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Objective: This study examines the impact of transcranial direct current stimulation
(tDCS) combined with cognitive training on neurotransmitter concentrations in the
prefrontal cortex.

Materials and Methods: Twenty-three older adults were randomized to either active-
tDCS or sham-tDCS in combination with cognitive training for 2 weeks. Active-tDCS
was delivered over F3 (cathode) and F4 (anode) electrode placements for 20 min
at 2 mA intensity. For each training session, 40-min of computerized cognitive
training were applied with active or sham stimulation delivered during the first 20-min.
Glutamine/glutamate (Glx) and gamma-aminobutyric acid (GABA) concentrations via
proton magnetic resonance spectroscopy were evaluated at baseline and at the end
of 2-week intervention.

Results: Glx concentrations increased from pre- to post-intervention (p = 0.010) in
the active versus sham group after controlling for age, number of intervention days,
MoCA scores, and baseline Glx concentration. No difference in GABA concentration
was detected between active and sham groups (p = 0.650) after 2-week intervention.

Conclusion: Results provide preliminary evidence suggesting that combining cognitive
training and tDCS over the prefrontal cortex elicits sustained increase in excitatory
neurotransmitter concentrations. Findings support the combination of tDCS and
cognitive training as a potential method for altering neurotransmitter concentrations in
the frontal cortices, which may have implications for neuroplasticity in the aging brain.

Keywords: transcranial direct current stimulation (tDCS), magnetic resonance spectroscopy (1H-MRS), cognitive
training, glutamate, gamma-aminobutyric acid (GABA)

INTRODUCTION

Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique that
applies a weak and constant electric current via electrodes placed on the scalp over target brain areas
(Nitsche and Paulus, 2000; Woods et al., 2016). Although the precise physiological mechanisms
underlying tDCS are still unclear, the primary mechanism of action derives from alteration of the
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resting membrane potential, leading to changes in spontaneous
neural firing rate (Nitsche and Paulus, 2000, 2001). These
polarity-specific alterations of cortical excitability are
predominately demonstrated in motor regions of the brain
(e.g., M1) by inducing greater transcranial magnetic stimulation
(TMS) produced motor-evoked potential magnitudes of
up to 40% (Nitsche and Paulus, 2000). Following current
cessation, sustained excitability (e.g., after-effects) of tDCS are
demonstrated for 30–90 min (Nitsche and Paulus, 2001; Nitsche
et al., 2003; Kidgell et al., 2013; Jamil et al., 2017) and persist up
to 24 h when stimulation is applied multiple times during one
day (Bastani and Jaberzadeh, 2014). Moreover, extended cortical
excitability is evidenced by applying a second consecutive tDCS
session during the after-effect window on the motor cortex of
healthy humans (Monte-Silva et al., 2013). In part, after-effects
are attributed to physiological changes in synaptic plasticity,
where excitatory and inhibitory neurotransmitters mediate
long-term potentiation. Key markers, particularly gamma-
aminobutyric acid (GABA) and glutamate signaling (Trepel,
1998; Froc and Racine, 2004), facilitate the neuroplastic response
of tissue and modify the immediate relative contribution to
neural events (Krause et al., 2013; Dwyer et al., 2019). These
cortical neurotransmitter concentrations can be assessed non-
invasively within a defined region of interest in the brain using
proton (1H) magnetic resonance spectroscopy (MRS) (Stagg
et al., 2011; Puts and Edden, 2012), providing insight into the
neural bases of cognition (Kanai and Rees, 2011).

