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Cardiovascular diseases, the notorious killer, are mainly caused by atherosclerosis (AS)
characterized by lipids, cholesterol, and iron overload in plaques. Macrophages are
effector cells and accumulate to the damaged and inflamed sites of arteries to
internalize native and chemically modified lipoproteins to transform them into
cholesterol-loaded foam cells. Foam cell formation is determined by the capacity of
phagocytosis, migration, scavenging, and the features of phenotypes. Macrophages are
diverse, and the subsets and functions are controlled by their surrounding
microenvironment. Generally, macrophages are divided into classically activated (M1)
and alternatively activated (M2). Recently, intraplaque macrophage phenotypes are
recognized by the stimulation of CXCL4 (M4), oxidized phospholipids (Mox),
hemoglobin/haptoglobin complexes [HA-mac/M(Hb)], and heme (Mhem). The pro-
atherogenic or anti-atherosclerotic phenotypes of macrophages decide the progression
of AS. Besides, apoptosis, necrosis, ferroptosis, autophagy and pyrotopsis determine
plaque formation and cardiovascular vulnerability, which may be associated with
macrophage polarization phenotypes. In this review, we first summarize the three most
popular hypotheses for AS and find the common key factors for further discussion.
Secondly, we discuss the factors affecting macrophage polarization and five types of
macrophage death in AS progression, especially ferroptosis. A comprehensive
understanding of the cellular and molecular mechanisms of plaque formation is
conducive to disentangling the candidate targets of macrophage-targeting therapies for
clinical intervention at various stages of AS.

Keywords: atherosclerosis prevention, plaque formation, inflammation, macrophage polarization,
macrophage death
Abbreviations: AS, atherosclerosis; CXCL4, CXC chemokine ligand 4; CVD, cardiovascular disease; DHODH, dihydroorotate
dehydrogenase; FSP1, ferroptosis suppressor protein 1; GPx4, glutathione peroxidase 4; LDL, low-density lipoprotein; L-OOH,
lipid hydroperoxides; L-OH, lipids alcohols; MMP-7, matrix metalloprotease 7; Nrf2, nuclear factor E2-related factor 2; TrxR1,
thioredoxin reductase 1; Srxn1, sulfiredoxin-1; VSMAs, vascular smooth muscle cells.
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GRAPHICAL ABSTRACT | In atherosclerotic plaques, macrophages differentiate into different subtypes according to the vascular microenvironment. Subsequently,
macrophages die from the inducement (iron or lipids overload, DNA damage) by the way of apoptosis, necrosis and ferroptosis etc., which, in turn, accelerates the
atherosclerotic plaque formation.

Li et al. Macrophage Polarization, Death in Atherosclerosis
GENERAL OVERVIEW OF
ATHEROSCLEROSIS

Cardiovascular disease (CVD) is the leading killer globally and has
complex complications, such as stroke, myocardial infarction,
heart failure, and hypertension (1). CVD has been a hot topic
because of its high incidence and mortality. A report from the
Global Burden of Disease Study showed that the total prevalence
of CVD and years lived with a disability nearly have doubled from
271 million to 523 million and 17.7 million to 34.4 million in
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1999–2019, and the cases of CVD deaths stably increased from
12.1 million to 18.6 million from 1990 to 2019 (2). What is more,
the global trends for disability-adjusted life years and years of life
lost also increased significantly (2–4). Atherosclerosis (AS), an
underlying pathology of CVD, is a chronic, sterilized,
inflammatory disease involved in large and medium arteries and
accompanied by lipids, cholesterol, iron deposition, and fibrous
cap thinning (5, 6). The occurrence and development of AS are
strongly linked to local inflammation related to the vascular
microenvironment and macrophage death.
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Despite the fact that the exploration of cellular and
molecular mechanisms has been inspiring over the last
decades, the complex mechanisms of plaque formation in AS
progression limit us in understanding the AS etiology
comprehensively. Since the 19th century, researchers have
thought of this disease related to the aging process (7). As the
research further developed, three hypotheses have been formed.
Firstly, it is the response-to-injury hypothesis (8). According to
this hypothesis, various factors, including hemodynamic forces
and pro-inflammatory factors, promote the dysfunction of the
endothelium (8). Then, platelets aggregate, macrophages and
vascular smooth muscle cells (VSMCs) engulf oxidized lipids
and eventually form plaques, that is, the injury of vessel is
mainly caused by endothelial detachment. However,
subsequent studies have shown that the endothelium remains
intact during the development of AS, even at the sites of plaque
injury (9), which contradicts the core of this hypothesis.
Secondly, it is the response-to-retention hypothesis. In the
early stage of AS, proteoglycan binds to apolipoprotein B and
traps lipids into macrophages (10). In addition, lipolytic
enzyme and lysosomal enzyme play an important part in
the residence of oxidized low-density lipoprotein (ox-LDL) in
the vascular wall. In vitro, the lipoprotein lipase improved the
adhesion of ox-LDL, leading to ox-LDL being more easily
engulfed by macrophages and VSMCs and increasingly being
foam cells (11). Thirdly, that is the oxidative modification
hypothesis (12). Circulating LDL is chemically modified to
ox-LDL by reactive oxygen species (ROS) and metal ions
such as iron or copper, which becomes the pro-inflammatory
factor in the vascular microenvironment. Macrophages and
VSMCs internalize ox-LDL, an important atherogenic
component of the vascular microenvironment via scavenger
receptors, such as CD36, causing the transformation of foam
cells containing cholesterol esters and subsequently to be the
necrotic core.

