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Abstract: This study developed and evaluated nnU-Net models for three-dimensional semantic
segmentation of pituitary adenomas (PAs) from contrast-enhanced T1 (T1ce) images, with aims to
train a deep learning-based model cost-effectively and apply it to clinical practice. Methods: This
study was conducted in two phases. In phase one, two models were trained with nnUNet using
distinct PA datasets. Model 1 was trained with 208 PAs in total, and model 2 was trained with
109 primary nonfunctional pituitary adenomas (NFPA). In phase two, the performances of the two
models were investigated according to the Dice similarity coefficient (DSC) in the leave-out test
dataset. Results: Both models performed well (DSC > 0.8) for PAs with volumes > 1000 mm?3, but
unsatisfactorily (DSC < 0.5) for PAs < 1000 mm3. Conclusions: Both nnU-Net models showed good
segmentation performance for PAs > 1000 mm? (75% of the dataset) and limited performance for
PAs < 1000 mm? (25% of the dataset). Model 2 trained with fewer samples was more cost-effective.
We propose to combine the use of model-based segmentation for PA > 1000 mm? and manual
segmentation for PA < 1000 mm? in clinical practice at the current stage.

Keywords: pituitary adenomas; deep learning; medical image segmentation; magnetic resonance imaging

1. Introduction

Pituitary adenomas (PAs) arise from the pituitary gland; they comprise 10-15% of
primary brain tumors and are the third most common type of intracranial tumor [1]. Most
of these tumors remain small and do not cause substantial harm or symptoms. However,
many progress to cause hormonal and neurological problems. Magnetic resonance imaging
(MRI) is the most commonly used modality to diagnose PAs. The morphologies and sizes
of PAs vary dramatically on magnetic resonance images. PAs are often classified into
microadenoma, macroadenoma, and giant adenoma by size, functional and nonfunctional
by hormonal complications, and primary or recurrent by treatment history. Segmentation
of PAs on MRI is a routine clinical task for treatment decisions, surgical planning, and
radiation therapy [2,3]. However, PA segmentation may be challenging. First, microadeno-
mas are <1 cm in diameter, most are functional PAs diagnosed at an early stage because
of hormonal changes, and some do not exhibit sufficient size for detection by MRI [4].
Second, previous surgery involving a recurrent PA changes the anatomy of the sellar region,
making it more difficult to distinguish the boundary between tumor and normal tissues
on MRI [5]. Third, cystic changes within PAs lead to irregular tumors and heterogeneity
in the tumor texture on MRI. Finally, aggressive PAs invade surrounding structures, such
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as the cavernous sinus, the third ventricle, and the skull base; this invasion changes the
anatomy of the sellar region. Manual slicer-by-slicer segmentation of PAs is reliable in a
clinical setting; however, it is time-consuming and laborious, particularly for large and
giant adenomas [6]. Therefore, an automatic method for PA segmentation is preferable.

The earliest and most commonly used image segmentation method is threshold
segmentation, which divides an image into a target region and a background region
by setting a characteristic threshold. Threshold-based segmentation is commonly used
to segment three-dimensional (3D) brain tumors with various intensities [7]. However,
the threshold-based method is inadequately efficient, because PAs are not enhanced on
post-contrast images. Traditional algorithms, such as graph-based and balloon-inflation
algorithms, have been introduced to segment PAs, but the results require post-editing [8].
Medical image processing software, such as 3D Slicer (https://www.slicer.org, accessed on
12 July 2021) and OsiriX (https:/ /www.osirix-viewer.com, accessed on 12 July 2021), have
been reported to segment tumors and offer a semi-automated method to segment PAs, but
post-editing remains necessary when using these software [9-11].

Deep learning was one of the ten breakthrough technologies of 2013 [12]. Deep
learning is powerful and outperforms traditional algorithms in many fields, including
medical image segmentation [13]. Convolutional neural networks or fully convolutional
networks have been widely used in medical image segmentation because of their high
efficiency and time savings [14-17]. However, most convolutional neural network methods
can only process two-dimensional images, and most medical data used in clinical practice
are composed of 3D volumes.