The relative concentrations of excitatory/inhibitory
neurotransmitters may play a key role in further understanding
the tDCS-related neuroplastic effects. GABA is the major
inhibitory neurotransmitter in the human brain (McCormick,
1989), essential for synaptic communication and linked to
various cognitive functions, including working memory capacity
in the prefrontal cortex (Yoon et al., 2016). Brain aging is
associated with GABAergic neuroplasticity dysfunction, which
relates to global GABA level reduction (Richardson et al.,
2013). Meanwhile, the excitatory neurotransmitter, glutamate,
acts in most of the excitatory synapses in the central nervous
system, while synthesized from glutamine through the action
of glutaminase (Fonnum, 1993). Glutamate is often reported
as Glx in MRS, representing the combination of glutamate and
glutamine as their spectra highly overlap due to similar molecular
structures (Harris et al., 2017). Together, GABA and glutamate
contribute synergistically to cognitive performance (Jocham
et al., 2012), primarily during the initiation of new learning
processes by disrupting the excitatory/inhibitory balance. This
initial shift toward increased excitatory contributions allows
activity-dependent refinements of cortical circuits (Carcea
and Froemke, 2013). Particularly, glutamate receptors [i.e.,
N-Methyl-D-Aspartate-receptor (NMDA)] are best known for
mediating glutamate’s role in learning and memory through
plasticity of channel properties such as enhancement of glutamate
neurotransmission and gene expression (Barco et al., 2006). As
learning becomes more efficient over time, GABA 1H-MRS
concentrations have been shown to increase in task-relevant
brain regions (Sampaio-Baptista et al., 2015). Less is known of
the tDCS training-induced responses in excitatory/inhibitory

neurotransmitter concentrations, particularly relevant for
prompting long-term neurocortical adaptations in the aging
brain. Since tDCS augments training-induced cognitive gains,
investigating these neural mechanisms may provide insight
into effective interventions geared toward neuroplasticity and
cognitive preservation.

A limited number of studies have investigated the effects
of tDCS using 1H-MRS. Previous 1H-MRS studies primarily
investigated single-session tDCS over the motor cortex and found
increases in sensorimotor glutamate (Stagg et al., 2011), decreases
in GABA concentrations (Stagg et al., 2009, 2011; Kim et al.,
2014; Bachtiar et al., 2015; Patel et al., 2019), and no change
in either (Tremblay et al., 2016). These transcient increases
in excitatory neurotransmitter with concurrent reductions in
inhibitory neurotransmitter concentration, following single-
session stimulation, are consistent with the neuromodulatory
properties of tDCS. Nonetheless, these effects are contingent on
the stimulation parameters, targeted cortical area (Dwyer et al.,
2019), and baseline properties of the targeted cortical region
(Filmer et al., 2019; Indahlastari et al., 2020). The ability to
elicit similar facilitatory effects within other cortical areas is,
however, less clear. Barron et al. (2016) applied tDCS to the
occipital-temporal cortices (anode: occipital-temporal, cathode:
supraorbital ridge) and found dormant associative memories
can be re-expressed by reduced cortical GABA and increased
glutamate concentrations in young adults. Meanwhile, GABA
and Glx concentrations were unchanged when targeting the
posterior superior temporal gyrus in young adults (Dwyer et al.,
2019). Recently, Mezger et al. (2021) investigated the effects
of bifrontal stimulation on GABA and Glx concentrations in
young adults and found no change, suggesting that a single-
session of tDCS may be less effective when targeting non-motor
cortex in young, healthy adults. Correspondingly, with recent
applications of tDCS to the prefrontal cortex to enhance cognitive
training/learning outcomes (Martin et al., 2013; Nissim et al.,
2019), there is still need to demonstrate the precise nature and
impact of tDCS in the frontal cortex, a brain region highly prone
to age-related cognitive decline. Although inducing long-term
excitability is valuable in neuroplasticity modulation, the lasting
effects of tDCS over multiple sessions remain unknown (Nitsche
and Paulus, 2001; Jamil et al., 2017). Further, the long-term
maintenance of Glx and GABA effects following multiple sessions
of tDCS in older adults has yet to be addressed.

