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Abstract: It is often the case when studying complex dynamical systems that a statistical formulation
can provide the greatest insight into the underlying dynamics. When discussing the behavior of such
a system which is evolving in time, it is useful to have the notion of a metric between two given
states. A popular measure of information change in a system under perturbation has been the relative
entropy of the states, as this notion allows us to quantify the difference between states of a system at
different times. In this paper, we investigate the relaxation problem given by a single and coupled
Ornstein–Uhlenbeck (O-U) process and compare the information length with entropy-based metrics
(relative entropy, Jensen divergence) as well as others. By measuring the total information length in
the long time limit, we show that it is only the information length that preserves the linear geometry
of the O-U process. In the coupled O-U process, the information length is shown to be capable of
detecting changes in both components of the system even when other metrics would detect almost
nothing in one of the components. We show in detail that the information length is sensitive to the
evolution of subsystems.

Keywords: stochastic processes; Langevin equation; Fokker–Planck equation; information length;
Fisher information; metrics; O-U process; probability density function

1. Introduction

Describing many natural systems statistically can give great insight into the system’s dynamics,
when uncertainty or degrees of freedom are too high to do otherwise. Measures of information change
can be particularly useful in understanding the evolution of a system under perturbation, or comparing
data (e.g., see [1]). Here, by information, we specifically refer to a measurable, statistical difference
between the states of a system, defined by probability density functions (PDFs), and avoid any of the
more diaphanous definitions of the term. The statistical difference can be quantified by assigning a
metric to probability, which then endows a stochastic system with a geometric structure. Previously,
different metrics (e.g., Refs. [2–10] have been considered depending on the question of interest.

A popular measure of the information change in a system would be entropy, which measures
the uncertainty or ‘disorder’ of the system. More specifically, it is a measure of the number of states
that are accessible from the current state. Comparing entropy at different times gives a measure of the
difference in information for the system, called the relative entropy. We can use this relative entropy as
a metric. Another example is the Wasserstein metric, which was used to optimize transport cost in the
optimal transport problem [4,6]; for Gaussian PDFs, the Wasserstein metric is defined in the product
space consisting of Euclidean and positive symmetric matrices for the mean and variance, respectively
(e.g., see [2]). The link between the Fisher information [8] and the Wasserstein distance was made
in [6] where the integral of the Fisher information [8] along the Ornstein–Uhlenbeck semigroup was
shown to be the same as the Wasserstein distance. Furthermore [1] stated that relative entropy was the
integral of Fisher information along the same path.
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However, the way in which the relative entropy has mostly been used in the past lacks a sense
of locality to a metric of the system as it focuses on quantifying the difference between two given
PDFs, for instance, PDFs at time t1 and t2. As a result, they are independent of the intermediate PDFs
between time t1 and t2 (the history/path of a system), and thus can only inform us about changes which
affect the overall structure of the system. The work of [11] was, in part, a search for a disequilibrium
component for a statistical complexity measure (SCM). In short, an SCM is a measure of both the
‘order’ and ‘disorder’ of a system, which can help to reveal hidden structures of a disordered system.
They proposed several metrics ‘disorder’ or disequilibrium component of the SCM.

In this paper we compare several of the proposed metrics of [11] with the information length
L [12–20]. The information length, proportional to the time integral of the square root of the
infinitesimal relative entropy, depends on the intermediate states between t = t1 and t = t2 and
is thus a Lagrangian measure. Also, the formulation of the information length allows us to measure
local change for the system in time. L∞, the total information length over the entire evolution t = t1 = 0
and t = t2 → ∞, was shown to be useful to quantify the proximity of any initial PDF to a final attractor
of a dynamical system. For instance, for the Ornstein–Uhlenbeck process (O-U) [16,18], L∞ was
shown to take its minimum value at the stable equilibrium point and increase linearly with the mean
position of an initial PDF from the stable equilibrium point. This linear dependence manifests that the
information length preserves the linear geometry of the underlying Gaussian process. In this paper,
we will show that this linear relation is lost for other metrics (e.g., relative entropy, Jensen divergence).
Note that for a chaotic attractor, L∞ varies sensitively with the mean position of a narrow initial PDF,
taking its minimum value at the most unstable point [21]. This sensitive dependence of L∞ on the
initial PDF is similar to a Lyapunov exponent.

We note that the O-U is a prototypical relaxation problem and can be particularly useful to study,
as its attractor provides a natural equilibrium state. It can model many stochastic systems which
relax to a stable equilibrium. The solution to this process is Gaussian, and so has ‘nice’ properties of
analytical tractability, permitting us to perform detailed investigation under the change of parameters.
We first compare different metrics for a single O-U process then move to a coupled O-U process.
The O-U process is a well studied model, though less so for the coupled system. Our focus is to
compare different metrics and to see if the information length may be more revealing the behavior
of the components of the coupled system, as well as the overall system. The remainder of this paper
is organized as follows. Section 2 provides the definition of different metrics. Section 3 is devoted
to the discussion of a single O-U process. Section 4 provides analytical solutions to the coupled O-U
process and Section 5 compares different metrics for the coupled O-U process. Conclusions are found
in Section 6. In Appendix A, we present how to solve the Fokker–Planck equation(s) numerically by
using a second-order accuracy method in time and compare analytical results with numerical results.
Appendix B comments on the Langevin equation for our coupled O-U process.

