro 
Chemical Co., Hamden, CT) by the method of Pike et al. (32). We prepared protein A- 
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coupled sheep erythrocytes by the method of Gronowicz et al. (33). Rabbit antisera specific 
for the heavy chains of mouse IgG1 and IgG3 were purchased from Litton Bionetics, Inc. 
(Kensington, MD). We tested the specificity of these reagents by showing that they 
developed reverse PFC only of the Ig class(es) shown to be present by radioimmunoassay 
(RIA) analysis (as described below). PFC assays of cells in limiting dilution cultures were 
performed after 6 d of culture. Wells with two or more PFC were scored as positive. We 
analyzed the data according to Poisson statistics as described by Lefkovits and Waidmann 
(34). 

RIAfor Secreted lg. 25-50 #1 of SN from 6-7 d limiting dilution cultures were assayed 
for secreted Ig by a solid phase RIA as previously described (35). Briefly, plates were 
coated with affinity-purified rabbit anti-mouse Ig; secreted IgG in the SN was detected 
using affinity-purified ~25I-RAM3,1 or ~5I-RAM~'3. These reagents had <1% cross- 
reactivity with other heavy and light chains. Purified myeloma or hybridoma proteins 
were used as standards for quantitation. In some experiments, limiting dilution cultures 
were assayed by the reverse PFC assay. We used an RIA for Ig secretion in the SN from 
the same cultures to determine the correlation of the two assays. Out of 150 wells assayed 
for IgG1, 91% gave the same results in both assays; 5% were PFC-positive, but RIA 
negative, and 4% were negative for PFC, but positive in RIA. Out of 96 wells assayed for 
IgG3, 90% gave the same result in each assay; 6% were positive for PFC, but negative in 
RIA and 4% were RIA-positive, but PFC-negative. Correlation of the reverse PFC and 
RIA data showed that 1 PFC was equivalent to 0.2 ng of secreted IgG (1 ng/ml). Wells 
with ->2 PFC were scored as positive; ->2 ng/ml IgG was considered positive in the RIA. 
The number of cpm corresponding to 2 ng/ml was always greater than three standard 
deviations (SD) above the mean cpm obtained from thymus control groups. Since there 
was no more than a 2% difference between the number of positive wells using the reverse 
PFC assays and RIA, we used data from both assays to calculate the frequencies of IgG- 
secreting B cells. Precursor frequencies were calculated by the method of maximum 
likelihood (36). 

The average clone size, C, of IgG-secreting B cells was calculated according to the 
following formula: C = (~response)/(U x Wr), where U is the number of precursors per 
well, Wr is the total number of wells assayed and ~response is the total response (PFC or 
ng/ml IgG) from all wells assayed. 

Sorting of LPS-stimulated Cells. B cells were cultured with LPS for 2-3 d, then washed, 
and the viable cells were separated on FicolI-Hypaque (density, 1.09 g/cc) (37). Cells were 
treated with F(ab')2 RAM~, and FITC-GARIg (38). Labeled cells were analyzed with a 
fluorescence-activated cell sorter (FACS) III  (B-D FACS Systems, Becton, Dickinson and 
Co., Sunnyvale, CA). Large cells were sorted directly into microtiter trays containing 
medium, thymus filler cells (3 x 106/ml), LPS (20 #g/ml), and/or PK 7.1 SN. For selection 
of slgG- cells, the 10-15% brightest (positive) cells were excluded. However, only 2-4% 
of cells gave staining above background levels. For each subset of cells sorted, two 
different limiting concentrations of B cells were plated to determine precursor frequencies. 
We measured the response by RIA after 4 d of culture (a total of 6-7 d of culture), and 
the data were analyzed according to Poisson statistics (34). 

Replicate Cultures: Procedure and Data Analysis. In some experiments, limiting dilution 
cultures were set up with 6 x 106 thymus cells/ml, 20 #g/ml LPS, and a concentration of 
splenic B cells that gave ~50% wells responding at the end of the culture. These cultures 
were divided in half after 3 d of incubation and were restimulated with either LPS or 
LPS plus PK 7.1 SN. After a total of 7 d of incubation, the replicate cultures were assayed 
by RIA for secreted IgG3 or IgG1, respectively. The correlation of positive and negative 
wells in replicates was determined. We used a two-tailed Fisher's exact test (39) to find 
the probability of obtaining each set of data, assuming independent responses in each 
replicate. This probability determines the significance of the correlation observed. The 
correlation coefficient (r,) was also calculated as described for dichotomous nominal scale 
data (40). rn is a measure of the degree of correlation and is independent of the level of 
significance of the data (P value). Therefore, it is necessary that the P value be significant; 
if it is, the rn value then indicates how strong the correlation is. In addition, two sets of 
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TABLE I 
Analysis of Data 