Initially designed for microscopic cell segmentation, U-Net architecture has efficient
and robust learning features for many medical image segmentation tasks [18]. nnUNet
(“no new network”) is a U-Net-based deep learning framework that has enabled successful
3D semantic segmentation of various biomedical image datasets and has been considered
the strongest U-Net baseline. Compared with other deep learning frameworks, nnUNet
is a holistic, fast, and data-efficient segmentation method that can be applied out-of-the-
box without requiring user intervention. nnUNet is ideal for users who do not have the
expertise, time, data, or computing resources that are required to adapt deep learning
solutions to medical image segmentation applications [19].

As far as we know, 3D semantic PA segmentation using deep learning approaches
in Tlce images has never been reported. In this study, we developed and evaluated the
nnU-Net models to explore a cost-effective way to apply deep learning-based models to
PA segmentation in clinical practice.

2. Materials and Methods
2.1. Patient Information

A database of 243 consecutive PA patients who underwent transsphenoidal endoscopic
surgery was used in this study. We collected clinical data in two stages from the PLA
General Hospital under the permission of the PLA General Hospital Ethics Committee. In
stage 1, medical records and pathology results of 208 patients were retrospectively reviewed
from July 2020 to April 2021. This group included 106 male patients and 102 female patients
aged 15 to 80 years (mean, 49.7 years); it was used for training and validating the first
model. Among the 208 PA patients, 109 (52.4%) were primary nonfunctional pituitary
adenoma patients. The primary nonfunctional pituitary adenoma subgroup included
72 male patients and 37 female patients aged 15 to 76 years (mean, 53.1 years); it was used
for training and validating the second model. In stage two, 35 consecutive PA cases were
reviewed in May 2020. This group included 17 male patients and 18 female patients aged
15 to 78 years (mean, 52.6 years); it was used to test the performances of the two models.

2.2. Magnetic Resonance Image Dataset

Preoperative magnetic resonance images were obtained with a 1.5-T magnetic reso-
nance scanner (Siemens Espree, Erlangen, Germany). Sagittal and coronal T2-weighted
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images, as well as axial post-contrast T1-weighted (T1ce) images, with 1-mm thickness
were acquired. The magnetic resonance images were collected in DICOM format; T1ce images
of the cases were used as the data samples for deep learning. The parameters for T1lce were
field-of-view = 130 mm, slicer thickness = 1 mm, matrix size = 512 x 512 x 176, flip angle = 15°,
echo time = 3.02 ms, repetition time = 1650 ms, and voxel dimensions = 0.997 x 0.997 x 1 mmS.

2.3. Tumor Segmentation

T1ce images in DICOM format were converted into NIFTI images (nii format) using
MRIConvert software (Version 2.1, University of Oregon, Eugene, OR, USA). The PAs were
manually segmented in a slice-by-slice manner on T1lce images using ITK-Snap software
(Version 3.8, University of Pennsylvania, Philadelphia, PA, USA). Sagittal and coronal T2
images were reviewed when it was difficult to detect the microadenomas on Tlce images.
PA segmentation of the 243 cases was performed by a neurosurgeon specializing in PA
surgery, who had 14 years of experience. Two senior neurosurgeons specializing in PA
surgery, as well as one experienced radiologist, also rated the segmentation results. Finally,
the maximum diameter and volume of each PA were measured in ITK Snap.

2.4. nnU-Net Framework

We chose the nnU-Net as our segmentation network due to its ease of use and adapt-
ability to diverse biomedical image datasets. nnU-Net is a deep learning-based segmen-
tation method that automatically configures itself and executes the entire segmentation
pipeline, including preprocessing, data augmentation, model training, and post-processing
for any biomedical image dataset (Figure 1). The pipeline itself takes care of the hyper-
parameter tuning and requires no change in the network architecture to achieve state-of-
the-art results.
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Figure 1. Flowchart of nnU-Net pipeline. To ingest training data, nnU-Net uses heuristic rules
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to determine the data-dependent hyper-parameters, referred to as the “data fingerprint”. Inferred
parameters, blueprint parameters, and data fingerprints produce pipeline fingerprints, which produce
network training for 3D U-Net using the hyper-parameters determined so far. The ensemble of
network configurations, in combination with post-processing, determines the best average Dice
coefficient for the training data.

nnU-Net is free and open-sourced as an out-of-the-box segmentation tool. The source
code is publicly available on Github (https://github.com/MIC-DKFZ/nnunet, accessed
data: 12 July 2021). The software only requires a set of annotated magnetic resonance
images as input data, as well as a mainstream computer with a powerful GPU.