As shown in Table 1, although the key factors for AS
initiating are different among the three hypotheses, they are
not mutually repulsive but stress diverse elements as the
necessary and sufficient conditions to demonstrate the
development of AS. For example, these hypotheses all consider
that inflammation, a known feature of AS, is involved in
atherosclerotic progression (16), and ox-LDL, an important
component of the vascular microenvironment, is the key factor
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in promoting atherosclerotic lesions. Assuredly, the reduction of
ox-LDL cholesterol is effective in AS treatment (7). Furthermore,
these hypotheses all highlighted foam cell plays a critical part in
every stage of AS, from the initial attack of the arterial lesion and
lesion extension to cell death (apoptosis, necrosis, ferroptosis,
etc.) causing plaque rupture and the complications of AS.

Recently, with the discovery of various polarization subsets of
macrophages, the effect of different populations on the AS
condition has been reexamined. Macrophage polarization and
death, whose outcomes directly lead to plaque formation, are also
considerable causes. Although there are inconsistent viewpoints
on the mechanisms of occurrence and development of AS, the
common denominator is the recognition of the essential role of
inflammation, oxidized lipids, macrophage polarization, and
macrophage death events in atherosclerotic vascular disease.
This review focuses on inflammation and plaque formation in
the initiation and development of AS and teases out the
candidate proteins of macrophage-targeting therapies for
clinical intervention at various stages of AS.
ATHEROSCLEROTIC PLAQUE
FORMATION

The formation of atherosclerotic plaque is closely related to
macrophages. Firstly, macrophages in plaques are differentiated
from monocytes continuously recruited by chemokines, which is
the prelude of macrophages transforming to foam cells.
Subsequently, macrophages (M0) polarize into different
macrophage subsets determined by the different vascular
microenvironments. Macrophages with different phenotypes
have different phagocytosic abilities to internalize ox-LDL; thus,
the outcomes of being foam cells are distinct. Subsequently, foam
cells undergo programmed or non-programmed death, causing
the formation of plaques and necrotic cores, although different
macrophage subsets may display unlike sensitivities for apoptosis,
necrosis, ferroptosis, autophagy, and pyroptosis. Polarization and
cell death play irreplaceable roles in plaque formation, and
they also interplay with each other to control the AS condition.
The two main inducements for plaque formation mentioned
above are crucial for AS prevention and treatment and will be
summarized below.
TABLE 1 | Summary of three hypothesis in atherosclerosis progression.

Hypothesis Inducers Functioning molecules Functioning cells Similarities References

Response-to-injury
hypothesis

Platelets, oxidized
lipids

PDGF, EDGF, PF4, CXCL4 Smooth muscle cells,
endothelial cells, monocytes

Inflammation, ox-LDL, and foam cells
promote atherosclerosis progression.

(8, 9, 12–15)

Response-to-
retention
hypothesis

Cholesterol,
atherogenic
lipoproteins

Sphingomyelinase, apoB-100,
sulfotransferase, heparitinase

Macrophages, vascular
smooth muscle cells

Oxidative
modification
hypothesis

Oxidized lipids, like
ox-LDL

RO2·, RO·, ·OH, ·NO, ·NO2, Fe,
Cu, H2O2

Macrophages, vascular
smooth muscle cells
March 2022 | Volume 13 | A
PDGF, Platelet-derived growth factor; EDGFs, endothelium-derived growth factors; CXCL4, CXC chemokine ligand 4; RO2·, RO·, peroxyl and alkoxyl radicals; PF4, platelet factor 4;
·OH, Hydroxyl radical; NO, Nitric oxide; H2O2, Hydrogen peroxide; AS, atherosclerosis; NO2, nitrogen dioxide.
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DIFFERENT PHENOTYPES, DIFFERENT
OUTCOMES

Macrophages display pro-inflammatory or anti-inflammatory
properties due to different phenotypes. In the stimulation of
cytokines, macrophages firstly migrate to the inflammatory sites to
eliminate inflammation. However, in the process of AS, due to
sustaining inflammation response, macrophages are continuously
recruited to lesion sites. Monocytes firstly differentiate to
macrophages (M0) due to cytokines, such as M-CSF (17).
Although the differentiation of monocytes to macrophages is
unreversible, macrophages possess eminent plasticity, i.e., switching
their phenotypes and functioning according to external signals (18).
As shown in Table 2, M0 could mainly polarize to seven types of
macrophages according to the vascular microenvironment:
classically activated macrophages (M1), alternatively activated
macrophages (M2), oxidized phospholipid-induced macrophages
(Mox), chemokine (C-X-C motif) ligand 4 or platelet factor 4-
induced macrophages (M4), erythrocyte and hemoglobin-induced
macrophages [HA-mac, M(Hb), and Mhem].

As illustrated in Table 2, M1 macrophages, highly expressed
iNOS, are differentiated from the M0 phenotype by
lipopolysaccharide (LPS), interferons, pathogen-associated
molecular patterns, and lipoproteins via Toll-like receptor
signaling, especially TLR4/MyD88/NF-kB (34). Moreover, TIR
Frontiers in Immunology | www.frontiersin.org 4
domain-containing adaptor inducing interferon-beta (TRIF),
another downstream protein of TLR4, is also involved in M1
activation except for MyD88. TRIF could activate the transcription
factor interferon-responsive factor 3 (IRF3) and then promotes
IFNa and IFNb secretion. Therefore, interferons bind to the
interferon receptor (IFNAR) to activate the transcription factor
STAT1 to skew macrophages to M1-like or M1 polarization (35)
M1 macrophages are pro-inflammatory to destruct tissue and
secrete cytokines, for example, IL-1b, IL-6, TNF-a, and IL-12 (36).
Pro-inflammatory cytokines sustain to recruit immune cells,
causing many macrophages to migrate to lesion sites. Compared
with M0, the phagocytosis capacity of M1 is not inferior; even M1
macrophages are more likely to be foam cells, an indispensable
part of plaques. If foam cells die and could not be removed, they
will become new pro-inflammatory factors, which becomes a
vicious circle, that is, recruitment–death–recruitment.