Replicate 

1 2 

Percent of total wells 
tested 

Perfect positive correlation* 
a. + + 50 
b. + - 0 
c. - + 0 
d. - - 50 

Total: n 

No correlation * 
a. + + 25 
b. + - 25 
c. - + 25 
d. - - 25 

Total: n 

* For these data, r, = 1.0, P < 0.001. 
* For these data, r, = 0, P > 0.9 (for 48 wells). 

1853 

data can be compared by chi-square analysis of  heterogeneity (41), which determines the 
probability that the two sets of  data are the same. For two sets of  replicate cultures in 
which 50% of  the wells were positive in each set, the two extremes of  possible results 
(perfect positive correlation vs. no correlation) are presented in Table I. There  is also the 
possibility of  negative correlation (r, -- -1.0) ,  but none of  the observed data fell into this 
category, r, is calculated as follows: r, = [(a + d) - (b + c)]/n, where a-d represent 
respective rows of  data in Table I. 

In conclusion, it should be stressed that the only valid comparison within an experiment 
is the comparison with the internal control. Comparisons between experiments must be 
based on the r. values, and not the percentage of  positive or negative wells in each 
experiment. Furthermore, the r, values are only valid if the P values are significant 
(<0.01). 

R e s u l t s  

Effect of T Cell-derived BCDF'y-containing SN on the Precursor Frequency and 
Clone Size oflgG-secreting Cells. Prev ious  studies (16, 23) indica ted  tha t  in bu lk  
cu l tures  o f  LPS-s t imula ted  splenic B cells I g G  1 secre t ion was increased  ~ i 0-fold 
a nd  I g G 3  secre t ion  was dec reased  3-fold af ter  BCDF~,-conta in ing  PK 7.1 SN 
was added .  A c h a n g e  in the  p r e c u r s o r  f r e q u e n c y  a n d / o r  size o f  IgG-secre t ing  
c lones  migh t  explain these observat ions .  

T o  dis t inguish be tween  these possibilities, we t i t ra ted  B cells in l imit ing di lu t ion 
cul tures .  T h e  cells were  s t imula ted  with LPS and,  a f te r  1 d, PK 7.1 SN was 
added .  5 d later, IgG1 a n d  I g G 3  secre t ion were  d e t e r m i n e d  by reverse  PFC 
assay o r  by R I A .  Figs. 1 a nd  2 show the  effects o f  PK 7.1 SN on  the  p r e c u r s o r  
f requenc ies  o f  I g G 1 -  a n d  IgG3-sec re t ing  cells, respectively.  As calcula ted f r o m  
the  data  in these f igures,  PK 7.1 SN caused  a 16-fold increase in the  p r e c u r s o r  
f r e q u e n c y  o f  I g G l - s e c r e t i n g  cells and  a 6-fold decrease  in the  p r e c u r s o r  fre- 
q u e n c y  o f  IgG3-sec re t ing  cells as c o m p a r e d  with cells cu l tu red  with LPS alone.  
PK 7.1 SN had  no  effect  on  the  c lone  size o f  IgG3-sec re t ing  cells, bu t  increased  
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FIGURE 1. BCDF~-containing PK 7.1 SN induces an increase m precursor frequency of 
IgGl-secreting cells. Splenic B cells were cultured at limiting dilution in the presence of LPS 
(0) or LPS and PK 7.1 SN (O) for 6 d. IgG1 secretion was determined by reverse PFC and 
RIA. Results from four experiments were pooled; each point represents 96-335 wells. Error 
bars show the 95% confidence limits of each point. The  following frequencies ( I /n)  (range) 
were obtained: for LPS, 272 (249-297); LPS + PK 7.1 SN, 17.1 (15.1-19.4). 

t.0 

it 
.>" 

o.t 
a 

Lt. 

