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Abstract

Background: Many large-effect quantitative trait loci (QTLs) for yield and disease resistance related traits have been
identified in different mapping populations of peanut (Arachis hypogaea L) under multiple environments. However,
only a limited number of QTLs have been used in marker-assisted selection (MAS) because of unfavorable epistatic
interactions between QTLs in different genetic backgrounds. Thus, it is essential to identify consensus QTLs across
different environments and genetic backgrounds for use in MAS. Here, we used QTL meta-analysis to identify a set
of consensus QTLs for yield and disease resistance related traits in peanut.

Results: A new integrated consensus genetic map with 5874 loci was constructed. The map comprised 20 linkage
groups (LGs) and was up to a total length of 291862 cM with average marker density of 2.01 loci per centimorgan
(cM). A total of 292 initial QTLs were projected on the new consensus map, and 40 meta-QTLs (MQTLs) for yield and
disease resistance related traits were detected on four LGs. The genetic intervals of these consensus MQTLs varied from
0.20cM to 7.4 cM, which is narrower than the genetic intervals of the initial QTLs, meaning they may be
suitable for use in MAS. Importantly, a region of the map that previously co-localized multiple major QTLs
for pod traits was narrowed from 3.7 cM to 0.7 cM using an overlap region of four MQTLs for yield related
traits on LG AO05, which corresponds to a physical region of about 630.3 kb on the A05 pseudomolecule of
peanut, including 38 annotated candidate genes (54 transcripts) related to catalytic activity and metabolic
process. Additionally, one major MQTL for late leaf spot (LLS) was identified in a region of about 0.38 cM.
BLAST searches identified 26 candidate genes (30 different transcripts) in this region, some of which were
annotated as related to regulation of disease resistance in different plant species.

Conclusions: Combined with the high-density marker consensus map, all the detected MQTLs could be useful in MAS.
The biological functions of the 64 candidate genes should be validated to unravel the molecular mechanisms of yield
and disease resistance in peanut.
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Background

Peanut (Arachis hypogaea L.) is a major oil and food
crop that is cultivated widely in most tropical and
subtropical areas of the world with global annual pro-
duction of about 42 million tonnes (FAOSTAT, 2014).
In breeding programs, a major objective is to increase
yield, which is directly or indirectly influenced by
pod, seed [1-3] and disease resistance related traits
[4, 5]. Hence, the development of high-yield and dis-
ease resistant varieties is still the best approach to in-
crease peanut production. However, these traits are
typical complex quantitative traits, which make gen-
etic improvement using traditional breeding methods
very challenging.

Quantitative trait locus (QTL) analysis provides loca-
tion information for target traits and can be applied in
molecular breeding using marker-assisted selection
(MAS). During the past 10years, the numbers of re-
ported yield and disease resistance related QTLs have
increased tremendously in peanut (https://www.peanut-
base.org/). However, only a few marker-trait associations
have been used for MAS [6] because the effect and
consistency of QTLs across different genetic back-
grounds and environments are key factors in the suc-
cessful use of the QTLs in MAS breeding. In general,
most of the reported QTLs for yield and disease resist-
ance were mapped using a single genetic background
under a limited number of environments [2, 3 4 5].
Many of these QTLs may reduce or even not provide a
consistent phenotypic effect when introduced to a new
genetic background under a different environment be-
cause of unfavorable epistatic interactions [7]. Thus, it is
important to predict the usefulness of consensus QTLs
for MAS in the individual genetic background of the tar-
get species in a particular study.