M2 macrophages with high expression of arginase-1 could be
polarized by the cytokines like IL-4 and IL-13, and subsequently
divided into M2a, M2b, M2c, and M2d, depending on the
stimulation (37). As shown in Table 2, IL-4 or IL-13 induces
macrophages to the M2 subset through activating STAT6 by the IL-
4 receptora, and IL-10 induces macrophages toM2 polarization via
STAT3 through the IL-10 receptor (35). Recently, Cao and
colleagues reported that the knockdown of the long noncoding
lncRNA-MM2P reduced cytokine-driven M2 polarization and M2-
TABLE 2 | Summary of the different macrophage subsets existing in atherosclerotic lesions of humans and mice.

Phenotype Marker Inducer Products Functioning
molecules

Functions Mouse/
Human

References

M1 IL-1b, TNF-a, IL-6, IL-12, IL-
23, CXCL9, CXCL10, CXCL11,
Arg-2 (Mouse)

IFN-g, LPS, TNF-a,
TLR ligands, FFA,
cholesterol crystals

iNOS, ROI, IL-12↑,
IL-10↓, IL-23, IL-6,
TNF-a, ROS

TLR4, IRAK4,
TRAF6, IKK, NF-Kb,
IRF3, STAT1, IRF5

Pro-inflammation,
strong phagocytotic,
strong migration

Human,
Mouse

(19–24)

M2a MR (Human), IL1Ra (Human),
Arg-1(Mouse), FIZZ1 (Mouse),
Ym1/2 (Mouse)

IL-4, IL-13 IL-10, TGF-b,
CCL22, CCL17

TLR2, STAT6,
Trim24, NEAT1, miR-
224-5p

Anti-inflammatory,
tissue remodeling,
endocytosis

Human,
Mouse

(19, 25–27)

M2b IL-10↑, IL-12↓ IC+LPS/IL-1b IL-10↑, IL-12↓, TNF-
a, IL-6

STAT6, Trim24 Immunoregulation Human,
Mouse

(19, 25)

M2c MR (Human), Arg-1(Mouse) IL-10, TGFb,
glucocorticoids

IL-10, TGF-b, PTX3 STAT6, Trim24 merTK-dependent
efferocytosis

Human,
Mouse

(19, 25)

M2d TNF-a↓, IL-12↓ TLR+A2R agonists VEGF, IL-10, iNOS STAT6, Trim24 Pro-angiogenic, tumor
promotion

Mouse (19, 25)

Mox HO-1, Srxn1, TrxR1, Nrf2 ox-LDL/oxidized
phospholipids

IL-10, IL-1b, HO-1 Nrf2, HO-1, TrxR1 weakly phagocytotic,
weakly migration

Mouse (26, 28, 29)

M4 MMP7, S100A8, MR CXCL4 MMP12, IL-6, TNF-a CXCL4, CD163, HO-
1

Weakly or no
phagocytic, almost no
foam cell formation

Human (26, 29, 30)

M(Hb) CD163, MR, LXRa Hemoglobin/
haptoglobin

ABCA1, ABCG1,
LXRa

LXRa, CD163,
ferroportin

Hemoglobin
phagocytoses,
strongly cholesterol
efflux

Human (26, 29, 31,
32)

Mhem CD163, ATF1 Heme LXRb CD163, LXRb, HO-1,
ATF1, AMPK

Anti-atherogenic,
erythrophagocytosis

Human,
Mouse

(30, 31, 33)

HA-mac CD163↑, HLA-DR↓ Hemoglobin/
haptoglobin

HO-1 CD163, IL-10 Anti-atherogenic,
hemoglobin clearance

Human (30, 31)
March 2022 | Volu
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↑, high; ↓, low; CXCL, C-X-C motif chemokine; FFA, free fatty acid; FIZZ1, found in inflammatory zone 1; Ym1, T lymphocyte-derived eosinophil chemotactic factor; HO-1, heme
oxygenase-1; PTX3, pentraxin-3; IKK, inhibitor of kappa B kinase; ROI, reactive oxygen intermediates; IRF3, interferon-responsive factor 3; STAT6, signal transducer and activator of
transcription 6; IFN-g, interferon-g; IL, interleukin; TLR, Toll-like receptor; TGF, transforming growth factor; MR, mannose receptor; A2R, adenosine receptor A2; LXR, liver X receptor;
VEGF, vascular endothelial growth factor; MerTK, Mer receptor kinase; CCL, chemokine (C-C motif) ligand; MMP, matrix metalloproteinase; S100A8, S100 calcium-binding protein A8;
ATF1, cyclic AMP-dependent transcription factor 1; Srxn1, sulfiredoxin 1; Txnrd1, thioredoxin reductase 1; TNF, tumor necrosis factor; ABCA1, ATP-binding cassette transporter A1; HLA-
DR, human leukocyte antigen DR.
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marker genes by decreasing phosphorylation on STAT6 (38). M2
macrophages initiate anti-inflammatory signaling by generating
cytokines like the IL-1 receptor agonist, collagen, IL-10, and TGF-
b1, making M1 transform into M2 macrophages to strengthen
exocytosis (39). M2 macrophages are differentiated by Th2
cytokines and generate IL-10. Due to various scavenger receptors
such as CD36, macrophage scavenger receptor 1 (MSR1),
macrophage receptor with collagenous structure (MRC1), and
mannose receptor (40, 41), the phagocytosis of M2 macrophages
is rather strong, causing the phagocytosis capacity of M2 to be
superior to M0 (28). It means that if M2 could not well cope with
intracellular lipids, they will be a hidden danger for plaque
formation due to their “greed.”