No. of cells per well 

0 20 40 60 80 

o LPS PKT.1 I x  \ 
FIGURE 2. BCDFT-containing PK 7.1 SN induces a decrease in precursor frequency of lgG3- 
secreting cells. Limiting dilution cultures were set up as described in the legend of Fig. 1. 
lgG3 secretion was determined by reverse PFC and RIA. Results from three experiments 
were pooled; each point represents 60-156 wells. Error bars show the 95% confidence limits 
of each point. Precursor frequencies ( l /n )  (range) of IgG3-secreting B cells were: in the 
presence of LPS (0) 27.5 (24.6-30.9) or of LPS and PK 7.1 SN (©) 161 (123-211). 

the clone size of IgGl-secreting cells 2.8-fold (Table II). Thus, the increased 
levels of IgG 1 secretion induced by the addition of PK 7.1 SN to the limiting 
dilution cultures are due predominantly to an increase in the precursor frequency 
of IgGl-secreting cells. The suppression of IgG3 secretion, however, is caused 
solely by a decrease in precursor frequency of IgG3-secreting cells. 

BCDF~-containing SN Induce IgG1 Secretion of slgG- LPS Blasts. Of impor- 
tance in understanding the mechanism of action of BCDF~, is whether BCDF~ 
affects cells before or after expression of sIgG. Our previous investigations (16, 
25) indicate that BCDF'r does not bind to sIgG and does not act on cells that 
were sIgG + before LPS activation. However, LPS activation induces expression 
of sIgG (18, 26, 42). Thus, we determined whether cells responding to BCDF~ 
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TABLE II 

Effect of BCDFT-containing PK 7.1 SN on the Clone Size of lgG- 
secreting B Cells* 

Number of IgG-secreting cells per clone Change in clone 
lsotype secreted in the presence of:* size induced by 

LPS LPS + PK 7.1 SN PK 7.1 SN 

IgG3 17.3 -+ 3.1 19.7 + 2.1 None 
IgG1 18.9 "4- 1.6 52.3 -+ 6.0 2.8X 

* B cells were plated in limiting dilution cultures as described in Materials 
and Methods and Fig. 1. Secreted IgG was measured by RIA and the 
data were calculated from experiments shown in Figs. 1 and 2. The 
mean _+ SEM of three to six separate determinations from groups of 48 
wells is shown. 

* The clone size, C, was calculated according to the formula: C = ~Re- 
sponse/U x Wr, where Wr is the total number of wells assayed and U is 
the number of precursors per well. One PFC was shown to be equivalent 
to 1 ng/ml of secreted IgG (see Materials and Methods). 

TABLE III  
Secretion of lgG1 by Total and slgG- B Cell Blasts Stimulated With 

BCDFT-containing PK 7. I SN* 

Exp. 
Precursor frequency of lgG 1-secreting cells 

(1/n) 

Total blasts slgG- blasts* 

1 143 92 
2 217 222 
3 130 101 

Mean _+ SEM 163 -+27 138 -+ 42 

* Splenic B cells were cultured with LPS (20 vg]ml) for 2 (Exp. 3) or 3 d 
(Exps. 1 and 2) and stained for slgG. Total blasts or sIgG- blasts were 
sorted on a FACS IIl into microtiter trays for limiting dilution analysis. 
After four more days of culture with PK 7.1 SN, secretion of IgG1 was 
determined by RIA and the precursor frequency determined by Poisson 
statistics. 

* Blasts had a mean forward light scatter on the FACS Ill  of approximately 
twice that of the small cell population. 

we re  s l g G  ÷ o r  s l g G -  a f t e r  3 d o f  L P S  ac t iva t ion .  W e  t h e n  c o m p a r e d  the  p r e c u r s o r  
f r e q u e n c y  o f  I g G l - s e c r e t i n g  cells in s I g G -  L P S  blasts  wi th  t he  f r e q u e n c y  in to ta l  
L P S  blas ts  w h e n  b o t h  cell  p o p u l a t i o n s  w e r e  c u l t u r e d  wi th  P K  7.1 SN (it s h o u l d  
be  s t r e s sed  t ha t  v i r t ua l ly  all 3-d L P S  blasts  w e r e  s I g M  ÷, c o n f i r m i n g  e a r l i e r  s tud ies  
[26,  42]). T a b l e  I I I  shows t ha t  t h e  f r e q u e n c y  wi th  wh ich  c lones  o f  I g G l - s e c r e t i n g  
cells a r o s e  was s imi la r  in b o t h  cell  p o p u l a t i o n s .  T h u s ,  mos t  cells wh ich  sec re t e  
IgG1  a f t e r  7 d o f  c u l t u r e  d i d  n o t  e x p r e s s  s I g G  a f t e r  3 d o f  ac t iva t ion  wi th  LPS.  