Due to its effects on excitability and synaptic plasticity, prior
studies have investigated tDCS as a potential adjunctive tool
aimed at facilitating cognitive training effects in older adults
(Gill et al., 2015; Jones et al., 2015; Stephens and Berryhill,
2016; Nissim et al., 2019). Significant improvements in behavior
have been observed when tDCS is paired with cognitive training
in comparison to cognitive training alone, supporting a paired
intervention approach (Jones et al., 2015; Stephens and Berryhill,
2016). Further, applying tDCS over relevant brain regions during
tasks/activities with higher cognitive demands results in greater
potential of improving cognitive outcomes (Woods et al., 2016;
Antonenko et al., 2018; Nissim et al., 2019). Combining working
memory training with tDCS has shown to extend and increase
training gains (Jones et al., 2015; Stephens and Berryhill, 2016).
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For instance, Stephens and Berryhill (2016) found that older
adults receiving active tDCS versus sham during working
memory training resulted in greater benefits on untrained
assessment tasks post-training. Pairing tDCS and cognitive
training has been associated with improved skill acquisition on
the cognitive training task when compared to tDCS applied
before the training task (Martin et al., 2014). In a recent study,
we demonstrated that pairing tDCS (bilaterally to the frontal
lobes; F3/F4) with cognitive training for 2 weeks enhanced
working memory performance in older adults (Nissim et al.,
2019). However, the underlying neural mechanisms linking these
improvements in cognitive performance are yet to be elucidated.
Because the combination of brain stimulation and multi-session
cognitive training may counteract and delay the onset of age-
related impairments (Perceval et al., 2016; Indahlastari et al.,
2021), understanding the modulatory role of inhibitory and
excitatory neurotransmitter concentrations in a multi-day setting
is of clinical and scientific relevance.

To be able to draw further conclusion about the efficiency
of these paired interventions, controlled randomized clinical
trials in cognitively intact older adults are required. In light
of this gap in the literature, the goal of the present study
was to examine the impact of a 2-week intervention of active-
tDCS and sham-tDCS combined with cognitive training on
neurotransmitter concentrations in the prefrontal cortex using
1H-MRS. We hypothesized increased Glx concentrations coupled
with decreased GABA concentrations pre- to post-intervention
in the active-tDCS group when compared to the sham-tDCS
group.

MATERIALS AND METHODS

Participants
Twenty-eight healthy older adults completed the parent study.
This phase II clinical pilot study employed a randomized, triple-
blinded (assessor, interventionist, participant) between subjects
design, permitting examination of combined effects of tDCS
with cognitive training on neurotransmitter concentrations in
healthy older adults. Of these, 23 older adults (n = 12 active;
n = 11 sham) completed all MRS/magnetic resonance imaging
(MRI) visits and were included in the current study. A prior
publication reported functional connectivity from functional
MRI (fMRI) and behavioral effects from the parent trial (Nissim
et al., 2019). The parent trial was preregistered in clinicaltrials.gov
under NCT02137122.

Participants between the ages of 65–88 years with no evidence
of cognitive impairment, as defined by the National Alzheimer’s
Coordinating Center Uniform Data Set performance below
1.5 standard deviations on age, sex, or education normative
data in at least one cognitive domain (Woods et al., 2018),
were screened for eligibility. Exclusion criteria included pre-
existing neurodegenerative or psychiatric brain disorders (i.e.,
dementia, Alzheimer’s, schizophrenia), MRI contraindications
(i.e., metal or medical devices inside body not approved to be
scanned at 3T), ineligibility for tDCS scalp application, taking
medications that would impact tDCS effects (i.e., glutamatergic

or GABAergic medications, sodium channel blockers), left-hand
dominant, hearing or vision deficits impacting training or tasks,
exceeding 80% score on the cognitive training POSIT assessment
at the screening visit, and/or chronic medical conditions (i.e.,
cancer, severe uncontrolled diabetes). The study protocol was
approved by the University of Florida Institutional Review
Board and written informed consent was obtained from all
participants prior to study enrollment following study discussion.
All institutional guidelines were followed. Table 1 shows the
participant demographics.