QTL meta-analysis has been used to identify consen-
sus QTLs across multiple studies for their consistency of
location and effect across different genetic backgrounds
and environments, as well as to refine QTL positions on
a consensus map [8]. QTL meta-analysis requires two
necessary conditions, namely, a consensus map with
high-density markers [9, 10] and independent QTLs for
the same trait identified from different genetic back-
grounds and environments [8]. Consensus QTLs ob-
tained from meta-analysis based on a lot of QTLs
related to a target trait at a 95% confidence interval (CI)
are called meta-QTLs (MQTLs). MQTLs with the smal-
lest CIs and consistent and large effects on a trait have
been used efficiently in MAS crop breeding because of
multiple QTL integrations, such MQTLs have been ap-
plied for yield related traits in rice [11, 12], disease re-
sistance in maize [13, 14], flowering time in winter
wheat [15], and seed quality in soybean [16]. However,
to date, only a few MQTLs for peanut yield and disease
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resistance have been reported [17], limiting the wide ap-
plication of MAS to these traits.

In this study, we constructed a high-density consensus
map of peanut and used it to carry out a QTL meta-
analysis to identify MQTLs for yield and disease resist-
ance traits using BioMercator V4.2 [18]. The purpose of
the study was (1) to construct a new consensus genetic
map with high-density markers; (2) to identify lots of
MQTLs with large effects and small CIs relative to the
initial QTLs; (3) to refine the initial QTLs for candidate
gene prediction; and (4) to provide markers of the
MQTLs for possible use in MAS.

Methods

Literature review and QTL collection

Peanut pod and seed related traits, such as 100 pod
weight (100 PW), 100 seed weight (100SW), shelling
percentage (SP), pod length (PL), pod width (PW),
seed length (SL), and seed width (SW) and disease
resistance traits, for example tomato spotted wilt
virus (TSWV), early leaf spot (ELS), and late leaf
spot (LLS) are greatly limit the increase of peanut
yield per unit. In this study, we used a meta-analysis
to integrate consensus QTLs for MAS breeding. The
QTL information was collected from seven reports
published in the recent years involving QTL map-
ping for yield and disease resistance traits. We used
292 of 305 initial QTLs to identify MQTLs and re-
fine QTL positions (Additional file 1: Table S1).

Consensus map integration

Based on a previous integrated consensus map of cul-
tivated peanut [10], we constructed a new consensus
map with high-density markers using BioMercator
V4.2 with default parameters [18]. All the markers
from eight studies (Additional file 1: Table S1) were
used to develop the consensus genetic map. Linkage
groups (LGs) connected with fewer than two common
markers were excluded before construction of the
consensus map. Polymorphic loci of each marker were
visualized on the A- and B-subgenomes using RCircos
in R (https://www.r-project.org/) [19].

QTL projection on the consensus map

Projection of the initial QTLs on the high-density
consensus map was based on LOD scores, phenotypic
variation explained by each QTL, CIs, and QTL flank-
ing marker positions. For the QTLs that lacked flank-
ing markers and ClIs, the 95% Cls of the initial QTLs
on the original maps were estimated as: CI=530 /
(Nx R (1) or CI=163 / (N x R?) (2) [20], where N is
the population size and R* is the proportion of the
phenotypic variation explained by the QTL. Eq. (1)
was applied to QTL studies that used backcross and
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Fig. 1 Summary of initial QTLs. a Distribution of all the initial QTLs on 20 LGs. b Phenotypic variance and LOD value of each initial QTL.

F, mapping populations, and eq. (2) was used when
the QTLs were identified using recombinant inbred
line mapping populations. The position of the pro-
jected QTL was determined using a simple scaling
rule between the original QTL flanking marker inter-
val and the corresponding interval on the consensus
map. For the projected QTL, the new CI on the

Table 1 Details of the new integrated consensus map
constructed in this study

Linkage group No. of locus ™ Density (locus/cM)
AO1 393 165.94 2.37
AO02 237 219.98 1.08
AO3 379 160.11 2.37
AO4 337 226.26 149
AO05 380 69.23 549
AO6 289 115.49 2.50
A07 239 124.19 192
AO8 223 85.60 261
A09 314 135.29 2.32
A10 231 91.75 2.52
BO1 277 115.65 240
B0O2 268 138.21 1.94
BO3 380 117.70 3.23
B04 292 148.19 197
BOS 287 87.83 3.27
B06 250 125.71 1.99
BO7 250 150.36 1.66
B0O8 247 153.02 1.61
B09 300 310.64 0.97
B10 301 17747 1.70
Total 5874 2918.62 201

consensus LGs was approximated with a Gaussian
distribution around the most likely QTL position. All
the QTL projections were performed using BioMerca-
tor V4.2 [18].