Mox is polarized fromM0 by oxidized phospholipids and keeps
themaway fromoxidative stress vianuclear factor E2-related factor
2 (Nrf2)-regulated expression of antioxidant enzymes like HO-1,
thioredoxin reductase 1 (TrxR1), and sulfiredoxin-1 (Srxn1) (28).
In atherosclerotic lesions of ldlr-/- mice, Mox macrophages were
extensively distributed inplaque and account for 30%whileM1and
M2macrophages took up 40% and 20% of all plaquemacrophages,
respectively (28). Notably, the phagocytosis and migration
capacities of Mox are inferior to M1 and M2 subsets. What is
more, antioxidant proteins were dramatically upregulated by Nrf2
in Mox, suggesting that Mox macrophages may be an anti-
atherosclerotic subset. However, it is unclear whether Mox is pro-
atherosclerotic or anti-atherosclerotic in AS progression until now.
Certainly, M1, M2, and Mox macrophages are all present in
atherosclerotic lesions, and the imbalance of the ratio of
macrophage subsets may be the cause of plaque formation and
the impediment of inflammation alleviation (42).

Iron-loaded M4 macrophages are induced by CXC
chemokine ligand 4 (CXCL4) (43). The M4 phenotype is
found in human plaque lesions and marked by matrix
metalloprotease 7 (MMP-7) and Ca2+-binding protein S100A8
(44). The combination of CD68, S100A8, and MMP7 is a reliable
marker to recognize the M4 subset both in vitro and in vivo (43).
The M4 subset is dominatingly presented in the adventitia and
intima of human arteries to trigger inflammation and promote
plaque instability. Moreover, CD163 alleviates AS progression by
upregulating the atheroprotective enzyme HO-1 in response to
hemoglobin. It was reported that CXCL4 aggravated AS by
suppressing CD163 and scavenger receptors CD36 or SR-1, which
was consistent with the conclusion in ApeE-/- mice (45, 46),
indicating the proatherogenic effects of this population.

As illustrated in Table 2, HA-mac, M(Hb), and Mhem
populations display in the hemorrhagic sites of unstable
plaques where they engulf and recycle erythrocyte remnants
and hemoglobin, and could be induced by hemoglobin,
haptoglobin, and CD163. All of them are regulated by CD163,
but HA-mac, M(Hb), and Mhem are also activated by IL-10,
LXRa, and ATF1/MAPK, respectively (32). Because of the high
expression of LXRa, LXRb, ABCA1, and ABCG1 which are
responsible for the cholesterol efflux, HA-mac, M(Hb), and
Mhem subsets are atheroprotective and resist to be foam cells
(32, 47), but their effects on AS protection are limited because of
the small percentage in plaque lesion.
Frontiers in Immunology | www.frontiersin.org 5
MACROPHAGE DEATH, EFFEROCYTOSIS
IMPAIRMENT, THE CULPRIT OF PLAQUE
FORMATION

Cell death and dead cells not being removed effectively are other
major causes of plaque and necrotic core formation. The
programmed death of macrophages is a complex process involving
multiple mechanisms, such as endoplasmic reticulum stress (48),
oxidative stress, mitochondrial dysfunction, and lysosome rupture
(49). As displayed in Table 3, atherosclerotic plaques contain a large
amount of cholesterol as well as necrosis cores comprised of foam
cells, collagen, smoothmuscle cells, etc. (99), due to thedysfunctionof
the death-clearance mechanism on macrophage apoptosis, necrosis,
and ferroptosis (100, 101). For macrophage death and clearance, the
effects of apoptosis–efferocytosis, necrosis, ferroptosis, autophagy,
and pyroptosis are highlighted below.
MACROPHAGE APOPTOSIS AND
EFFEROCYTOSIS IN ATHEROSCLEROTIC
PLAQUE FORMATION

Cell apoptosis has been regarded as a pivotal step for necrotic core
formation and unstable plaque rupture. High levels of ox-LDL and
cholesterol overload-induced ERs cause macrophage apoptosis
(102). Apoptosis executes the programmed progression, which is
the activation of caspase-type proteases (103). Macrophage
apoptosis is the main cause of necrosis cores and adverse
remodeling of the plaque architecture, leading to vulnerable
plaques (104). What is more, epidemiological studies showed that
AS could be aggravated by hyperhomocysteinemia, which induced
inflammation, lipid accumulation, and macrophage apoptosis in
arteries (105). However, some cytokines, like colony-stimulating
factor 1 (CSF1) derived from VSMCs and endothelial cells
promoted macrophage proliferation and reduced macrophage
apoptosis in plaques (106), suggesting that vulnerable plaque
formation may be effectively prevented by inhibiting macrophage
apoptosis. On other hand, because the phagocytic receptors fall off
the macrophage cell membrane, in comparison with other human
macrophage-rich tissues, efferocytosis is impaired inatherosclerotic
plaques (107). This impairment not only decreases the phagocytic
capacity but also generatesmolecules to competewithmacrophages
for the identification of apoptotic cells, which reduces the clearance
of apoptotic cells and subsequently intensifies the inflammatory
response (107, 108). Macrophage apoptosis is exacerbating, but
efferocytosis is impaired, which enhances atherosclerotic plaque
formation under the stimulation of pro-inflammatory factors.
MACROPHAGE NECROSIS IN
ATHEROSCLEROTIC PLAQUE
FORMATION