2.5. Study Design

This study was conducted in two phases to utilize deep learning networks for 3D
semantic segmentation of PAs, then to evaluate the performances of the models trained
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with different datasets (Figure 2). In phase one, two models were trained with the different
datasets. The first model (Model 1) was trained and evaluated with all 208 PAs [80%
(166 cases) training cases and 20% (42 cases) validation cases]. In total, 109 primary
nonfunctional pituitary adenomas were used for the training and evaluation of the second
model (Model 2) [80% (87 cases) training cases and 20% (22 cases) validation cases]. Cases
in the validation dataset were not used for training in either model. In phase two, magnetic
resonance images of 35 PA cases were collected consecutively in May 2021 as the testing
dataset. The images were segmented and rated by the same clinicians who rated the first
set of images. The performances of both models on the testing dataset were compared, and
factors affecting model performance were examined.

! 1
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I (All types of PAs) (Primary NFPAs) |
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X | | 1
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Figure 2. Schematic of the study design.

3. Results
3.1. Patient Information and PA Characteristics

A database of 208 patients with PAs was included in the phase 1 of this study
(Table 1): 106 (51%) patients were male and 102 (49%) were female; 168 (80.8%) were
primary PA patients and 40 (19.2%) were recurrent PA patients. In total, 64.9% (135 cases)
of the PAs were nonfunctional, and 35.1% (73 cases) were functional. Approximately
10.1% (21 cases) of the PAs were giant PAs, 78.8% (164 cases) were macroadenomas, and
11.1% (23 cases) were microadenomas. We divided the PAs into three groups: large
(>10,000 mm?), medium (1000-10,000 mm3), and small (<1000 mm3). There were 11.1%
(23 cases) in the large group, 25.5% (53 cases) in the small group, and 63.5% (132 cases) in
the medium group.

3.2. Model Training and Evaluation

The nnU-Net models were realized with Python 3.8.5 and the Pytorch deep learning
platform on a PC with an Intel Core i7-10700K CPU (3.8 GHz*16) and a GeForce RTX
3060 graphics card running the Linux OS (Ubuntu 16.04 STL).

The Dice similarity coefficient (DSC) was used to measure PA segmentation quality.
The DSC quantifies the overlap between two PA subsets of manually segmented labels
and model-prediction labels. As shown in Figure 3, Model 2 had better training loss and
evaluation loss than did Model 1, according to the DSC metric. We stopped the training
process at epoch 100 for both models, because we observed that further improvements in
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training loss and the DSC were insufficient for the extensive training time associated with
greater numbers of epochs. Both models were trained for approximately 6 h.

Table 1. Data information of patients and pituitary adenomas (PAs) in the Phase 1.

Patient Information and PA Characteristics No. of Cases (%)
Gender
Male 106 (51.0%)
Female 102 (49.0%)
Primary/Recurrent PAs
Primary 168 (80.8%)
Recurrent 40 (19.2%)
Nonfunctional PAs 135 (64.9%)
Functional PAs 73 (35.1%)
ACTH 24 (11.5%)
GH 28 (13.5%)
PRL 16 (7.6%)
TSH 5 (2.4%)
Size
Giant-PAs (>4 cm) 21 (10.1%)
Macro-PAs (1 cm~4 cm); 164 (78.8%)
Micro-PAs (<1 cm) 23 (11.1%)
Volume
Large (>10,000 mm?) 23 (11.1%)
Medium (10,000~1000 mm?) 132 (63.5%)
Small (<1000 mm?) 53 (25.5%)
Total 208

0.3 — Maodel 1
— Model 2 084

Training Loss
DSC Value

pod | — Model 1
ore{ | — Model 2

3 @ “ ® ® 00 5 T
Epachs Epochs
Figure 3. Loss curve of the training process for Models 1 and 2 (A). Evaluation metric curve of the
training process for Models 1 and 2 (B).