2. Information Length and Other Metrics

We consider a PDF P(x, t) for a stochastic variable x in the following.

2.1. Information Length

The information length L(t) between time 0 and t is given by

L(t) =
∫ t

0

dt′

τ(t′)
=
∫ t

0
dt′
√∫ ∞

−∞
dx
(

∂P(x, t′)
∂t′

)2 1
P(x, t′)

, (1)

where 1
|τ(t)|2 is the second moment given by,

1
|τ(t)|2 =

∫ ∞

−∞
dx
(

∂P(x, t)
∂t

)2 1
P(x, t)

. (2)
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Here, τ(t) has the unit of time while L has no dimension. The parameter τ(t) is the characteristic
timescale of the system, and quantifies the correlation time for the system [15]. Hence, 1

τ(t) is the rate

of change of the information in time. Integrating 1
τ(t) over [0, t] gives the total number of statistically

different states that a system passes through in time. We note that L quantifies the information change
in time through the root-mean-squared fluctuating energy, using the second moment of the partial
derivative with respect to time. When the parameters governing a PDF are known, the information
length L(t) can be written in terms of the Fisher information metric [8,12,15].

As noted in Section 1, L(t) is a Lagrangian quantity and has the property of being a local measure,
being sensitive to how P(x, t) evolves at different x in time. In comparison with entropy which is
independent of the spatial (x) gradient of a PDF, it is this property that may elevate L(t) above entropy
in revealing micro-scale interactions within a system.

The discrete version of Equations (1) and (2) are as follows:

Ln = h
n

∑
i=0

1
τi

, (3)

1
τ2

i
=

s
h2 ∑

j
Pj

i

[
ln (Pj

i+1)− ln (Pj
i )
]2

. (4)

Here, i and j represent the discrete time and spatial point, respectively; Pj
i is the discrete version of

P(x, t), h = t/n is the time step while s is the spatial step.

2.2. Other Metrics

Here, we list the metrics taken from [11]. We will calculate each metric relative to the initial state
PDF P(x, 0) at t = 0 in order to compare their time-evolution with that of the information length.
That is, the metrics below are based on comparing two PDFs P(x, 0) and P(x, t). For convenience,
the metrics are given both for the continuous process and discrete approximation (that is used for
numerical calculation) by using i, j as an index representing time and space, respectively and s as the
spatial step, as above. The reference probability P(x, 0) [P0] will be the initial PDF while P(x, t) [Pi] is
the PDF at time t [i].

2.2.1. Euclidean norm

||P(x, t)− P(x, 0)||2 =
∫

dx [P(x, 0)− P(x, t)]2 ,

(5)

||P0 − Pi||2 = s ∑
j
[Pj

0 − Pj
i ]

2.

Applying our standard notion of distance in Euclidean space seems like a natural extension. However,
it quickly becomes apparent that the statistical space of stochastic systems is rarely well described by
Euclidean metrics. Mostly included here as a base case, whilst this formulation seems appealing, it
does not yield illuminating details about the disequilibrium of the system. We will use it as an example
of a poor measure of information change.
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2.2.2. Wootters’ Distance

W[(P(x, 0), (P(x, t)] = cos−1
[∫

dx [P(x, 0)]
1
2 [P(x, t)]

1
2

]
,

(6)

W[P0, Pi] = cos−1

[
s ∑

j
[Pj

0]
1
2 [Pj

i ]
1
2

]
.

This metric, as the notion of statistical distance itself, originates in quantum information theory [9].
However, as quantum information theory is purely statistical in formulation, it can be applied to
any systems defined by a PDF. Fundamentally, this metric is based on the principle that any finite
number of measurements on a stochastic system will yield results that may not be exactly the same
as underlying probability distributions. It would be impossible to distinguish 2 states whose real
underlying probabilities are different less than a typical fluctuation of the error of measurement.
This intrinsically defines a resolution for the system. The Wootters’ distance was shown to be a
monotone transformation of the Hellinger distance [22].

2.2.3. Kullback-Leibler relative entropy

K(P(x, 0)|P(x, t)) =
∫

dx P(x, 0) ln
(

P(x, 0)
P(x, t)

)
,

(7)

K[P0|Pi] = s ∑
j

Pj
0 log

(
Pj

0

Pj
i

)
.

Kullback–Leibler relative entropy was first introduced by Solomon Kullback and Richard Leibler [10],
and sometimes is referred to as the Kullback–Leibler divergence. It represents a measure of the
difference between a probability distribution and some other reference probability distribution. Whilst
a useful tool, it is not strictly a metric as it does not satisfy the triangle inequality. It is however used
in the definition of some other quantities, such as the mutual information of two co-varying random
variables, and the Jensen divergence.

2.2.4. Jensen Divergence

J(P(x, 0)|P(x, t)) =
1
2
[
K(P(x, 0)|P(x, t)) + K(P(x, t)|P(x, 0))

]
,

(8)

J[P0|Pi] =
1
2
[
K[P0|Pi] + K[Pi|P0]

]
.