Replicate Culture Experiments. A l t h o u g h  the  e x p e r i m e n t s  d e s c r i b e d  in t he  
n e x t  two  sec t ions  h a d  d i f f e r e n t  a ims,  t he  p r o c e d u r e s  used  w e r e  s imi la r  fo r  bo th .  
C u l t u r e s  o f  sp len ic  B cells w e r e  set up  at  l im i t i ng  d i l u t i on ,  s t i m u l a t e d  wi th  LPS,  
t h e n ,  a f t e r  3 d i n c u b a t i o n ,  d i v i d e d  in to  two rep l i ca tes .  T h e  r ep l i ca t e s  we re  
i n c u b a t e d  4 d m o r e ,  t h e n  a s sayed  fo r  I g G  sec re t ion .  T h e  t ime  in t e rva l  b e f o r e  
t he  c u l t u r e s  w e r e  d i v i d e d  was suf f ic ien t ly  l ong  to  a l low the  r e s p o n d i n g  c lones  t o  



1856 CLONAL ANALYSIS OF IgG-SECRETING CELLS 

have expanded to a point such that splitting resulted in a measurable response 
in both halves. We had to divide cultures early enough, however, that the 
addition of PK 7.1 SN would still induce an easily measurable IgG1 response 
(delaying the addition of PK 7.1 SN reduces the magnitude of the IgG 1 response). 
Because the growth of responding clones is asynchronous, perfect correlation 
between the responses in the two replicate sets of  cultures was not expected, and 
statistical methods were required to evaluate the data (see Materials and Meth- 
ods). 

Preliminary experiments established that day 3 was the earliest point cultures 
could be split and still give highly significant (P < 0.01) correlation of responses 
from identically treated replicates. When PK 7.1 SN was added on day 3, the 
IgG1 precursor frequency was ~50% of that obtained when the SN was added 
on day 1. 

The number of splenic B cells pe r  well was chosen so that ~50% of the wells 
were positive, i.e., there was an average of less than one precursor per well. It is 
easier to show significant correlation with even lower proportions of positive 
wells, but we were restricted in the number of cultures that could be set up by 
the availability of PK 7.1 SN, and lower proportions of positive wells would have 
required testing larger numbers of cultures. 

There  was some variation in both the proportion of positive wells (apparently 
due to variation in the response of the cells from different groups of mice) and 
the degree of correlation obtained in individual experiments. Therefore, every 
experiment contained an internal control in which both replicates were stimu- 
lated with LPS and assayed for IgG3. Furthermore, it should be noted that even 
when wells scored negative for IgG secretion, 80-95% of the wells in all 
experiments were positive for IgM secretion, demonstrating that negative wells 
contained growing, IgM-secreting cells, rather than an absence of cells. 

Segregation of the Precursors of lgG1- and IgG3-secreting Cells. The enhance- 
ment of IgG1 secretion and the suppression of IgG3 secretion induced by PK 
7.1 SN suggested that the SN was influencing cells to switch from IgG3 to IgG1. 
Alternatively, the SN could increase IgG1 and decrease IgG3 secretion of two 
different precursor populations. This might mean that the lymphokines causing 
these effects are different. 

Because PK 7.1 SN caused suppression of the IgG3 response (Fig. 2), we could 
not directly determine whether the same precursors gave rise to IgG1- and IgG3- 
secreting cells. Instead, replicate cultures were prepared as described, after 3 d 
stimulation with LPS. One set of  cultures was stimulated with only LPS and 
assayed for IgG3 secretion, while the other replicate set was stimulated with LPS 
plus PK 7.1 SN and assayed for IgG1 secretion. Wells giving IgG3 responses 
were correlated with wells giving IgG1 responses (Table IV, protocol B). In 
control cultures, both replicates were restimulated with LPS and assayed for 
IgG3 secretion (Table IV, protocol A). The control cultures showed a highly 
significant correlation of the IgG3 responses (P < 0.001), and established the 
degree of correlation (rn = 0.672) that would be expected in Table IV B if IgG1- 
and IgG3-secreting cells were derived from the same precursors. The data in 
Table IV B show that there was only a low degree of correlation (r, = 0.167) of 
IgG3 and IgG1 responses, indicating that most IgG3 and IgG1 precursors are 
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TABLE IV 
Segregation of Precursors of lgG1- and lgG3-secreting B Cells in Replicate Cultures* 