Magnetic Resonance Imaging
Acquisition
Magnetic resonance imaging data were acquired on a 3-
Tesla Siemens Magnetom Prisma scanner with a 64-channel
receive array head coil at baseline and 2 weeks. High
resolution T1-weighted magnetization-prepared rapid gradient-
echo (MPRAGE) structural images were acquired for accurate
placement of the MRS voxel and tissue segmentation. Acquisition
parameters were repetition time (TR) = 1800 ms, echo time
(TE) = 2.26 ms, flip angle = 8 degrees, field of view
(FOV) = 240 × 240 × 170 mm, 1.0 mm3 isotropic voxel, and
scan duration = 183 s.

Magnetic Resonance Spectroscopy
Acquisition
Both GABA and Glx data were acquired in the same MRI
session using a MEGA-PRESS sequence from a 3 × 3 × 3 cm3

voxel positioned medially on the axial plane aligned with the
corpus callosum and superior to the genu of the corpus callosum.
Voxel placement was performed by experienced MRS operators,
referencing the T1 image. MRS was obtained using the following
parameters TR = 2000 ms, TE = 68 ms, flip angle = 90 degrees,
FOV = 30× 40× 27 mm, 133 pairs of averages, ON editing pulse
at 1.9 ppm, OFF editing at 4.68 ppm.

Magnetic Resonance Spectroscopy Data
Analysis
Both Glx and GABA quantification were achieved using
GANNET 3.1 in MATLAB (Edden et al., 2014). Siemens.rda files
were processed using the RobustSpecReg correction protocol.
Briefly, Gannet applies frequency and phase correction to achieve
optimal quantification of metabolites to reference values. During
processing, for line broadening is achieved via exponential

TABLE 1 | Baseline participant characteristics.

tDCS + CT Sham + CT Total p-value

Sample size 12 11 23 −

Age (SD) 72.3 (7.4) 74.2 (7.4) 73.5 (7.2) 0.555

Sex (M:F) 5:7 4:7 9:14 −

Education (SD) 17.1 (2.6) 17.3 (2.9) 17.2 (2.6) 0.869

MoCA scores (SD) 28.2 (1.5) 26.2 (1.7) 27.2 (1.9) 0.008

tDCS, transcranial direct current stimulation; CT, cognitive training; MoCA, Montreal
Cognitive Assessment.
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apodization, and fast Fourier transform of time-domain acquired
data is applied to frequency-domain spectra. Finally, subtraction
is used to generate the edited difference spectrum, and extraction
of off spectrum. Each metabolite (Glx, GABA) was calculated as
its ratio relative of Creatine (Cr), which is set to 3.02 ppm. Cr
is a common reference standard in 1H-MRS (Jansen et al., 2006)
and has been shown to be superior to H2O in terms of reliability
(Bogner et al., 2010). To correct for tissue-related factors, each
volume was controlled for cerebrospinal fluid (CSF) content
within the voxel of measurement. This approach is common and
has been applied in populations where voxel tissue composition
may vary (Harris et al., 2015; Porges et al., 2017).

C = C0(1/1− vCSF)

where C is the corrected metabolite concentration, C0 is the
LCModel output, and vCSF is the volume fraction of CSF
contained within the single-voxel spectroscopy (SVS) voxel. This
method only considers the partial volume effect of CSF.

Each of the Gannet outputs were visually checked to ensure
accurate model fit and voxel placement. A voxel heat map was
created to demonstrate MRS voxel overlap between participants
across visits, for quality assurance (Figure 1). To achieve this,
individual T1 images were segmented by tissue type and warped
into Montreal Neurologic Institute (MNI) space using the
SPM12 software using the “normalize” procedure with default
parameters. The resulting deformation fields were used to warp
MRS voxel mask images to MNI space. The normalized maps
were combined to one image in MATLAB and displayed using
MRIcron (v 1.0.2018) for Mac. Figure 1 demonstrates the
accuracy and reliability of MRS voxel placement. Over 99%
overlap occurs within the medial frontal lobe for all participants,
across the two sessions.