The Jensen divergence is simply the symmetric version of the Kullback–Leibler divergence. Often it is
referred to as the Jensen distance, and the square root of this quantity can be shown to be a metric [11],
which can allow us to examine the statistical geometry of the system. The Jensen divergence is the
mutual information of a random variable x, with a mixture distribution from P(x, 0) and P(x, t), and a
binary indicator variable used to build the distribution. In other words it is a measure of the mutual
dependence of x on the way you construct the mixture, and thus quantifies the amount of information
difference between the two distributions.
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3. The O-U Process

The one-dimensional O-U process is based on the Langevin equation

ẋ = −γ(x− µ) + ξ, (9)

where x is the stochastic variable (e.g., position, velocity, etc.), γ is the damping constant, µ is
the position of the attractor for the system, and ξ is a δ-correlated, Gaussian-distributed stochastic
forcing, i.e.,

〈ξ(t1)ξ(t2)〉 = 2Dδ(t1 − t2), (10)

where D is the strength of the stochastic forcing. The corresponding Fokker–Planck equation [23,24] is
given by

∂P
∂t

=
∂

∂x
[γ(x− µ)P] + D

∂2P
∂x2 , (11)

where the solution P = P(x, t) is the time-dependant PDF which describes the evolution of the system.
It can be shown that the solution to Equation (11) is given by [13]

P(x, t) =

√
β

π
e−β(x−〈x〉)2

, (12)

where 1
2β = e−2γt

2β0
+ D

γ (1− e−2γt) and 〈x〉 = x0e−γt, given the initial condition

P(x, 0) =

√
β0

π
e−β0(x−x0)

2
, (13)

where β = 1/2〈(x− 〈x〉)2 and 〈x〉 in Equation (12) represent the inverse temperature and the mean
value of x, respectively, and β0 and x0 in Equation (13) are the values of β and 〈x〉 at t = 0, respectively.

3.1. Information Length

In [13], we showed that the information length L(t) for the O-U process is given by

L =
1√
2

[
ln
(

y− r
y + r

)]y f

yi

+

√
2

r

∫ y f

yi

qr− r2

y2 + qr− r2 dy, (14)

where y =
√

r2 + qT, r = 2β0D− γ, q = β0γx2
0, and T = β0D(e2γt − 1) + γ. yi is y evaluated at the

initial time (t = 0 in our case) and y f is y evaluated at final time. x0 is the initial mean position.
Let the integral in the last term of Equation (14) be H, and let r 6= q 6= 0. Then Equation (14) can

be written as

L =
1√
2

[
ln
(

y− r
y + r

)]y f

yi

+

√
2

r
H, (15)

where

H =


√

qr− r2 tan−1
(

Y√
qr−r2

)
if qr− r2 > 0,

−
√

r2−rq
2 ln

(
Y−
√

r2−rq

Y+
√

r2−rq

)
if qr− r2 < 0.

(16)

Note that this is continuous through q = r. For q = 0, we can directly compute

L =
1√
2
|r|
r

ln
(

T
T + r

)
. (17)
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For r = 0 we have

L = −
√

2q
[

1√
T

]Tf

Ti

. (18)

3.2. Wootters’ Distance

By using Equations (12) and (13) in (6), we obtain

W[P(x, 0), P(x, t)] =

[
β0β

π2

] 1
4
∫

dxe
−β0

2 (x−x0)
2− β

2 (x−〈x〉)2

=

[
2
√

β0β

β0 + β

] 1
2

exp
(
− ββ0(x0 − 〈x〉)2

2(β0 + β)

)
, (19)

where 〈x〉 = x0e−γt.

3.3. Kullback–Leibler Relative Entropy

By using Equations (12) and (13) in (7), we can show

K[P(x, 0)|P(x, t)] =
∫

dxP(x, 0)

[
ln

√
β0

β
e−β0(x−x0)

2+β(x−〈x〉)2

]

= ln

√
β0

β
+
∫

dxP(x, 0)
[
−β0(x− x0)

2 + β(x− 〈x〉)2
]

= ln

√
β

β0
+ β(x0 − 〈x〉)2 +

β

2β0
− 1

2
, (20)

where 〈x〉 = x0e−γt.

3.4. Jensen Divergence

By using Equations (12) and (13) in (8), we obtain

J[P(x, 0)|P(x, t)] =

(
β + β0

2

)
(x0 − 〈x〉)2 +

β2 + β2
0

4β0β
− 1

2
. (21)

3.5. Comparison

Figure 1 shows the final value for each metric as we vary the initial position x0 of the system.
The total information length L∞ = L(t → ∞), Wootters’ distance, K-L relative entropy and Jensen
divergence against x0 are shown in blue, orange, green and red, respectively, in the long time limit as
t→ ∞. Note that the green and red lines are overlapped. It is notable in Figure 1 that the linear relation
between the metric and the initial mean value x0 is obtained only by the information length. That is,
it is only the information length that preserves the linear geometry underlying a linear stochastic
process. For all other metrics, this linear relation is lost. We show in the Appendix A that our analytical
metrics in Figure 1 has a good agreement with those calculated directly from the numerical solutions
to the Fokker–Planck Equation (11) by time-stepping (see Figure A1).
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Figure 1. The metrics against x0 in the long time limit for a single Ornstein–Uhlenbeck (O-U) process.

4. The Coupled O-U Process

We now consider the coupled system of equations

∂P1

∂t
=

∂

∂x
[γ1(x− µ)P1] + D

∂2P1

∂x2 − f0P1 + g0P2, (22)

∂P2

∂t
=

∂

∂x
[γ2(x− µ)P2] + D

∂2P2

∂x2 + f0P1 − g0P2, (23)

where D is the strength of a short-correlated Gaussian noise given by Equation (10). These equations
are a pair of O-U processes, linked by coupling constants f0 and g0. The coupling f0 and g0 are
due to the Dichotomous noise [25] (see Appendix B for the Langevin equation corresponding to
Equations (22) and (23)).