QTL meta-analysis

Based on the integrated consensus map and initial QTL
projections, we performed a QTL meta-analysis accord-
ing to the QTL clusters on each LG of the consensus
map to identify MQTLs using BioMercator V4.2 [18]
and algorithms from the MetaQTL software [21]. Two
steps are required for a successful meta-analysis. In step
1, the projected QTLs are clustered on each LG with de-
fault parameters. Then, five criteria, Akaike information
criterion (AIC), AIC correction, AIC 3 candidate model,
Bayesian information criterion, and average weight of
evidence, are used to determine the number of potential
MQTLs for the next step. In step 2, the MQTLs are gen-
erated in accordance with the best model of step 1 [21].
In our meta-analysis, the QTL model with the lowest
AIC value was used to determine the number of MQTLs
on each LG [22, 23]. Finally, the position and the 95%
CI of each MQTL were calculated, and the flanking
markers of the MQTL were selected for application in
MAS breeding.

Detecting candidate genes

The flanking markers of the CIs of the identified
MQTLs were used to search for candidate genes. The
genome assembly of cultivated peanut was used as the
reference genome (https://www.peanutbase.org/). Then,
the sequences of the flanking markers were mapped to
the reference genome, and the physical positions were
obtained. Finally, the candidate genes were identified
using GBrowse on the PeanutBase website (https://
www.peanutbase.org/).
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Fig. 2 Overview of the new integrated consensus map. a Distribution of 5874 loci on 20 linkage groups (LGs); b Distribution of markers with
more than two loci among the 20 LGs. Homologous marker loci are connected by lines

Results and discussion

Overview of QTLs and consensus map integration

To collect genetic map and QTL information for peanut
yield and disease resistance traits, we mined PeanutBase
(https://www.peanutbase.org/) and recent reports in the
literature up to 2017 (Additional file 1: Table S1). Eight
individual genetic maps and one consensus map, which
together contained a total of 8581 markers, were used to
construct a new consensus genetic map. We identified
292 of 305 initial QTLs related to yield and disease re-
sistance for use in the QTL meta-analysis (Additional
file 1: Table S1). The initial QTLs were distributed on all
20 LGs; the highest number was on A05, followed by
A07 and A09 (Fig. 1a; Additional file 2: Figure S1). The
phenotypic variance explained by the initial QTLs

ranged from 1.2 to 27.8% and the LOD value varied
from 2.5 to 22.7 (Fig. 1b).

A new integrated consensus map was constructed
using BioMercator V4.2 [18] based on nine previously
published genetic maps (Additional file 1: Table S1). The
integrated consensus map was up to 2918.62 centi-
morgan (cM) long with an average marker density of
2.01 loci per ¢cM and 20 LGs on which 5874 loci were
mapped (Table 1; Fig. 2a; Additional file 3: Table S2). In
2010, a composite linkage map with 175 SSR markers
was published; it was 885.4cM long with an average
marker density of 0.19 loci per ¢cM [9]. In 2013, a con-
sensus map covering 2651 cM with 3693 loci that were
mapped to 20 LGs was integrated with the 2010 and
other maps, taking the marker density up to 1.39 loci
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per ¢cM [10]. In the present study, the new consensus
map contains more markers and higher marker density
than the previous consensus genetic map, making it
more suitable for our QTL meta-analysis.