Transcranial Direct Current Stimulation
Parameters and Application
Transcranial direct current stimulation was delivered at 2.0 mA
via a conventional 1 × 1 tDCS device (Soterix Medical, tDCS-
CT for clinical trials). Set-up procedures were identical for both
active and sham conditions. Two 5 × 7 cm2 saline-soaked
Soterix sponge electrodes (0.9% NaCl; 10 ml total/sponge) were
placed over the frontal cortices at F3 (cathode) and F4 (anode),
using individualized head measurements and International 10–
20 system for electrode locations. Prior behavioral findings
support the specified montage and intensity, demonstrating the
ability to elicit a 2.0 mA net increase and excitability under
both the anode and cathode electrodes (Nissim et al., 2019).
For each training session, 40-min of computerized cognitive
training were applied with active or sham stimulation delivered
during the first 20-min. The active group received 20 min of
stimulation with 30 s ramp up and down, while the sham group
received 30 s of stimulation with 30 s ramp up and down.
The 30 s stimulation duration in the sham condition produced
the sensation of active simulation without the full duration of
stimulation. No significant differences were observed in sensation
ratings and blinding efficacy for the sample (previously reported
in Nissim et al., 2019).

Cognitive Training Procedure
The computerized cognitive training program was implemented
through POSIT Science BrainHQ, as previously detailed (Nissim
et al., 2019). All participants received cognitive training.
Participants were randomly assigned to train on four out of eight
adaptive tasks in each session, resulting in 40 min of cognitive
training per day (10 min per task). All participants received
equal number of trainings across the eight tasks. Specifically,
the program was composed of four working memory related
tasks (Card shark-visual N-Back task, Auditory aces- auditory
N-Back task, Memory grid, and To-do-list) and four speed
of processing tasks (Double decision- useful field of view,
Divided attention, Hawk eye, and Target tracker). Significant
cognitive and functional improvements in older adults have been
previously validated (Berry et al., 2010) utilizing this program.

Statistical Analysis
All statistical analyses were performed using SPSS Statistics
25 (IBM, Armonk, NY, United States). Demographic data
and neurotransmitter concentration of the two groups (active,
sham) were compared at baseline. Separate factorial analysis
of covariance (ANCOVAs) were calculated for CSF-corrected
GABA:Cr and Glx:Cr concentrations as dependent variables,
groups (active, sham) as fixed-factor, and age, MoCA scores,
number of intervention days, and baseline GABA:Cr and Glx:Cr
concentrations as covariates. Given the hypothesized additive
effect of repeated tDCS sessions in metabolite concentrations, the
total number of intervention days completed were applied as a
covariate. Further, age, baseline neurotransmitter concentrations,
and MoCA scores (Reis et al., 2009; de Aguiar et al., 2020)
were included as covariates to mitigate their impact on post-
intervention concentrations. Mounting evidence within the tDCS
and cerebral metabolite literature collectively (Reis et al., 2009;
Filmer et al., 2019; de Aguiar et al., 2020) address the importance
of accounting for these baseline values.

RESULTS

Evaluation for Differences in Baseline
Characteristics Between Groups
Twenty-three healthy, older adults completed all data collection
visits of the study. Participants that completed more than 80% of
the intervention sessions were included in this study. No adverse
events were reported during this investigation. Age, sex, and
education were not statistically different at baseline between the
active and sham groups (Table 1). Descriptive statistics showed a
marked difference in MoCA scores between groups at baseline.
Therefore, the MoCA score was added as a covariate in the
statistical model.