We choose a coupled system like this one to examine the localized dynamics of these interacting
sub-processes. This system could model any process for which there are two competing components
relaxing to an equilibrium, like evaporation in a closed system, or a reversible chemical reaction.

Since we are mainly interested in the relaxation process from non-equilibrium initial states,
we choose the different initial conditions for P1 and P2 while for simplicity, considering the case where
γ1 = γ2 = γ and f0 = g0 = ε where the Fokker–Planck Equations (22) and (23) are reduced to

∂

∂t
P1(x, t) =

∂

∂x

[
γ P1(x, t)

]
+ D

∂2

∂x2 P1(x, t) + ε(P2 − P1), (24)

∂

∂t
P2(x, t) =

∂

∂x

[
γ P2(x, t)

]
+ D

∂2

∂x2 P2(x, t) + ε(P1 − P2). (25)

Specifically, as initial conditions, we use the following different Gaussian PDFs

P1(x, 0) =
1
2

√
β10

π
exp [−β10x2], (26)

P2(x, 0) =
1
2

√
β20

π
exp [−β20(x− x0)

2]. (27)

Note that β10 and β20 are the initial inverse temperatures for P1 and P2, respectively. On the other
hand, we fix the initial mean of P1 to be zero while the initial P2 is taken to have any arbitrary mean
value x0. We also note that as t→ ∞, P1 and P2 approach the same PDF.
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To solve Equations (24) and (25), we take the Fourier transform [P̃m(k, t) =
∫

dx eikxPm(x, t) for
m = 1, 2] and use the characteristic equation to recast Equations (24) and (25) as

dP̃1

dt
= −Dk2P̃1 + ε(P̃2 − P̃1), (28)

dP̃2

dt
= −Dk2P̃2 + ε(P̃1 − P̃2). (29)

Here d
dt =

∂
∂t +

dk
dt

∂
∂x is the total derivative along the characteristic defined by

dk
dt

= γk, (30)

which has the solution
k(t) = k0eγt, (31)

where k0 = k(0) is the initial wavenumber. We solve Equations (28) and (29) in terms of new variables

Pm = P̃m exp
(

εt + D
∫ t

0
dt1 k(t1)

2
)

, (32)

for m = 1, 2. The coupled Equations (28) and (29) are then simplified as

dP1

dt
= εP2, (33)

dP2

dt
= εP1. (34)

We write down the solutions to Equations (33) and (34) using the two constants a and b

P1 = aeεt + be−εt, (35)

P2 = aeεt − be−εt. (36)

To determine a and b, we take the Fourier transform of the initial conditions Equations (26) and (27)
to obtain

P̃1(0) =
1
2

e−
k2
0

4β2 , (37)

P̃2(0) =
1
2

eik0x− k2
0

4β1 . (38)

Thus, evaluating Equation (32) for m = 1, 2 at t = 0 and equating them to Equations (37) and (38),
we find

a =
1
2

P̃1(0) +
1
2

e−ik0x P̃2(0), (39)

b =
1
2

P̃1(0)−
1
2

e−ik0x P̃2(0). (40)

On the other hand, using Equation (31) in Equation (32), we write P̃m (m = 1, 2) in terms of Pm as

P̃m = exp [−εt− D
2γ

(1− e−2γt)k2] Pm. (41)
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Finally, taking the inverse Fourier transform [Pm(x, t) = 1
2π

∫
dx e−ikx P̃m(x, t) for m = 1, 2] and

performing several Gaussian integrals, we obtain

P1(x, t) =
1
4

[√
β1

π
(1 + e−2εt)e−β1x2

+

√
β2

π
(1− e−2εt)e−β2(x−e−γtx0)

2

]
, (42)

P2(x, t) =
1
4

[√
β1

π
(1− e−2εt)e−β1x2

+

√
β2

π
(1 + e−2εt)e−β2(x−e−γtx0)

2

]
, (43)

where
1

2βm
=

e−2γt

2βm0
+

D
γ

(
1− e−2γt

)
, (44)

for m = 1, 2. We can check that at t = 0, Equations (42) and (43) recover Equations (26) and (27). On the
other hand, in the limit of t→ ∞, Equations (42) and (43) give us

Pm(x, t) =
1
2

√
βm(t→ ∞)

π
e−βm(t→∞)x2

, (45)

which is the stationary solution to a single O-U process where βm(t→ ∞) = γ
2D . We note that the total

PDF P = P1 + P2 is the solution of this single O-U process with the initial condition given by the sum
of Equations (26) and (27).

Using these analytical solutions in Equations (42)–(44), we present the different metrics in
Equations (1) and (5)–(8) in Section 5.

5. Results for the Coupled O-U Process

For the illustration in this section, we show results for the fixed parameter values γ = 0.1, D = 1
and ε = 0.5. We recall from Section 4 that for these parameter values, in equilibrium (see Equation (44)),
β1 = β2 = β(t→ ∞) = γ

2D = 0.05 while the mean values in Equation (45) are zero for both P1 and P2.
For comparing metrics, we consider the case where P1 is initially in the final equilibrium with the
zero mean value and inverse temperature β10 = 0.05. On the other hand, P2 at t = 0 is taken to
have either different mean values x0 or different inverse temperatures β20. Here, we present results
obtained by using analytical solutions in Section 4 only. (See Appendix A for the numerical solutions
and comparison with the analytical solutions.)