Cultures showing pat- 
Pattern of lgG secre- tern of IgG secretion Correlation 

Protocol tion in replicate cul- Significance 
tures No. of Percent of (r,) 

wells total 

A* 

B *  

LPS 

lgG3 IgG3 

+ + 101 53 
+ - 15 7.9 
- + 16 8.5 
- - 5 7  3 0  

LPS + LPS PK 7.1 

IgG1 lgG3 

+ + 55 29 
+ - 22 11 
- + 58 30 
- - 5 7  3 0  

P < 0.001 0.672 

P = 0.004 O. 167 

* Limiting dilution cultures were set up with 6 x 10 ~ thymus cells/ml, 20/~g/ml LPS, and 20 splenic 
B cells/well. After 3 d in culture, two replicate cultures were set up from each limiting dilution 
well. In protocol A (internal control), both replicate cultures were restimulated with LPS. After 4 
d, the SN were assayed for IgG3 by RIA and the correlation of positive and negative replicate 
cultures determined. In protocol B, one replicate culture was restimulated with LPS and the other 
replicate culture with LPS plus PK 7.1 SN. The SN from the replicate cultures restimulated with 
LPS were assayed for IgG3 and the SN from the replicate cultures stimulated with LPS plus PK 
7.1 SN were assayed for IgG1 by RIA. The correlation of the IgG1 with the lgG3 responses in the 
replicate cultures was determined and its significance calculated by Fisher's two-tailed exact test. 

* By chi-square analysis, the data from protocols A and B are significantly different (P < 0.001). 

independent  of  each other.  This low correlation was, however,  significant (P  = 
0.004). A small p ropor t ion  of  clones probably give rise to both IgG1- and IgG3- 
secreting cells. 

Since the majority o f  IgGl-secre t ing  clones do not arise f rom IgG3,secret ing 
clones, it follows that PK 7.1 SN does not induce a switch from IgG3 t0 |gG1 
secretion. Rather,  the suppression of  IgG3 and enhancement  of  IgG1 secretion 
are separate effects, possibly caused by distinct components  of  PK 7.1 SN. IgG3 
secretion was also de termined in the cultures that had been restimulated with 
LPS and PK 7.1 SN (Table V). In six separate experiments,  two of  which are 
shown in Table V, suppression of  the IgG3 response, caused by the addition of  
PK 7.1 SN, varied f rom 12 to 38% (data not  shown). Al though this degree of  
suppression was substantially less than that seen when PK 7.1 SN was added on 
the first day o f  culture (Fig. 2), we could not determine whether  it would bias 
the results. Thus,  there could be preferential suppression of  IgG3 secretion in 
either the IgGl-posi t ive or  IgGl-negat ive  wells. Such suppression would result  
in a misleading correlat ion score. However,  the data in Table  V are similar to 
the data obtained when the correlation was analyzed in replicate cultures (Table 
IV B). T h e  degree of  correlation (rn) o f  IgG1 and IgG3 responses was slightly 
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TABLE V 

Segregation of Precursors of lgG1- and lgG3-secreting B Cells in the Same Cultures* 

Pattern of lgG secre- Cultures showing pat- 
tion in wells contain- tern of IgG secretion Correlation 

Significance 
Exp. ing LPS + PK 7.1 No. of Percent of (r.) 

SN wells total 

2 j 

IgG 1 IgG3 

+ + 55 29 
+ - 22 11 P < 0.001 
- + 4 6  24 
- - 6 9  3 6  

IgG1 IgG3 

+ + 63 33 
+ - 26 14 P < 0.001 
- + 41 21 
- - 6 2  3 2  

0.292 

0.302 

* See footnotes to Tables IV and VI for experimental details. IgG3 secretion was determined in 
cultures that had received LPS + PK 7.1 SN after division of culture on day 3, rather than in the 
replicates that received only LPS; i.e., the same wells were analyzed for both IgG1 and IgG3. 

* Data are taken from experiments in Table IV, protocol B. The  precursor frequency of IgG3- 
secreting cells was suppressed 21% in replicates receiving LPS + PK 7.1 SN, compared with 
replicates receiving LPS alone. 