3.3. Model Performance in the Validation Dataset

The mean DSC values of Models 1 and 2 were 0.803 and 0.853, respectively, for the
validation dataset (Table 2). In the subgroup analysis, Model 2 offered a slight improvement
in the DSC values over Model 1. Model 2 achieved improvements of 2% in the male group,
7% in the female group, 4% in the primary PA group, 2% in the nonfunctional pituitary
adenoma group, 5% in the macroadenoma group, and 2% in the large volume group. In
Model 1, the male group offered an improvement of 8% over the female group, while the
improvement was 3% in Model 2. Both models offered DSC values > 0.8 for the medium
and large-volume PA groups.
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Table 2. The mean Dice Similarity Coefficient (DSC) on validation dataset of both models.
Model 1 Model 2
Train Validation Mean DSC Train Validation Mean DSC
Gender
Male 82 24 0.838 58 14 0.864
Female 84 18 0.756 29 8 0.833
Primary/Recurrent PAs
Primary 136 32 0.808 87 22 0.853
Recurrent 30 10 0.787 - - -
Nonfunctional PAs 107 28 0.828 87 22 0.853
Functional PAs 59 14 0.753 - - -
ACTH 20 4 0.709 - - -
GH 22 6 0.729 - - -
PRL 14 2 0.768 - - -
TSH 3 2 0.896 - - -
Size
Giant PAs 13 8 0.832 6 2 0.820
Macroadenomas 132 32 0.811 78 20 0.856
Microadenomas 21 2 0.563 3 0 -
Volume
Large (>10,000 mm?) 16 7 0.847 10 5 0.873
Medium (1000~10,000 mm?) 107 25 0.852 62 17 0.847
Small (<1000 mm?) 43 10 0.649 15 0 -
Total 166 42 0.803 87 22 0.853

Model 1 only offered DSC values of 0.563 and 0.649 for the microadenoma and small
PA groups, respectively. Model 2 was not evaluated in terms of microadenomas or small
PAs because they were not included in the validation dataset.

3.4. Model Performance in the Testing Dataset

Thirty-five cases were collected consecutively as a testing dataset for both models;
these cases were used to evaluate the difference in clinical performance between the
two models. Table 3 presents the mean DSC values for the testing dataset and subgroup
datasets of both models. Models 1 and 2 had DSC values of 0.7279 and 0.7284, respectively,
for the testing dataset.

The DSC values of Models 1 and 2 for the testing dataset decreased by 8% and 10%,
respectively, compared with the DSC values for the validation dataset. In the subgroup
analysis, the DSC value of the male group was 12.6% higher than the DSC value of the
female group in Model 1; it was 10.8% higher in Model 2. The DSC value of the primary
PA group was 4.2% lower than the DSC value of the recurrent PA group in Model 1; it was
7.2% lower in Model 2. The DSC value of the nonfunctional PA group was 20% higher
than the DSC value of the functional PA group in both models. Model 1 offered a DSC
value of 0.843 in the giant PA group, 0.821 in the macroadenoma group, and 0.451 in the
microadenoma group. Model 2 had a DSC value of 0.799 in the giant PA group, 0.83 in the
macroadenoma group, and 0.448 in the microadenoma group. The medium and large PA
groups both had DSC values > 0.8 for both models. The small PA group had mean DSC
values < 0.5 for both models.

3.5. Performance Comparison between the Two Models

Model 2 was trained using the nonfunctional pituitary adenoma dataset, which was
only half of the dataset used for Model 1. However, Model 2 offered a 5% improvement
in the validation dataset DSC value, compared with Model 1; it provided the same DSC
value (0.728) for the testing dataset (Table 2). According to the DSC values for the testing
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dataset, both models showed good performance for PAs > 1000 mm?, but they showed
poor performance for small PAs (Figure 4). Figure 5 shows the segmentation results of
Models 1 and 2 on PAs with different volumes.

Table 3. Model performance of both models on the testing dataset.

Model 1 Model 2
Testing Dataset
Mean DSC Mean DSC
Gender
Male 17 0.793 0.784
Female 18 0.667 0.676
Primary/Recurrent PAs
Primary 30 0.722 0.718
Recurrent 5 0.764 0.790
Nonfunctional PAs 17 0.801 0.797
Functional PAs 18 0.660 0.663
ACTH 10 0.679 0.672
GH 4 0.659 0.688
PRL 4 0.614 0.615
TSH - - -
Size
Giant PAs 4 0.843 0.799
Macroadenomas 22 0.821 0.830
Microadenomas 9 0.451 0.448
Volume
Large (>10,000 mms) 3 0.863 0.820
Medium (1000~10,000 mm?) 21 0.843 0.849
Small (<1000 mm?) 11 0.472 0.473
Total 35 0.7279 0.7284
0.9
0863 oo 0.849
0.82
0.8
0.7
(4]
=]
S 06
3
o
05 0.472 0.473
0.4
0.3
Model 1 Model 2

B >10,000 mm® W 1,000~10,000 mm?* < 1,000 mm?