5.1. Varying β20

We first examine how the system changes when varying the initial inverse temperature β20 of P2

for the fixed zero mean position (x0 = 0) (the equilibrium value). We investigate what changes are
detected by each metric.

Figure 2 shows the total information length (in blue), Euclidean norm (in orange), Wootters’
distance (in green), K-L relative entropy (in red), and Jensen divergence (in purple) against β20 in the
long time limit as t → ∞. Panels (a), (b) and (c) are for the overall system P, and the components
P1 and P2, respectively. Since P1 is initially chosen to be in its equilibrium state, the behavior for the
overall system P in panel (a) is more similar to P2 in panel (c) than P1 in panel (b). What is prominent
in both panels (a) and (c) is the presence of the distinct minimum in the information length around
β20 = 0.05. This is because the final equilibrium has the inverse temperature 0.05, demonstrating that
the total information also maps out the underlying attractor structure when varying β20, taking its
minimum value at the equilibrium state (reminiscent of the results for the single O-U process above
and previous works [13,16,18]). The minimum value around β20 = 0.05 is also observed for other
metrics (apart from the Euclidean norm) although less pronounced than the total information length.
In fact, for β20 = β10 = β(t → ∞), there is no temporal change in both P1 and P2, so all the metrics
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apart from the Wootters’ one take the value of zero. Also, of interest is an almost linear increase in the
total information length for P2 in panel (c) as |β20 − 0.05| increases.

(a) (b) (c)

Figure 2. Behavior of the metrics for varying β20 for the overall system in panel (a) and components P1

in panel (b) and P2 in panel (c).

Now, what is happening to P1 which starts with the equilibrium state (β10 = 0.05 and zero mean
value)? While Equation (44) shows that β1 = β10 = γ/2D = 0.05 for all time, the actual PDF P1 in
Equation (42) changes with time due to its coupling to P2 via ε. That is, P1 changes over time, initially
deviating from the equilibrium state due to the interaction with P2 and then finally relaxing back to
the final equilibrium state. Associated with this time evolution of P1 is the information change which
can be measured by different metrics. However, Figure 2b shows that for P1, it is only information
length that detects a noticeable difference in the information change as β20 changes. Furthermore,
the information length for P1 takes the minimum value for the equilibrium value of β20 = 0.05, as was
the case for P2. This result demonstrates that the information length is sensitive to the evolution of of
the component P1 (a subsystem).

To investigate the evolution of the metrics for the P1 around β20, we show in Figure 3 how the
metrics evolve over time for the component P1 for the two different values of β20 = 0.02 and 0.08 near
the equilibrium value β20 = 0.05. Panel a) is for β20 = 0.02 < 0.05 and panel b) is for β20 = 0.08 > 0.05.
The different metrics are denoted by using the same color as used in Figure 2. This small deviation
of β20 from the equilibrium value induces a small change in P1 over time due to the coupling to P2,
as noted above. However, in panels a) and b), we see a significant change in the Euclidean norm,
K-L relative entropy, and Jensen divergence in time, with a large increase before settling down to a
lower value. In comparison, the information length shows no such spike. These spikes are caused
by the deviation of P1 from its initial equilibrium state due to the coupling to P2 before settling into
the equilibrium state as P2 approaches the equilibrium. What is interesting is that the information
length does not show such a spike since it measures the local information change; this would thus be
the more sensible view in this instance since the change in the component P1 is small compared to its
width (uncertainly). Furthermore, such spikes do not appear for P2 nor P (results not shown) since P2

starting from a non-equilibrium state monotonically approaches its equilibrium.
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(a) (b)

Figure 3. The metrics against time for P1 around β20 = 0.05. β20 = 0.02 in panel (a) and β20 = 0.08 in
panel (b). The Y-axis scaling on the panels is 106.

5.2. Varying x0

We now fix β20 = 0.05 and vary the initial mean position x0 of P2 to examine how metrics depend
on x0, as we have done for the single O-U process in Section 3. Figure 4 shows the total information
change for each metric for different values of x0, for P, P1 and P2 in panels (a), (b), and (c) respectively.
Specifically, Figure 4a shows that for P, the total information length against x0 is linear, capturing
the linearity of the system as expected from the single O-U process. None of the other metrics are
capable of showing the linear relationship in the same way. On the other hand, Figure 4b,c shows an
interesting non-monotonic dependence of the information length on x0.

To understand this, we show in Figure 5 the time evolution of P, P1, and P2 in panels (a), (b),
and (c), respectively, by using x0 = 20. Of interest is that the evolution of P1 and P2 in Figure 5b,c
involves the formation of the two peaks from the initial one peak, followed by merging of these two
peaks into one peak as a system settles into the equilibrium. This formation of the two peaks is due
to the interaction between P1 and P2 when they are initially widely separated for a sufficiently large
x0 ' 20. The formation of two PDFs peaks for x0 ' 20 leads to the maximum in the total information
length around x0 = 20 in Figure 4b,c. Specifically, the formation of the two peaks in P1 and P2 shown in
Figure 5b,c takes place when the two peak are a full PDF width apart, and facilitates broadening of both
PDFs in the relaxation process. As x0 is further increased from 20, P1 and P2 form two peaks which
are more widely separated, leading to P1 and P2 becoming effectively broader. This in turn reduces
the information length (as x0 increases further from x0 = 20) since large fluctuations (uncertainty)
associated with a broad PDF reduces the information length. Again, the information length is the
only measure which detects the difference in the overall information change for P1 due to its sensitive
dependence on the local evolution of a system.