Effects of Intervention on
Glutamate/Glutamine:Creatine
Concentrations
No significant differences were observed at baseline in Glx:Cr
concentrations between the active and sham groups, t(21) = 2.06,
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FIGURE 1 | MRS Voxel Overlap: Referencing the T1 image, a single voxel was positioned medially on the axial plane, aligned with the corpus callosum and superior
to the genu of the corpus callosum. Abbreviations: R = Right; L = Left; A = Anterior; S = Superior.

p = 0.052. The covariates, MoCA scores and baseline Glx:Cr
values, were significantly related to post-intervention Glx:Cr
concentrations [F(1,17) = 5.61, p = 0.030, partial η2 = 0.248
and F(1,17) = 5.56, p = 0.031, partial η2 = 0.246, respectively].
There was also a significant effect of intervention group
[F(1,17) = 8.47, p = 0.010, partial η2 = 0.332, observed
power = 0.783] on post-intervention Glx:Cr values after
controlling for age, MoCA scores, number of intervention days,
and baseline Glx:Cr concentrations (Figure 2). The overall model
including intervention group with age, MoCA scores, number
of intervention days, and baseline Glx:Cr concentrations as
covariates explained 47.3% of the variance in post-intervention
Glx:Cr concentrations.

Effects of Intervention on
Gamma-Aminobutyric Acid:Creatine
Concentrations
No significant differences were observed in GABA:Cr
concentrations between active and sham groups at baseline,
t(21) = 0.491, p = 0.629. The covariate of baseline GABA:Cr
concentration was significantly related to post-intervention
GABA:Cr concentration [F(1,17) = 5.95, p = 0.026, partial
η2 = 0.259]. No significant GABA:Cr metabolite difference
was evident between active and sham groups post-intervention
(p = 0.650), after controlling for age, MoCA scores, number
of intervention days, and baseline GABA:Cr concentrations.
Figure 3 depicts GABA:Cr concentrations values in the
active vs. sham groups following 2 weeks. The overall model
including intervention group with age, MoCA scores, number
of intervention days, and baseline GABA:Cr concentrations as
covariates explained 46% of the variance in post-intervention
GABA:Cr concentrations.

DISCUSSION

The current study explored the combined impact of multiple
sessions of tDCS and cognitive training on excitatory and

FIGURE 2 | Post-intervention Glx:Cr concentrations for active condition vs.
sham condition accounting for age, number of intervention days, MoCA
scores, and baseline Glx:Cr concentration (∗p = 0.010). Note: Error bars
depict standard errors. Covariates appearing in the model are evaluated at the
following values: baseline Glx:Cr = 0.134, age = 73.2, MoCA score = 27.2,
number of intervention days = 9.87.

inhibitory neurotransmitter concentrations. Frontal lobe Glx:Cr
concentrations increased following 2-weeks of paired cognitive
training and tDCS intervention over the prefrontal cortex.
Meanwhile, the GABA:Cr concentrations in the frontal lobe
was similar for each intervention group. Thus, the combined
intervention suggest increased excitatory response with tDCS
exposure, but no apparent inhibitory response.

To our knowledge, this is the first study assessing Glx and
GABA concentrations after a multi-session combined prefrontal
tDCS and cognitive training intervention in healthy older adults.
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FIGURE 3 | Post-intervention GABA:Cr concentrations for active condition vs.
sham condition accounting for age, number of intervention days, MoCA
scores, and baseline GABA:Cr concentration. Note: Error bars depict
standard errors. Covariates appearing in the model are evaluated at the
following values: baseline GABA:Cr = 0.117, age = 73.2, MoCA score = 27.2,
number of intervention days = 9.87.

Following 2-weeks of active tDCS and cognitive training, Glx:Cr
concentrations were significantly increased when controlling
for age, MoCA scores, number of intervention days, and
baseline Glx:Cr values. The shift toward increased excitatory
neurotransmitter concentration in the current study coincides
with suggestions that tDCS facilitates changes in glutamate
(Cohen Kadosh et al., 2015). Ultimately, this may augment
learning when targeting regions involved in skill execution.
Namely, the adult brain shifts to facilitate plasticity when
introduced with a new stimulus (e.g., tDCS and cognitive
training). The excitation during initial skill acquisition allows
for the activity-dependent refinements of cortical circuits
(Carcea and Froemke, 2013), a contribution to neuronal
communication and signal processing that determines learning
and memory formation. As such, these changes in excitatory
neurotransmitter concentration may further support the notion
that longer duration and more persistent adjustments in
excitability involve the action of NMDA receptors (Nitsche et al.,
2003; Tremblay et al., 2016). Nevertheless, since 1H-MRS is
not sensitive to variation in NMDA receptors but rather local
tissue neurotransmitter concentration (i.e., bound and unbound
neurotransmitters), our interpretation is limited.