Figure 4. Performances of the models in different PA groups with different volumes in the testing dataset.

3.6. The Relationship between DSC Values and PA Volumes

Figure 6 shows the relationship between the DSC values and PA volumes when the
validation and testing datasets were considered together. The results indicated that the DSC
values increased with PA volume in both models when the PA volume was <1000 mm?

and oscillated at >0.7 when the PA volume was >1000 mm?.
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Ground Truth Model 1 Model 2

Large PA

Figure 5. Three cases of small, medium, and large PAs are illustrated in rows. The first column
represents the ground truth PA segmentations outlined in red, the second column represents PA
segmentations from Model 1, and the third column represents PA segmentations from Model 2.

A Model 1 B Model 2

DSC Value

PA Volume (mm?) PA Volume (mm?)

Figure 6. Distributions of DSC values and PA volumes in the validation and testing datasets for
Model 1 (A) and Model 2 (B).

Figure 7 shows the relationship between the DSC value and the mean volume of each
subgroup; the DSC value tended to increase as the mean volume of each subgroup increased.

MK

M Model 1 10,571
B Model 2 079

p790 0.80
10K-

a9

8K

Volume { mm? )
DSC Value

4K - :
3,585 i
" = 0 0.45
3K ‘ } 2553
= | | — 0.40

Female Male NFPA FPA Primary Recurrent

Figure 7. Relationships between mean volumes and DSC values of the male and female, NFPA and
FPA, and primary and recurrent subgroups. DSC values increased with increasing mean volume in
each subgroup. (NFPA: nonfunctional pituitary adenoma, FPA: functional pituitary adenoma).
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4. Discussion

PAs are some of the most frequently encountered benign intracranial tumors. Because
of symptoms caused by hormones or the mass effect, PAs are often detected in various sizes
and shapes on MRI. PA volume plays a crucial role in determining the initial treatment,
tumor status, and subsequent management [6]. PA segmentation is a routine task for
presurgical planning, intraoperative neuronavigation, radiotherapy, and post-treatment
evaluation. Slice-by-slice manual segmentation of macroadenomas and giant adenomas is
time-consuming; to our knowledge, automatic PA segmentation using deep learning has
rarely been reported. Diaz-Pernas et al. used a multiscale convolutional neural network to
classify and segment brain tumors. The DSC of PA segmentation in their study was 0.813
when using two-dimensional sagittal magnetic resonance images [15]. In our study, we
applied the nnUNet deep learning framework to achieve 3D semantic segmentation of PAs
with two models using different datasets. Models 1 and 2 offered DSC values of 0.803 and
0.853 for the validation dataset, respectively. In comparison with traditional algorithms,
graph-based and balloon inflation methods were reported to have DSC values of 0.777 and
0.760, respectively [8].

Model performance depends on three factors. First, the configuration of hyper-
parameters in the model must be optimized to achieve optimal performance. Second,
big data is a boon for deep learning. The inclusion of more data leads to better performance.
Third, the data distribution in the dataset affects model performance. In this study, because
nnUNet automatically configured itself for both models, the data volume and distribution
were related directly to model performance. Model 2 had a training dataset that was almost
half the size of Model 1, but it provided a 5% increase in the DSC value during phase 1
(Table 2). This does not indicate that the performance of Model 2 was better than the
performance of Model 1. Because there were no microadenomas in the validation dataset
of Model 2, the data distribution was the leading cause of the difference in DSC values
between the two models. When provided with the same testing dataset in phase 2, both
models achieved the same DSC value of 0.728 and revealed nearly identical results in the
PA subgroup analysis (Table 3). The DSC values for the testing dataset decreased by 7.5%
for Model 1 and 12.5% for Model 2, compared with the DSC values for the validation
dataset. The decrease in the DSC values was also related to the data distribution because
31.4% (11 of 35 cases) were small PAs in the testing dataset, while 23.8% (10 of 42 cases) for
Model 1 and 0% (none) for Model 2 were small PAs in the validation dataset. In our study,
the proportion of small PAs in the dataset affected the DSC values in the nnUNet models.