(a) (b) (c)

Figure 4. Behavior of the metrics for varying x0 for the overall system P in panel (a), P1 in (b), and P2

in (c).
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(a) (b) (c)

Figure 5. Time-dependent partial differential equations (PDFs) for P in panel (a), for P1 in panel (b)
and for P2 in panel (c); x0 = 20.

6. Conclusions

When searching for a way to quantify the information change in a given dynamical system, our
choices are many and varied. Our aim here was to show the power of the information length L when
compared with some of the more popular methods of measuring information change. Utilizing the
O-U, we compared several relative-entropy formulations with our information length to investigate
what each could reveal about the dynamics of system.

Specifically, we investigated the relaxation problem given by a single and coupled O-U process
and compared the information length L with K-L relative entropy, Jensen divergence, Wootters’
distance, and Euclidean norm. By measuring the total information length in the long time limit, we
showed that L was unique in detecting the linear spatial relationship between the total information
change and the initial position of a PDF. In the coupled O-U process, the information length was
shown to be the most effective in detecting changes in the components of the system even when the
others would detect almost nothing in one of the components. In particular, when P1 started with an
equilibrium state with the zero mean value, the formation of the two peaks of P1 (or P2) from an initial
one peak P1 (or P2) and the merging of the two peaks into one peak as a system settled into equilibrium
was detected only by the information length with its intriguing non-monotonic dependence on x0

(the mean value of P2). This underscores the sensitivity of the information length on the evolution
of subsystems.

Future work will include the study of a system with multiple attractor positions for the system or
how the system behaves when changing the position of the attractor. It would also be interesting to
examine the case where the coupling parameters f0 and g0 are not constant, but are functions of time.
This could result in a periodic equilibrium where the PDF varies between 2 or more unstable states.
This could represent physical systems like reversible chemical reactions, or even fluctuating financial
markets. It would also be of interest to investigate implication of the information length for the deep
neural network [26], in particular, to elucidate the role of geodesic along which the information length
is minimized [27].
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Appendix A

In this appendix, we show the numerical solutions to the Fokker-Planck equation by time-stepping
and metrics using these numerical solutions for the O-U process and the coupled O-U processes.
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Appendix A.1. The O-U Process

We use the finite difference method to approximate the partial derivatives from Equation (11),
where h is our time-step, s is our spatial step, i is the current time step, and j is the current spatial step.

Pj
i+1 − Pj

i
h

= γ
(xj − x0)[P

j+1
i − Pj

i ]

s
+ D

Pj+1
i − 2Pj

i + Pj−1
i

s2 . (A1)

Then using a second-order Runga-Kutta Method, we create a time-stepped solution. Specifically,
we first create an intermediate value P̃ by

(P̃)j
i+1 = Pj

i + h f (ti, Pj
i ), (A2)

where

f (ti, Pj
i ) = γ

(xj − x0)[P
j+1
i − Pj

i ]

s
+ D

Pj+1
i − 2Pj

i + Pj−1
i

s2 , (A3)

which is the time-gradient for the system. Here, ti is the current time value. Then we use the
intermediate value to calculate the next time step value, Pj

i+1, using the formula

Pj
i+1 = Pj

i +
h
2
[ f (ti, Pj

i ) + f (ti+1, P̃)j
i+1)]. (A4)

For simplicity, we set D = 1. This is to consider the case of the one parameter system, as the O-U
process can always be arranged to combine γ and D into a single parameter. For our stepping, we use
h = 0.04 and s = 0.1. We check on the convergence of our solutions by reducing h and s. We use
the initial condition given by Equation (13). All solutions are coded in pythonuni We present the
numerically computed metrics from the time-stepping in Figure A1, which shows the final value for
each metric as we vary the initial position of the system, x0. Figure A1 is quite similar to the analytically
calculated metrics shown in Figure 1, demonstrating a good agreement between the analytical and
numerical solutions.

To test the accuracy of our time-stepped model further, Figure A2 compares the time evolution of
different metrics for the largest x0 value, i.e., the largest perturbation from equilibrium in our testing,
with analytic and time-stepped solutions on the left and right respectively. The agreement between the
analytical and numerical solutions is observed to be quite good.

Figure A1. The metrics calculated by the numerical solutions to the Fokker–Planck equation by
time-stepping.
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(a) (b)

Figure A2. Comparing the evolution of the metrics with x0 = 30. Panels (a) and (b), respectively, are
obtained by using the analytical and numerical solutions to the Fokker–Planck equation.