Apoptosis has been concerned with atherosclerotic plaque
formation for several decades. This programmed cell death
March 2022 | Volume 13 | Article 843712
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causes the clearance of unhealthy cells but does not produce
detrimental substances to the microenvironment. The outcomes
of apoptosis closely rely on the stage of the AS (109). It is worth
noting that apoptotic macrophages on the early stage of plaques
are efficiently cleared by efferocytosis; thereby, secondary
necrosis could be prevented. However, efferocytosis is
tremendously defective in advanced atherosclerotic plaques;
thus, apoptotic macrophages aggregate and secondary necrosis
occurs (110). Ox-LDL stimulation, mitochondrial ROS
overproduction, ATP depletion, intracellular Ca2+ overload as
well as impaired efferocytosis are all inducements to trigger
macrophage necrosis. Macrophage necrosis leads to plaque
vulnerability and releases massive pro-inflammatory cytokines
and DAMPs (damage-associated molecular patterns) like high-
mobility group box 1 (HMGB1), heat shock proteins as well as
S100 family molecules (109). The result of transmission electron
microscopy showed that VSMCs (30 ± 18%) were observed to
occur necrosis but not apoptosis (1 ± 2%) in advanced human
plaques. Moreover, dying macrophages present the necrotic cell
morphology with membrane disruption and swollen,
disintegrating organelles (110), implying that macrophage
necrosis plays a considerable part in advanced plaques.
Recently, GPR32, a receptor for pro-resolving lipid mediators
like resolvin D1, was reported to be reduced in human
Frontiers in Immunology | www.frontiersin.org 6
atherosclerotic lesions. Exhilaratingly, the lesion area and
necrosis of atherosclerotic plaques were observably decreased
when this receptor was overexpressed in mice (111). However,
because the applied detection methods for necrosis have not been
found, it has not been investigated extensively as apoptosis.
FERROPTOSIS, “AN UP-RISING STAR”
IN ATHEROSCLEROTIC PLAQUE
FORMATION

The term ferroptosis was defined to explain the manner of cell
death stimulated by the chemical reagent erastin (112). Once the
concept of ferroptosis was put forward, researchers paid great
attention to it in the field of cancer treatment. Until now, the
study of ferroptosis is still limited in AS, especially in
macrophages. The differences of ferroptosis in cancer and AS
are as follows: firstly, the pivotal challenge is to efficaciously kill
cancer cells and keep the healthy cells impervious in cancer
research, while macrophage ferroptosis would like to be
prevented in AS (113). Secondly, cancer cells are defective in
cell death executioner mechanisms including ferroptosis
resistance but macrophages are more susceptible to ferroptosis.
TABLE 3 | Cell death types contributed to plaques and necrosis core in atherosclerosis.

Death
types

Defining morphological features Functioning
molecules

Inducers Inhibitors References

Apoptosis Plasma membrane blebbing; cellular and
nuclear volume reduction; nuclear
fragmentation

Caspase-1, CARD8,
GZMB; HSP70,
CARD6, NOX5, PI3K/
Akp53, Bax, Bak, Bcl-
2, Bcl-XL

UNC5B, multiple intracellular
stress conditions (e.g., DNA
damage, cytosolic Ca2+

overload), apoptozole, FASL,
DCC, perillyl alcohol

XIAP, ML-IAP/livin, NAIP, ILP-2,
Bruce/Apollon, c-IAP1, surviving,
c-IAP2, Z-VDVAD-FMK

(50–59)

Necrosis Plasma membrane rupture, organelle
swelling, moderate chromatin condensation

MPG, CA9, RIP1,
MLKL, PDE4, RIP3,
DCC1, CD40, MLKL,
COL4A3BP

TNF-a, PF-543, TNF-a-IN-2,
PF-543 Citrate, fasentin

Necrostatin1 (Nec-1), IM-54,
necrosulfonamide (NSA),
myristoleic acid

(60–69)

Ferroptosis Mitochondria shrinkage with increased
mitochondrial membrane densities, reduced
mitochondrial crista

GPx4, FSP1, DHODH,
RPL8, IREB2,
ATP5G3, ACSF2,
P53, HSPB1,
SLC7A11, VDACs,
Nrf2, xCT

RSL3, DPI7, erastin, DPI10,
DPI13, DPI12, DPI18, ML16,
DPI17, sorafenib, DPI19,
artemisinin derivatives

Desferoxamine, solamine, 2, 2-
bipyridyl vitamin E, U0126, trolo,
ferrostatin-1, SRS8-24, SRS8-72,
SRS11-92, SRS12-45, SRS13-35,
SRS13-37, SRS16-86, CA-1

(69–78)

Autophagy Extensive cytoplasmic vacuolization,
autophagosome formation, phagocytosis,
lysosomal degradation

LC3-I, LC-II, Atg-5,
Atg-7, Atg-9, Beclin1,
P62, SQSTM1, Rb7,
TFEB, SR-BI, ABCA1,
PPARalpha, AMPK