Alternately, the stochastic resonance hypothesis may provide
additional insight into the mechanistic interpretation for
improved Glx:Cr concentration. Small amounts of noise added
to non-linear systems can increase the quality of the stimulus
through stochastic resonance. Stochastic resonance refers to a
phenomenon where an optimal level of noise is added to a
subthreshold signal, causing the signal to cross the threshold and

enhance performance (Moss et al., 2004). van der Groen et al.
(2018) found that adding transcranial random noise stimulation
(tRNS) bilaterally to visual cortex enhanced decision-making
when stimuli were just below perceptual threshold. Hence, tDCS
may have the capacity of increasing stochastic resonance within
the prefrontal cortex, possibly inducing greater excitability.

Further, understanding what the increases in Glx:Cr
concentration might indicate for cognitive performance in
older adults complements our results, although not directly
within the scope of the current study. Nissim et al. (2019)
demonstrated that 2 weeks of active-tDCS paired with cognitive
training versus cognitive training alone significantly improved
2-back target accuracy, a commonly used working memory
paradigm. These results aligned with prior behavioral findings
supporting active-tDCS induced enhancements in N-back
working memory performance (Zaehle et al., 2011). Despite
an overlapping sample, the authors cannot conclude whether
the working memory improvements in the Nissim et al. (2019)
study coincide with the measurable biochemical changes within
the frontal lobe in the current study. Our study is limited
by a reduced sample set due to 1H-MRS data processing
challenges. Nevertheless, future studies and analyses should
assess whether enhancement in Glx:Cr concentrations are related
to working memory performance, particularly in a larger sample
of healthy, older adults.

Glx and GABA concentrations were quantified using a voxel
positioned within the prefrontal cortex, which underlies both
working memory and speed of processing abilities. Age-related
structural declines in the prefrontal cortex have been associated
with worse performance on working memory and speed of
processing tasks (Kraft et al., 2020; Evangelista et al., 2021).
Further, 1H-MRS studies have demonstrated age-related declines
in prefrontal GABA and glutamate concentrations, beginning
in middle age (Grachev et al., 2001). Increased prefrontal
concentrations of Glx may therefore facilitate improvements
in working memory and speed of processing performance
following combined tDCS and cognitive training targeting these
cognitive domains.

Meanwhile, the current study found no significant change
in GABA:Cr concentrations following the 2-week intervention.
Acute decreases in inhibitory neurotransmitter concentration in
the sensorimotor cortex have been observed following single-
session M1 stimulation (Stagg et al., 2009, 2011; Kim et al., 2014;
Bachtiar et al., 2015; Patel et al., 2019). The current study applies
multi-session tDCS to the prefrontal cortex. This distinction
is important since reductions in GABA may be specific to
certain brain regions during initial stages of adaptation as well
as facilitated tasks. Animal research reported a marked and
regionally specific reduction of GABAB receptor proteins in the
prefrontal cortex with age (McQuail et al., 2012). This age-
related loss of normal inhibitory function, possibly mediated by
GABAergic mechanisms, is likely to produce an atypical response
to adaptation and delay the observed changes in GABA. Hence,
given the functional specifity of the prefrontal cortex and despite
controlling for baseline GABA:Cr concentrations in the current
study, 2-weeks may not be the appropriate time range to detect
intervention-related changes in prefrontal GABA concentrations.
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Although no significant changes in GABA:Cr concentration
were detected, this does not conclusively rule out GABAergic
changes in response to a combined tDCS and cognitive training
intervention. The expected increases in cortical excitability
following tDCS have been shown to be multifactorial and
driven by modulation of both GABAergic and glutamatergic
signaling (Stagg and Nitsche, 2011). Since pharmacological
studies indicate that changes induced by tDCS are particularly
dependent on GABA receptors (Nitsche et al., 2004), it
is possible that subtle changes in GABA are taking place
during the 2-week period that we are unable to detect.
While this cannot be confirmed in our investigation, there
is literature associating reductions in GABA concentration
following motor tDCS with faster short-term learning (Stagg
et al., 2011). This finding is in line with the hypothesis
that long term potentiation-like plasticity within the cerebral
cortex is critically dependent on GABA modulation. However,
GABAergic inhibition may be particularly necessary to refine
already acquired skills rather than forming new ones in an
older population.