Appendix A.2. Coupled O-U Process

We solve (22) and (23) numerically by time-stepping, using the same method as for the single
equation case. Our discrete versions of (22) and (23) become

(P1)
j
i+1−(P1)

j
i

h = γ1
(xj−µ1)[(P1)

j+1
i −(P1)

j
i ]

s + D1
(P1)

j+1
i −2(P1)

j
i+(P1)

j−1
i

s2 − ε(P1)
j
i + ε(P2)

j
i (A5)

(P2)
j
i+1−(P2)

j
i

h = γ2
(xj−µ2)[(P2)

j+1
i −(P2)

j
i ]

s + D2
(P2)

j+1
i −2(P2)

j
i+(P2)

j−1
i

s2 + ε(P1)
j
i − ε(P2)

j
i , (A6)

where h is our time-step, and s is our spatial-step. We then use Huen’s method to approximate the
time-evolution for the system. So our final numerical model becomes

(P̃1)
j
i+1 = (P1)

j
i + h f1(ti, (P1)

j
i , (P2)

j
i), (A7)

(P̃2)
j
i+1 = (P2)

j
i + h f2(ti, (P1)

j
i , (P2)

j
i), (A8)

(P1)
j
i+1 = (P1)

j
i +

h
2
[ f1(ti, (P1)

j
i , (P2)

j
i) + f1(ti+1, (P̃1)

j
i+1, (P̃2)

j
i+1)], (A9)

(P2)
j
i+1 = (P2)

j
i +

h
2
[ f2(ti, (P1)

j
i , (P2)

j
i) + f2(ti+1, (P̃1)

j
i+1, (P̃2)

j
i+1)], (A10)

where

f1(ti, (P1)
j
i , (P2)

j
i) = γ1

(xj−µ1)[(P1)
j+1
i −(P1)

j
i ]

s + D1
(P1)

j+1
i −2(P1)

j
i+(P1)

j−1
i

s2 − ε(P1)
j
i + ε(P2)

j
i (A11)

f2(ti, (P1)
j
i , (P2)

j
i) = γ2

(xj−µ2)[(P2)
j+1
i −(P2)

j
i ]

s + D2
(P2)

j+1
i −2(P2)

j
i+(P2)

j−1
i

s2 − ε(P2)
j
i + ε(P1)

j
i , (A12)

and (P̃k)
j
i+1 are the intermediate values. Here we set D1 = D2 = 1 and use h = 0.04 and s = 0.1.

We give our system components a Gaussian initial condition, given by

(P1)
j
0 =

1
2

√
β1

π
e−β1(xj−ν1)

2
, (A13)

(P2)
j
0 =

1
2

√
β2

π
e−β2(xj−ν2)

2
, (A14)
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where β1 and β2 are the inverse temperature for P1 and P2 respectively, and ν1 and ν2 are their initial
mean positions.

When varying the system parameters, we fix the parameters for P1 at equilibrium (ν1 = 0,
β1 = 0.05, γ1 = 0.1) and vary the parameters for P2 (ν2, β2). The choice between fixing P1 or P2 is
arbitrary. We solve the Fokker–Planck equations for the coupled O-U process (Equations (22) and
(23)) by time-stepping and then numerically calculated the metrics. These are shown to have a good
agreement with the results using the analytic formulation of the PDF (Equations (42) and (43)) in
Section 5.

Appendix B

The Langevin equation corresponding to Equations (22) and (23) is given by

∂tx = −(x− µ)η(t) + ξ. (A15)

Here, ξ is the Gaussian noise given by Equation (10), and η(t) is the dichotomous Markov noise
(DMN) [25,28] which takes the two value {γ1, γ2}, with constant transition rates k± = f0, g0 between
the two states. A pure DMN case is governed by

∂tx = η(t), (A16)

and the waiting time τ± in the two states are exponentially-distributed stochastic variable,
with the probability

P(τ±) = k±e−k±τ± . (A17)

Note that η(t) is not a white noise, but has the exponentially decaying correlation function as

〈η(t)η(t′)〉 = Q
τc

exp
(
−|t− t′|

τc

)
. (A18)

Here, Q = k+k−τ3
c (γ1 + γ2)

2 and τc =
1

k++k−
is the characteristic relaxation time to the stationary

state of the DMN. For the DMN, due to a finite correlation time, an exact, analytical time-dependent
PDF, in general, is unavailable. For instance, the pure DMN case given by Equation (A17) leads to a
coupled linear Fokker–Planck equation (e.g., see Equations (9) and (10) in [28]), but a resulting equation
for the total PDF is a differential and integral equation in time (see, e.g., Equation (11) in [28]).

References

1. Zamir, R. A proof of the Fisher information inequality via a data processing argument. IEEE Trans. Inf. Theory
1998, 44, 1246–1250. [CrossRef]

2. Gibbs, A.L.; Su, F.E. On choosing and bounding probability metrics. Int. Stat. Rev. 2002, 70, 419–435.
[CrossRef]

3. Jordan, R.; Kinderlehrer, D.; Otto, F. The variational formulation of the Fokker–Planck equation. SIAM J.
Math. Anal. 1998, 29, 1–17. [CrossRef]

4. Lott, J. Some geometric calculations on Wasserstein space. Commun. Math. Phys. 2008, 277, 423–437.
[CrossRef]

5. Takatsu, A. Wasserstein geometry of Gaussian measures. Osaka J. Math. 2011, 48, 1005–1026.
6. Otto, F.; Villani, C. Generalization of an Inequality by Talagrand and Links with the Logarithmic Sobolev

Inequality. J. Funct. Anal. 2000, 173, 361–400. [CrossRef]
7. Costa, S.; Santos, S.; Strapasson, J. Fisher information distance. Discret. Appl. Math. 2015, 197, 59–69.