Ox-LDL, 7-hydroxy cholesterol,
free cholesterol, cholesterol
crystals, ROS, tomatidine,
metformin, trimetazidine,
crustecdysone, syringin

Proteases E64, concanamycin A,
typhaneoside, liensinine
diperchlorate, liensinine,
cycloheximide

(79–90)

Pyroptosis Necrosis-like cell-membrane pore formation,
cellular swelling, membrane rupture,
massive leakage of the cytosolic contents,
apoptosis-like nuclear condensation, DNA
fragmentation without DNA laddering

GSDMD, NLRP3, IL-
1b, HMGB1, ASC,
TLR4, NF-kB,
caspase-1, caspase-
11, caspase-3,
caspase-8

Double-stranded DNA, LPS,
ox-LDL, uric acid crystals,
extracellular ATP, cholesterol
crystals, ROS, nicotine,
acrolein, TNF-a, triglyceride,
salmonella

Disulfiram, quercetin, succination (91–98)
March 2022 | Volume 13 | A
ROS, reactive oxygen species; RSL, Ras-selective lethal 3 compound; SAS, sulfasalazine; VDACs, voltage-dependent anion channels; Bcl-2, B-cell lymphoma-2; CARD8, caspase
recruitment domain-containing Protein 8; Bcl-XL, B-cell leukemia/lymphoma XL; GZMB, Granzyme B; MLKL, mixed lineage kinase domain-like pseudokinase; HSP70, heat shock protein;
Bak, Bcl-2 homologous antagonist/killer; CARD6, caspase recruitment domain-containing protein 6; NOX5, nadph oxidase 5; Bax, Bcl-2-associated X protein; RIP1, receptor-interacting
protein 1; FASL, Fas ligand; DCC, Deleted in colon cancer; UNC5B, Unc-5 netrin receptor B; COL4A3BP, collagen type IV alpha 3 binding protein; RIP3, receptor-interacting protein kinase 3;
EDD1, embryo defective development 1; RPL8, ribosomal protein L8; MPG, N-(2-mercaptopropionyl) glycine; CA9, carbonic anhydrase IX; SIRT5, sirtuin 5; DCC1, DNA replication and sister
chromatid cohesion 1; ACSF2, acyl-CoA synthetase family member 2; VDACs, voltage-dependent anion channels; IREB2, iron responsive element binding protein 2; CS, citrate synthase;
ATP5G3, ATP synthase subunit 9, isoform 3; HSPB1, heat shock protein family B member 1; SLC7A11, cystine/glutamate antiporter solute carrier family 7 member 11; VDACs, voltage-
dependent anion channels; GSDMD, gasdermin D; HMGB1, high-mobility group box-1; ASC, apoptosis-associated speck-like protein.
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To enable growth, cancer cells exhibit an increased nutrient
demand including iron and lipids compared with macrophages
(113); therefore, cancer cells could be more capable of solving
crises caused by iron and lipid overload to escape ferroptosis
(114). However, due to plaque rupture, iron and lipids are
overloaded in AS; macrophages are suffering the challenge
from both lipids and iron-containing proteins such as
hemoglobin, which could induce macrophage ferroptosis (115).

Ferroptosis, showing the iron-dependent excessive generation
of lipid ROS accompanied with the depletion of plasma
membrane polyunsaturated fatty acids, has been found to
promote the formation and destabilization of plaques (116,
117). Ferroptosis not only controls the death but also the
phenotype of macrophages. Macrophages in the vascular
microenvironment with excess iron and ox-LDL or LPS/IFN-g,
the proportion of M1 and Mox macrophages increases (115).
What is noteworthy is that, compared to M2 macrophages, M1
andMox macrophages display the ability of ferroptosis resistance
(115), implying the interplay between macrophage ferroptosis
and polarization. Because lipid peroxidation and iron overload
are common and obvious characteristics of plaques, ferroptosis
does play a non-negligible role in AS progression (117, 118).
Recently, the glutathione (GSH)-dependent antioxidant enzyme
glutathione peroxidase 4 (GPx4), ferroptosis suppressor protein
1 (FSP1)-CoQ10, and dihydroorotate dehydrogenase (DHODH)
have become a tripod complexion in ferroptosis regulation,
which were summarized in Figures 1, 2, and Table 4.

GPx4, a GSH-dependent enzyme, is located in the cytoplasm
and mitochondria of macrophages and reduces lipid
hydroperoxides (L-OOH) to lipid alcohols (L-OH) by
catalyzing GSH as shown in Figures 2A, C; therefore, GPx4
generally controls the iron-dependent production of lipid alkoxy
Frontiers in Immunology | www.frontiersin.org 7
radicals (L-O·) from L-OOH, which directly reduces lipid
peroxidation that has been produced in the macrophage cell
membrane. In our past work, macrophage iron and lipid
retention aggravated AS via the autocrine formation of
hepcidin in macrophages (121). Notably, the overexpression of
GPx4 significantly lessens lipid modifications by the superoxide
and impedes the progression of atherosclerotic plaque in ApoE-/-

mice (122), indicating that ferroptosis is a risk factor in the
progress of CVDs. Breakthroughs have been made in cancer
treatment, RSL3, ML162, ML210, 4-hydroxytamoxifen, and the
FDA-approved anticancer agent altretamine could suppress
GPx4 activity to induce cancer cell ferroptosis (120, 123).
Although the evidence has shown that GPx4 participates in the
formation of atherosclerotic plaques, the GPx4 knockout animal
model, specific inhibitors, and activators of GPx4 may better
unveil whether ferroptosis decisively participats in plaque
formation in AS.