0 Data from experiments in Table VI, protocol B. The  precursor frequency of IgG3-secreting cells 
was suppressed 32% in the replicates receiving LPS + PK 7.1 SN, compared with replicates 
receiving LPS alone. 

higher in Table V, as would be expected based on technical considerations of  
analyzing the same wells for IgG1 and IgG3, rather than replicate wells (as in 
Table IV). In analyzing supernatants from the same wells, the degree of  corre- 
lation that would be expected if IgG1 and IgG3 precursors were the same is 1.0, 
rather than an experimentally determined control value, such as that shown in 
Table IV A. Thus, the conclusion reached from the data shown in Table IV B is 
further supported. The majority of  IgG3- and IgGl-secreting clones arise from 
separate precursors, with a small proportion of precursors giving rise to both 
IgG3- and IgGl-secreting progeny. 

LPS-stimulated B Cells Are Committed to lgG l Secretion Before Addition of BCDF'y- 
containing SN. As illustrated in Table IV A, when, after 3 d in culture, LPS- 
stimulated clones destined to secrete IgG3 were divided in half, a high proportion 
(86%) produced IgG3 in both halves after 7 d. This result implies that, after 3 d 
of  stimulation, there were sufficient numbers of cells already committed to IgG3 
secretion such that each half would give an identical response 4 d later. A similar 
protocol was used to determine whether clones destined to secrete IgG1 were 
already committed to this pathway before addition of  PK 7.1 SN, or whether 
addition of  PK 7.1 induced a commitment to IgG1 secretion. 

To address this issue, B cells were plated in limiting dilution cultures in the 
presence of  LPS, and replicate cultures were prepared 3 d later. Cells in both 
replicas received PK 7.1 SN, and IgG 1 secretion was assayed 4 d later. Control 
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TABLE VI  

Commitment of B Cells to IgG1 Secretion Before the Addition of BCDF'y-containing 
PK 7.1 SN* 

Protocol 

Cultures showing pat- 
Pattern of IgG secre- tern of IgG secretion Correlation 
tion in replicate cul- Significance 

tures No. of Percent of (r,) 
wells total 

A* 

B *  

LPS 

IgG3 IgG3 

+ + 75 39 
+ - 21 11 P < 0.001 
- + 1 9  1 0  

- - 7 7  4 0  

LPS + PK 7.1 

IgG 1 IgG 1 

+ + 70 37 
+ - 29 15 P < 0.001 
- + 22 12 
- - 7 0  3 7  

0.583 

0.466 

* Limiting dilution cultures were set up (as described in Table IV) in the presence of LPS and, after 
3 d in culture, two replicate cultures were set up from each limiting dilution well. In protocol A 
(internal control), 20 splenic B cells were cultured per  well. Replicate cultures were restimulated 
with LPS and assayed for IgG3 secretion by RIA after four additional days. In protocol B, 30 
splenic B cells were cultured per well. Replicate cultures were restimulated with LPS plus PK 7.1 
SN and, after four more days, the culture SN were assayed for IgG1 by RIA. The  correlation of 
positive and negative replicate cultures was determined. 

* By chi-square analysis, the data from protocols A and B are not significantly different (P = 0.24). 

cultures that were stimulated only with LPS and assayed for IgG3 were included 
in each experiment. 

We reasoned that if cultures were already committed to IgG1 secretion before 
the addition of PK 7.1, the correlation of IgG1 responses in the replicate cultures 
would be similar to that obtained with the IgG3 responses. On the other hand, 
if PK 7.1 SN induces a commitment to IgG1 secretion, then there should be no 
correlation of IgG 1 responses in the replicates, since commitment occurs after 
the cultures are split. The results presented in Table VI show that the correlation 
of both IgG3 (Table VI, protocol A) and IgG1 (Table VI, protocol B) responses 
was highly significant (P < 0.001) and that the degree of correlation of IgG1 
responses (rn = 0.466) was similar to that of  IgG3 responses (rn = 0.583). Thus, 
clones stimulated by LPS are committed to IgG1 secretion before addition of 
PK 7.1 SN. However, PK 7.1 SN is needed to induce IgG1 secretion in the 
committed B cells. 