[CrossRef]
8. Frieden, B.R. Science from Fisher Information; Cambridge University Press: Cambridge, UK, 2004.
9. Wootters, K.W. Wootters, W.K. Statistical distance and Hilbert space. Phys. Rev. D 1981, 23, 357–362.

[CrossRef]

http://dx.doi.org/10.1109/18.669301
http://dx.doi.org/10.1111/j.1751-5823.2002.tb00178.x
http://dx.doi.org/10.1137/S0036141096303359
http://dx.doi.org/10.1007/s00220-007-0367-3
http://dx.doi.org/10.1006/jfan.1999.3557
http://dx.doi.org/10.1016/j.dam.2014.10.004
http://dx.doi.org/10.1103/PhysRevD.23.357


Entropy 2019, 21, 775 16 of 16

10. Kullback, S. Letter to the Editor: The Kullback-Leibler distance. Am. Stat. 1951, 41, 340–341.
11. Kowalski, A.M.; Martin, M.T.; Plastino, A.; Rosso, O.A.; Casas, M. Distances in Probability Space and the

Statistical Complexity Setup. Entropy 2011, 13, 1055–1075. [CrossRef]
12. Information Length. Available online: https://encyclopedia.pub/238 (accessed on 29 July 2019).
13. Heseltine, J.; Kim, E. Novel mapping in non-equilibrium stochastic processes. J. Phys. A 2016, 49, 175002.

[CrossRef]
14. Kim, E. Investigating Information Geometry in Classical and Quantum Systems through Information Length.

Entropy 2018, 20, 574. [CrossRef]
15. Kim, E.; Lewis, P. Information length in quantum systems. J. Stat. Mech. 2018, 043106. [CrossRef]
16. Kim, E.; Hollerbach, R. Signature of nonlinear damping in geometric structure of a nonequilibrium process.

Phys. Rev. E 2017, 95, 022137. [CrossRef]
17. Kim, E.; Hollerbach, R. Geometric structure and information change in phase transitions. Phys. Rev. E

2017, 95, 062107. [CrossRef]
18. Hollerbach, R.; Dimanche, D.; Kim, E. Information geometry of nonlinear stochastic systems. Entropy

2018, 20, 550. [CrossRef]
19. Hollerbach, R.; Kim, E.; Mahi, Y. Information length as a new diagnostic in the periodically modulated

double-well model of stochastic resonance. Physica A 2019, 525, 1313–1322. [CrossRef]
20. Kim, E.; Hollerbach, R. Time-dependent probability density function in cubic stochastic processes.

Phys. Rev. E 2016, 94, 052118. [CrossRef]
21. Nicholson, S.B.; Kim, E. Investigation of the statistical distance to reach stationary distributions. Phys. Lett. A

2015, 379, 83–88. [CrossRef]
22. Matey, A.; Lamberti, P.W.; Martin, M.T.; Plastron, A. Wotters’ distance resisted: A new distinguishability

criterium. Eur. Rhys. J. D 2005, 32, 413–419.
23. Risken, H. The Fokker-Planck Equation: Methods of Solution and Applications; Springer: Berlin, Germany, 1996.
24. Klebaner, F. Introduction to Stochastic Calculus with Applications; Imperial College Press: London, UK, 2012.
25. Bena, I. Dichotomous Markov Noise: Exact results for out-of-equilibrium systems (a brief overview). Int. J.

Mod. Phys. B 2006, 20, 2825–2888. [CrossRef]
26. Shwartz-Ziv, R.; Tishby, N. Opening the Black Box of Deep Neural Networks via Information. arXiv 2017,

arXiv:1703.00810.
27. Kim, E.; Lee, U.; Heseltine, J.; Hollerbach, R. Geometric structure and geodesic in a solvable model of

nonequilibrium process. Phys. Rev. E 2016, 93, 062127. [CrossRef]
28. Van Den Brock, C. On the relation between white shot noise, Gaussian white noise, and the dichotomic

Markov process. J. Stat. Phys. 1983, 31, 467–483. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/e13061055
https://encyclopedia.pub/238
http://dx.doi.org/10.1088/1751-8113/49/17/175002
http://dx.doi.org/10.3390/e20080574
http://dx.doi.org/10.1088/1742-5468/aabbbe
http://dx.doi.org/10.1103/PhysRevE.95.022137
http://dx.doi.org/10.1103/PhysRevE.95.062107
http://dx.doi.org/10.3390/e20080550
http://dx.doi.org/10.1016/j.physa.2019.04.074
http://dx.doi.org/10.1103/PhysRevE.94.052118
http://dx.doi.org/10.1016/j.physleta.2014.11.003
http://dx.doi.org/10.1142/S0217979206034881
http://dx.doi.org/10.1103/PhysRevE.93.062127
http://dx.doi.org/10.1007/BF01019494
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Information Length and Other Metrics
	Information Length
	Other Metrics
	Euclidean norm
	Wootters' Distance
	Kullback-Leibler relative entropy
	Jensen Divergence


	The O-U Process
	Information Length
	Wootters' Distance
	Kullback–Leibler Relative Entropy
	Jensen Divergence
	Comparison

	The Coupled O-U Process
	Results for the Coupled O-U Process
	Varying 20
	Varying x0

	Conclusions
	
	The O-U Process
	Coupled O-U Process

	
	References