Recently, Doll et al. and Bersuker et al. simultaneously
discovered that FSP1 is a potent protein resistant to ferroptosis
independent of GPx4 (71, 120). The great discovery of FSP1
explains the dilemma in the tolerance of anti-cancer treatment by
inhibiting GPx4 activation and provides new insights into the
ferroptosis inhibition of macrophages in AS. FSP1 contains two
mandatory domains for its function in suppressing ferroptosis,
i.e., N-myristoylation and a flavoprotein oxidoreductase domain.
FSP1 is recruited to the plasma membrane (endoplasmic
reticulum, cytomembrane, and Golgi apparatus) by the key site
N-myristoylation. Once recruited, FSP1 serves as an NAD(P)H-
dependent oxidoreductase to reduce coenzyme Q10 (shown in
Figure 2B). Coenzyme Q10 is an active lipophilic electron carrier
that is the only one lipid-soluble antioxidant synthesized
endogenously (124). Coenzyme Q10 plays a vital role in
A

B

C

FIGURE 1 | Chemical formula and catalytic activity GPx4, FSP1, and DHODH in ferroptosis regulation. (A) GPx4. (B) FSP1. (C) DHODH. NADH, reduced form of
nicotinamide-adenine dinucleotide; NAD+, nicotinamide adenine dinucleotide.
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aerobic respiration to transfer electrons in mitochondria and
keeps the lipids of Golgi and cell membranes away from
oxidation (125). Although CoQ10 has been reported for
decades in mitochondria, it is a novel discovery that CoQ10 is
reduced by FSP1 at the cell membrane, which is sufficient to
suppress the production of lipid peroxides and ferroptosis. Due
to the special pathology of AS, local iron overload and lipid
overload provide the necessary conditions for ferroptosis, and
the FSP1-CoQ10-NAD(P)H pathway may be a promising
strategy for inhibiting atherosclerotic plaque formation.

DHODH is a newly discovered protein operating parallel to
GPx4 to inhibit ferroptosis in 2021. In the past decades, DHODH
was regarded as an enzyme to catalyze de novo pyrimidine
synthesis and produce uridine monophosphate, which would
generate pyrimidines to biosynthesize nucleic acids for cell
proliferation (125). In metazoans, DHODH is recruited to the
outer face of the mitochondrial inner membrane, an
Frontiers in Immunology | www.frontiersin.org 8
environment rich in lipids, indicating that DHODH is a
potential enzyme to inhibit ferroptosis by reducing lipid
peroxidation (see Figure 2D). Because of the favorable
permeability of the mitochondrial outer membrane, DHODH
inserted into the outer membrane has access to its substrate
dihydroorotate and mitochondrial inner membrane-bound CoQ.
Subsequently, the product orotate of DHODH could be utilized
in the de novo pyrimidine synthesis pathway in the cytoplasm
(126). Therein, DHODH catalyzes dihydroorotate to orotate
with quinone as an electron acceptor, which is an essential step
for inducing ferroptosis.

Dihydroorotate and orotate are the substrate and product of
DHODH. Mao and his colleagues reported that a separate
supplementation with them could attenuate or enhance
ferroptosis triggered by the inhibitors of GPx4 (72). When the
GPx4 expression is inhibited, DHODH inactivation could induce
substantial mitochondrial lipid peroxidation and trigger
A

D C

B

FIGURE 2 | GPx4, FSP1, and DHODH on cell ferroptosis. (A) Firstly, cystine (Cys-Cys) was transported for keeping the homeostasis. Meanwhile, L-glutamine (Gln)
was catalyzed by glutaminase (Gls) to become L-glutamate (Glu) and outputted through system Xc- as well. Secondly, GPx4 oxidizes GSH to GSSG to reduce lipid
peroxidation in cytoplasm and mitochondria. (B) FSP1 reduces ubiquinol-10 by catalyzing coenzyme Q/ubiquinone-10, which is a process independent of the GPX4 at
the plasma membrane. (C, D) In the mitochondrial inner membrane, DHODH operates in parallel to mitochondrial GPx4 to inhibit ferroptosis and catalyzes the conversion
of dihydroorotate to orotate via catalyzing the reduction of coenzyme Q/quinone to quinol. NAD(P)H, nicotinamide adenine dinucleotide phosphate; NAD+, nicotinamide
adenine dinucleotide; PLOOH, phospholipid hydroperoxide.
TABLE 4 | The action of three main proteins regulating ferroptosis.

Proteins Subcellular location about
ferroptosis

Substrates Function Outcome Reference

GPx4 Cytoplasm and cytosol, mitochondrion Glutathione An Antioxidant peroxidase lipid hydroperoxide Preventing cells from
ferroptosis

(119)

FSP1 Plasma membrane NAD(P)H Prevents lipid oxidative damage Preventing cells from
ferroptosis

(71, 120),

DHODH Mitochondrion Dihydroorotate Catalyzes the conversion of dihydroorotate to
orotate