Comparison of all marker loci indicated that 889
markers mapped to more than two loci among different
LGs of the corresponding A- and B-subgenomes or
within A- and B-subgenomes (Fig. 2b; Additional file 4:
Figure S2). Cultivated peanut is an allotetraploid
(AABB-type genome; 2n=4x =40), probably derived
from its diploid ancestors (Arachis duranensis, AA-type
genome and Arachis ipaensis, BB-type genome). The
two ancestor genome sequences showed collinearity of
contigs and high sequence identity (299%), and analysis
of their chromosomal structure and synteny indicated
that most pseudomolecules had a one-to-one corres-
pondence of collinearity or inversion between the two
species [24]. This result may be a reasonable explanation

for the distribution of different marker loci on different
LGs in the new integrated consensus map.

Identification of MQTLs for yield and disease resistance
related traits

The precise location of QTLs and their application in
MAS are affected by their genetic backgrounds and envi-
ronments. QTL meta-analysis helps to identify the most
precise and concise QTLs based on previous different
studies for single traits or comprehensive agronomic
traits, such as yield and disease resistance, that can be
further pursued for MAS or to predict candidate genes.
In this study, yield related traits were defined as 100PW,
100SW, SP, PL, PW, SL, and SW, and disease resistance
traits were separated as resistance to TSWYV, ELS, and
LLS. Our literature survey identified a set of 292 initial
QTLs for yield and disease resistance related traits that
were projected onto the new consensus map. Then, the
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AIC values, which we consider to be the best QTL
model to determine the number of MQTLs, and the
95% Cls, were calculated. A total of 40 independent
MQTLs were identified on LGs A05, A07, A09, and
A10. The genetic intervals of 20 of the MQTLs were less
than 1 cM, and most of the intervals were narrower than
their respective initial QTL (Additional file 5: Table S3).
Among them, MQTLs for yield were most abundant,
followed by MQTLs for PL (Fig. 3a). The number of
MQTLs distributed on each LG varied from 3 to 24 (Fig.
3b), and most of the identified MQTLs had hotspots on
each LG (Fig. 4), for example, A05 had the highest num-
ber of MQTL hotspots for the yield and disease resist-
ance related traits (Fig. 5). This may be because the
highest number of initial QTLs was identified on A05
(Additional file 2: Figure S1), or because A05 has higher
marker density than the other LGs (Table 1), making the
detection of MQTLs easier.

The MQTLs on A05 formed eight clusters (CMQTLs)
with two or more MQTL overlapping regions (Add-
itional file 6: Table S4). The sequences of the markers
flanking the CMQTLs were used in BLAST searches
against the reference genome assembly. The physical po-
sitions that were obtained varied from 581.5kb to
6115.7 kb (Additional file 6: Table S4). These flanking
markers of the narrowed genetic intervals of the MQTLs
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and the small physical intervals of the CMQTLs may be
useful in MAS (Additional file 5: Table S3; Additional
file 6: Table S4).

MQTL hotspots for yield related traits and identification
of candidate genes

A previous report has indicated that multiple major
QTLs for pod size and pod weight were co-localized to a
3.7cM interval on LG AO05 [25] (Fig. 6a), which har-
bored three major QTLs for pod size and weight traits,
namely, qPLA05.7 for PL, qgPWAO05.5 for PW, and
qHPWAO05.6 for 100PW. Moreover, these three QTLs
explained a significant proportion of the phenotypic
variance; 16.89-27.84% for PL, 13.73-14.12% for PW,
and 13.75-26.82% for 100PW [25]. Based on the QTL
meta-analysis, this region was narrowed to a 0.7 cM
interval that contained four overlapping MQTLs,
namely, MQTL_Y_AO05.7, MOTL_PW_PAO05.3,
MQTL_100PW_A05.5, and MQTL_PL_A05.5, (Fig. 6b),
and explained 19-31% of the phenotypic variance (Add-
itional file 5: Table S3).