Of note, other neuromodulating systems are susceptible to
glutamatergic processes. For instance, dopamine, serotonin, and
acetylcholine have been reported to mediate the effects of
tDCS (Kuo et al., 2007, 2008; Nitsche et al., 2009; McLaren
et al., 2018). tDCS may positively or negatively regulate
these levels by modulating the dopamine system, enhancing
acetylcholine transmissions, and suppressing serotonin (Yamada
and Sumiyoshi, 2021). These influences are essential for arousal,
attention, and cognitive processes, all vital components in the
combined intervention implemented in the current study (Kuo
et al., 2007). Together, these effects could further alter the balance
between excitatory and inhibitory inputs in the brain (Okun and
Lampl, 2008), warranting further consideration in subsequent
studies assessing the excitatory/inhibitory effects of tDCS and
cognitive training.

Strengths and Limitations
The current study employed a triple blinded randomized
control trial studying tDCS and cognitive training. While the
current study is limited by a small sample size and lack
of a cross-over design, findings presented here may provide
important insight for exploration in the context of future larger
studies. Despite reduced statistical power for finding other
differences or relationships, preliminary findings may provide a
greater understanding into neurotransmitter patterns following
tDCS interventions.

This study examined the frontal lobe, a brain region
disproportionally affected by aging processes. Thus, the
results are limited to the cortical region, selected stimulation
parameters, and the underlying intrinsic state of the stimulated
brain networks. Further, MRS voxel placement variability
between each session may exist despite consistent specialist
placement and voxel overlap assessment (Figure 1). Finally,
1H-MRS, particularly MEGA-PRESS, is an emerging
methodology for the study of complex neurotransmitter
concentrations. Software for MEGA-PRESS acquisition
and data analyses continue to be developed and refined

(Bogner et al., 2010; Mullins et al., 2014; Harris et al., 2015).
Therefore, differences in MRS analytic approaches may
potentially impact Glx and GABA estimates in ways that are not
yet fully understood. Future studies of neurotransmitter
concentration response to tDCS will help further our
understanding of neural mechanisms of change in non-invasive
brain stimulation techniques.

CONCLUSION

Collectively, this study provides preliminary evidence suggesting
that combining cognitive training and tDCS over the prefrontal
cortex elicits sustained cortical excitability (after-effects)
following 2-weeks of intervention. These effects may be
attributable to stimulation of glutamatergic transmission, which
may ultimately facilitate learning in task-associated regions.
This maintenance in excitatory concentration following 2-weeks
of combined intervention is particularly valuable since recent
work has questioned the overall usefulness of combining tDCS
and cognitive training in older adults for causing improvement
in cognitive performance that outlasts the stimulation session
itself (Nilsson et al., 2017). The current study provides a novel
examination of the neural effects of combining frontal tDCS and
cognitive training, potentially contributing to the identification
of optimal parameters to enhance future clinical outcomes
(Albizu et al., 2020). Our findings support the combination of
tDCS and cognitive training as a potential method for altering
neurotransmitter concentrations in the frontal cortices, which
may have implications for neuroplasticity.
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