Preventing cells from
ferroptosis

(72)
March 2022 | Volume 13 | Art
GPx4, glutathione peroxidase 4; DHODH, dihydroorotate dehydrogenase; NAD(P)H, nicotinamide adenine dinucleotide phosphate; FSP1, ferroptosis suppressor protein 1.
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ferroptosis while cooperating with inducers to initiate ferroptosis
in cancer cells with a high expression of GPx4 (72). DHODH
inhibited ferroptosis independently of mitochondrial GPx4,
cytosolic GPx4, and cytomembrane FSP1 in the mitochondrial
inner membrane by reducing ubiquinone to ubiquinol, a radical-
trapping antioxidant with anti-ferroptotic activity (see
Figure 2D). Meanwhile, brequinar, the inhibitor of DHODH,
selectively inhibited cell growth with low-expressed GPx4 by
inducing ferroptosis. Furthermore, the authors reported that a
combined treatment with brequinar and sulfasalazine
synergistically triggered ferroptosis and suppressed tumor
growth with a high expression of GPx4 as well (72). Unlike
anticancer treatment, iron overload and lipid peroxidation are
two key points for macrophage ferroptosis that should be
avoided in AS, suggesting that except for the GPx4, FSP1
pathway, DHODH is a promising target for the suppression of
macrophage ferroptosis in AS.
MACROPHAGE AUTOPHAGY IS A
“DEFENDER” IN AS

Autophagy mediates the degradation and recycling of the
damaged organelles and proteins via autophagy-related genes
in lysosomes, which is a conserved process for maintaining
cellular homeostasis. However, the dysregulation of autophagy
has been associated with various metabolic disorders including
AS. It was reported that autophagy could be triggered in
macrophages, VSMCs, and endothelial cells (127).

In macrophages, autophagy could be induced by oxidized
lipids, like ox-LDL and 7-ketocholesterol (128). The activation of
autophagy could protect macrophages by digesting the damaged
proteins, organelles, or lipids. Notably, lipophagy is selective
autophagy that targets lipid droplets to lysosomes for
degradation in macrophage foam cells (129). Defective
autophagy in macrophages would promote the apoptosis and
necrosis of macrophages, causing plaque instability in AS (80).
Autophagy is generally regulated by LC3, autophagy-related
genes (Atg), p62, AMPK, etc., and it could be regulated by its
inhibitors and agonists in CVD, which were summarized
in Table 3.
MACROPHAGES PYROPTOSIS AND
INSTABILITY PLAQUES

Pyroptosis, a programmed cell death, is closely associated with
the activation of NLRP3 inflammasomes and the rapid release of
various cytokines, such as IL-1b, IL-18, and HMGB-1 (130). In
2011, Kayagaki and colleagues reported that caspase-11 induces
caspase-1-independent pyroptosis in macrophages, which is a
noncanonical inflammasome pathway (131). Macrophage
pyroptosis induced by the cholesterol crystal or ox-LDL
promotes plaque destabilization. Significantly, NLRP3
inflammasome components are highly expressed in
Frontiers in Immunology | www.frontiersin.org 9
macrophages (132); therefore, inhibiting macrophage
pyroptosis and reducing inflammation would provide
prospective therapeutic strategies for the disease.

The NLRP3 inflammasome consisted of three parts: NLR
(NOD-like receptor) families and PYHIN (pyrin and HIN
domain-containing protein) families, ASC (apoptosis-
associated speck-like protein), and the effector caspase-1. As
shown in Table 3, the cholesterol crystal or ox-LDL is
phagocytosed by macrophages, which facilitate NLRP3
inflammasome assembly and then activate caspase-1.
Subsequently, activated caspase-1 cleaves pro-IL-1b to mature
IL-1b, which induces inflammation and competes with
cholesterol for access to the ABCA1, causing the retention of
cholesterol to form foam cells (97). In addition, gasdermin D
(GSDMD) could be cleaved by caspase-1 to N-terminal
fragments (GSDMD-NT) and C-terminal fragments (GSDMD-
CT) (133). GSDMD-NT translocates to the cytomembrane, self-
oligomerizes, and forms the pores to disrupt the homeostasis of
intracellular and extracellular osmotic pressure, leading to
macrophage pyroptosis to form instability plaques (134).
CONCLUSION AND PROSPECT

In the past decades, the hypotheses and mechanisms of AS
pathogenesis have always refreshed our perception. The
knowledge of innovation on how the stabilization mechanisms
that govern cholesterol and lipid transport and stay inside
macrophages are operated to be foam cells helps us to tease
out the initiating causes and has identified several pathological
mechanisms, including inflammation, macrophage polarization,
and macrophage death, which can regulate the formation of
atherosclerotic plaques. According to the three classical
hypotheses above, inflammation, lipid oxidation, and
macrophage foam cells display major roles in AS progression,
which reminds us to be concerned about the primary cause.
Based on the past studies on AS, we summarized two main
causes inducing inflammation, promoting foam cell formation
and the formation and rupture of plaques, i.e., macrophage
polarization and macrophage death.

As the disease progresses, plaques and the necrotic core are
built up, although macrophage death is going on, most intense in
advanced plaques yet. The recognition of disparate macrophage
phenotypes (e.g., M1, M2, and Mox macrophages) has raised the
question of who is responsible for foam cell formation the most
because of the different abilities for phagocytosis, antioxidation,
and death. Notably, it was reported that M1 macrophages could
be resistant to ferroptosis compared to the M2 subtype (135).
Furthermore, Mox may be an excellent anti-atherosclerotic
subtype due to its abilities of weak phagocytosis and strong
oxidation resistance. Macrophage death should be prevented, or
dead cells should be removed effectively. From the clinical point
of view, many therapies, such as statins, whose primary function
is lowering serum LDL levels, are not particularly effective (136).
It provides new insights that induce macrophages to polarize to
anti-atherosclerotic subtypes as well as suppress macrophages’
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death by the key molecules of apoptosis, necrosis, ferroptosis,
autophagy, and pyroptosis. Taken together, macrophage
polarization and death are two main archcriminals that are
promising candidates for AS prevention and treatment.
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