Discussion 

Four major findings have emerged from these studies: (a) PK 7.1 SN induces 
a profound increase (16-fold) in the precursor frequency and a modest increase 
(2.8-fold) in the clone size of IgGl-secreting B cells; (b) cells responding to PK 
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7.1 SN lack sIgG 3 d after LPS activation; (c) the vast majority of  IgGl-secreting 
cells are derived from precursors that are different from those giving rise to 
IgG3-secreting cells; and (d) precursors of  IgGl-secreting clones are committed 
to IgG 1 secretion before the addition of  PK 7.1 SN. These committed cells lack 
sIgG and do not secrete IgG1 unless they are cultured with PK 7.1 SN. 

The increase in precursor frequency of  IgGl-secreting cells induced by PK 
7.1 SN suggests that this differentiation step is a directed process. Thus, BCDF7 
in PK 7.1 SN acts as a differentiation factor. Since PK 7.1 SN also contains 
growth factors (31), the modest increase in clone size of IgGl-secreting cells 
might be caused by such factors. 

The finding that PK 7.1 SN acts on sIgG- precursor cells extends the results 
of  Isakson et ai. (16), who reported that the target cell for BCDFT-containing 
SN does not bear sIgG before activation with LPS. It was possible, however, that 
PK 7.1 SN acts on cells that acquire sIgG as a result of LPS stimulation. Indeed, 
Coutinho et al. (18) have described a maturation factor that induces IgG1 
secretion in cells already expressing sIgG1. In contrast, in our experiments, 
removal of  sIgG + cells after LPS stimulation did not decrease the IgG1 response. 
Hence, PK 7.1 SN appears to differ from the lymphokines described by Coutinho 
et al. (18) since it acts on cells that are sIgG- after 3 d of  LPS stimulation. 

The data in this report also demonstrate that the majority of  IgGl-secreting 
cells do not arise from precursors of  IgG3-secreting cells, but rather, from an 
independent set of precursors. This suggests that most cells switch directly from 
IgM to IgG1, and few from IgM to IgG3 to IgG1. 

Finally, we have shown that cells are committed to IgG1 secretion before the 
addition of  PK 7.1 SN. We envision two alternative pathways of  differentiation 
during which commitment could occur (see Fig. 3). In the first pathway, receptors 
for BCDF7 appear before DNA rearrangement and transcription of  C7~ genes; 
interaction of  BCDF7 with its receptor induces rearrangement and transcription. 
In this pathway, commitment is manifested by the expression of BCDF7 recep- 
tors. In the second pathway, DNA rearrangements occur before the appearance 

(i) LPS BCDFTR BCDFy ~i .... tmA -- ylmm~ m~r~t~ 
J~"TIVATION REARRANGEMENT S 

W W 
~' I BCDFy S~3~ON 

(2) LPS D~% BCDFy R Yl mRNA 
~-TIVATION RF_ARRANG~M~ 

FIGURE 3. Diagrammatic representation of two alternative pathways for differentiation to 
IgG1 secretion. (V) The stage at which commitment to IgG1 secretion could occur. BCDF7 R 
is the receptor for BCDFT. 
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of BCDF'y receptors. Rearrangements would determine commitment if, subse- 
quently, receptors for BCDFy are expressed, and binding of  BCDF3' to its 
receptor take place. However, DNA rearrangements might continue for heavy 
chain constant region (C.) genes 3' to C~'1, with concomitant expression of  
receptors for the lymphokines that induce secretion of  other isotypes. In this 
case, the initial rearrangement for C~'1 expression would not necessarily consti- 
tute commitment to IgG1 secretion. To distinguish between these possibilities, 
it would be helpful to raise antibodies to the BCDF3, receptor, so that cells 
bearing the receptor can be purified and their DNA analyzed for the relevant 
rearrangements. 

S u m m a r y  

To gain insight into how T cell-derived lymphokines induce the secretion of 
IgG in activated B cells, we performed a limiting dilution analysis, using murine 
splenic B cells incubated with lipopolysaccharide (LPS) and a T cell-derived B 
cell differentiating factor for IgG (BCDF~,)-containing supernatant (SN). The 
results of  this analysis indicate that such a SN induces a marked increase in the 
precursor frequency of  IgG 1-secreting cells and a modest increase in clone size. 
The precursors lack surface IgG and are committed to the differentiation 
pathway for IgG1 secretion after LPS activation, but before the addition of  
BCDF3'-containing SN. The majority of IgGl-secreting clones arise independ- 
ently from precursors of  cells that secrete IgG3. Taken together, these results 
indicate that BCDF3, directs differentiation of  activated B cells to IgG 1 secretion. 
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