Tumor volume, which more accurately represents tumor size, was one of the most
crucial factors that affected the performances of our nnUNet models. As Figure 6 shows,
the DSC values increased with PA volume in both models when the PA volume was
<1000 mm? and oscillated at >0.7 when the PA volume was >1000 mm?. In the subgroup
analysis (Figure 7), the DSC values differed between the male and female, primary and
recurrent, and functional and non-functional groups. The mean volume difference in the
subgroups suggests that functional adenomas are often detected during an early stage
when they are small because of hormonal changes. The incidence of prolactin adenomas is
higher in women than in men, and physicians tend to use a “wait and see” strategy with
recurrent adenomas until they grow sulfficiently large to cause new symptoms.

There are two reasons for the poor DSC values of small PAs. First, we chose the
DSC value to evaluate model performance because it is the most widely used metric for
validating 3D medical image segmentation. However, the DSC is sensitive to segment
size, because it penalizes errors more in small segments than in large segments [20]. Some
authors have proposed a new evaluation metric for segmentation performance, which
emphasizes the small segments by assigning a higher weight to pixels in small lesions [21].
Second, some PAs are of insufficient size to be discerned by MRI, which causes inaccurate
tumor labeling. Some authors have used a positron emission tomography-based adaptive
threshold segmentation method for delineating small PAs to solve this problem [5].
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Although deep learning has advanced in recent years, it remains difficult to train
a deep learning model with big data that will perform well on all PAs and be applied
universally in clinical practice. There are many challenges. First, big data collection requires
open access to image databases from multiple hospitals, which is hampered by data privacy
and security [12]. Second, datasets of PAs from clinical settings are biased, because small
and giant PAs comprise a smaller proportion of cases than do medium-sized PAs; thus,
an extended period is needed to collect sufficient numbers of small and giant PAs for
model training. Third, the locations or boundaries of small PAs are difficult to discern
on MRI; therefore, new imaging techniques are needed to solve this problem. Fourth,
annotation and labeling of medical images for deep learning is labor-intensive, and the
cost is incalculable. Based on these factors and considering the cost-effectiveness, training
a deep learning model with a limited dataset that would perform well on most PAs for a
single-center application is preferred.

In this study, Model 2 was trained with the nonfunctional pituitary adenoma dataset
based on the following three considerations. First, nonfunctional pituitary adenomas
are the most common PA subtype requiring transsphenoidal surgery. In this study, 109
(52.4%) of 208 PAs were nonfunctional pituitary adenomas. Second, nonfunctional pituitary
adenomas generally appear regularly shaped, medium-sized, and have a homogenous
texture on Tlce images; thus, they represent most PA features and can facilitate accurate
tumor delineation as a ground truth label. Although it was trained with the half-sized
dataset of Model 1, Model 2 had a generalization ability almost identical to the ability of
Model 1 in the validation and testing datasets. As shown in Table 2 and Figure 4, Model 2
performed well for PA cases with volumes >1000 mm3, covering approximately 75% of the
PA dataset. It is reasonable to combine the two methods in clinical applications, because
Model 2 offered automatic and accurate segmentation results for medium and large PAs,
while manual segmentation for small PAs was rapid and reliable. Furthermore, this pattern
would generate more PA data with labels that can be used for model iterations, permitting
continuous improvement of the model.

The limitation of this study is the size and scope of our PA dataset for deep learning.
Model performance of nnU-Net might be improved with more small-size PA data. Another
limitation is that our PA dataset is collected from a single medical center, which limits the
performance of our model on data from other centers. Furthermore, other technologies,
such as transfer learning, self-supervised learning, and federal learning might be good
directions to make deep learning more promising in medical fields.

5. Conclusions

In this study, we developed and fully examined nnU-Net models for PA segmentation
on the Tlce MRI image dataset. Models 1 and 2 were trained with different datasets, and
both offered satisfactory segmentation results of PAs with volumes >1000 mm3. Model 2
trained with less samples was more cost-effective and practical in clinical practice, com-
pared with Model 1. As the model performance of nnU-Net was related to the PA size,
segmentation of small PA still remains a challenge. For PA segmentation in current clinical
practice, we propose combining model-based and manual approaches.
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