Moreover, the 0.7 cM interval corresponded to a 630.3
kb physical region of the A05 pseudomolecule (Fig. 6c),
which contains 38 candidate genes (54 different tran-
scripts), among which eight encode unknown proteins,
while others have homologs with a variety of protein
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J

functions (Fig. 6d; Additional file 7: Table S5). Import-
antly, nine of these proteins are homologous to proteins
previously identified in the A05 pseudomolecule of A.
duranensis V14167 [25] (Fig. 6d; Additional file 7: Table
S5). In addition, 37 of the 54 transcripts were assigned
at least one gene ontology (GO) term, including binding
and catalytic activity under the molecular function cat-
egory, and metabolic and cellular process under the bio-
logical process category (Additional file 8: Figure S3a).
These results highlight the importance of this interval as
a target for improving yield related traits through MAS,

as well as providing an opportunity for QTL fine map-
ping and the validation of candidate genes.

MQTL hotspots for disease resistance related traits and
identification of candidate genes

TSWYV, ELS, and LLS are three of the most serious
diseases in peanut worldwide. They not only cause
huge annual yield losses but also affect seed and oil
quality [4]. High production costs and environment
pollution are challenges to peanut growers because of
the over-reliance on agricultural chemicals that are
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used in traditional farming to control these diseases.
In recent years, molecular breeding techniques, such
as MAS, have proven to be effective in genetic im-
provement of peanuts for disease resistance [26].
Thus, identification of consensus QTLs for disease re-
sistance is particularly important. In this study, we
used a total of 42 initial QTLs identified by Pandey
et al. [4] to identify MQTLs. Finally, we detected two
MQTLs for disease resistance related traits on LG
AO05 using meta-analysis (Additional file 5: Table S3).
One is MQTL_ELS_AO05.1 for ELS and the other is
MQTL_LLS_AO05.1 for LLS (Fig. 3a, Figs. 4, and 5;
Additional file 5: Table S3). Previously, 11 QTLs for
LLS resistance were mapped and overlapped on LG
AO5 across multiple environments [4] (Fig. 7a), and
the MQTL (MQTL_LLS_A05.1) for LLS was detected
between markers SEQI19E09 and AGGS0346, which
flanked a narrow 0.38cM interval (Fig. 7b). The
flanking markers of the MQTL for LLS could be use-
ful for MAS breeding to improve the resistance to
LLS in peanut.

The BLAST searches indicated that the corresponding
physical interval was about 742.3 kb on the A05 pseudo-
molecule (Fig. 7c; Additional file 6: Table S4), which
contained 26 candidate genes (30 different transcripts)
(Fig. 7d; Additional file 9: Table S6). Some of these genes
encode homologs of known proteins related to stress or
disease resistances. For example, Arahy.AXI81X encodes
a F-box/RNI-like superfamily protein that plays a role in
the control of disease resistance in rice [27], and Ara-
hy.CBXD69 and Arahy.MF7AUF encode a protein phos-
phatase 2C (PP2C)-like domain, which plays an
important role in the regulation of disease resistance
through activation of the defense response in plants [28,
29]. Moreover, Arahy.M3KMZQ, Arahy.SQ144R and
Arahy.FCT2UL annotated a zinc knuckle family protein,
which is involved in plant disease resistance [30]. In
addition, Arahy.37524P annotated as a AP2/EREBP
(APETALAZ2/ ethylene-responsive element binding pro-
tein) transcription factor, which can enhance disease re-
sistance and salt tolerance [31, 32].The associated GO
terms suggested that most of these genes have catalytic
and binding activity and are involved in metabolic and cel-
lular biological process (Additional file 8: Figure S3). Our
results provide a set of candidate genes that potentially play
crucial roles in peanut disease resistance. Validation of the
biological functions of these genes will be of interest in fu-
ture studies.

Conclusions

Meta-analysis of QTLs for yield and disease resist-
ance related traits is an effective approach to inte-
grate consensus QTLs and refine initial QTLs. In
this study, we identified a set of 40 MQTLs with
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narrowed genetic intervals that could be helpful in
MAS. Some of these MQTLs are clustered at differ-
ent hotspots on LG A05. Combined with a physical
map (https://www.peanutbase.org/), the flanking
markers defining the CMQTLs were used to search
a limited list of candidate genes related to yield and
disease resistance traits. These genes are valuable
targets for biological validation in the future.
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