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Abstract

Excitatory connectivity levels (Connectivity).

Background: Diverse Mouse genetic models of neurodevelopmental, neuropsychiatric, and neurodegenerative
causes of impaired cognition exhibit at least four convergent points of synaptic malfunction: 1) Strength of long-
term potentiation (LTP), 2) Strength of long-term depression (LTD), 3) Relative inhibition levels (Inhibition), and 4)

Results: To test the hypothesis that pathological increases or decreases in these synaptic properties could underlie
imbalances at the level of basic neural network function, we explored each type of malfunction in a simulation of
autoassociative memory. These network simulations revealed that one impact of impairments or excesses in each
of these synaptic properties is to shift the trade-off between pattern separation and pattern completion
performance during memory storage and recall. Each type of synaptic pathology either pushed the network
balance towards intolerable error in pattern separation or intolerable error in pattern completion. Imbalances
caused by pathological impairments or excesses in LTP, LTD, inhibition, or connectivity, could all be exacerbated, or
rescued, by the simultaneous modulation of any of the other three synaptic properties.

Conclusions: Because appropriate modulation of any of the synaptic properties could help re-balance network
function, regardless of the origins of the imbalance, we propose a new strategy of personalized cognitive
therapeutics guided by assay of pattern completion vs. pattern separation function. Simulated examples and
testable predictions of this theorized approach to cognitive therapeutics are presented.

Background

Impaired cognition occurs in many different neurodeve-
lopmental, neuropsychiatric, and neurodegenerative dis-
eases. The identification of numerous disease-linked
gene mutations has led to the creation of various trans-
genic mouse models that replicate the phenotypes of
human patients, especially learning and memory impair-
ments. Our analysis begins with a review of existing
neurophysiological and neuroanatomical experiments in
diverse genetic models of impaired cognition that
include memory deficits. This synthesis of the literature
highlights four properties of synaptic or neural network
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function that are commonly altered in these conditions:
1) Strength of LTP, 2) Strength of LTD, 3) Relative inhi-
bition, and 4) Connectivity levels (Table 1).

To explore potential network level impacts of these
four convergent points of synaptic pathology, we exam-
ined the performance of a neural network simulation of
autoassociative memory while varying the strength of
each synaptic property. Associative memory requires
binding separate elements of a sensory experience into a
single memory that can be later recalled in its entirety,
even when cued by only some of the original elements.
Autoassociation is the ability of neural networks to per-
form associative memory without any external guidance,
via changes in synaptic strengths caused by neuronal
activity. Autoassociative memory in area CA3 of the hip-
pocampus in particular, is perhaps the best example of a
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Table 1 Key Synaptic Phenotypes in Mouse Models of Diseased Cognition
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Disease Model

LTP

LTD

Inhibition

Connectivity

Neurodevelopmental

Angelman synd.
Ube3A KO

Decreased [40,46)

Decreased [47]

Down synd.
Trisomy

Decreased [48-50]

Increased [51]

Increased [24,49]

Decreased/Increased* [24,52,53]

Fragile x synd.
Fmr1 KO

Decreased/Increased [54-56]

Increased [57]

Decreased [58-60]

Decreased/Increased* [25,27,28]

FRAXE synd.
Fmr2 KO

Increased [61]

Neurofibromat.
Nf1 het

Decreased [62-64]

Increased [62,63]

Rett synd.
Mecp2 KO

Decreased [65,66)

Decreased [65]

Increased [67]

Decreased [68,69]

Tuberous Scler.
Tsc1 KO
Tsc2 KO (rat)

Decreased [70]

Decreased [70]

Decreased [71,72]

Various XLMR
Ophni KO
Pak3 KO
Gdil KO

Decreased [73,74]

Decreased [75]

Neuropsychiatric

Schizophrenia
DiscT mut
Reelin het
22q11 del

Decreased [76,77]

Decreased [78]

Decreased [78]

Decreased [76,79-81]

Neurodegenerative

ALS
SodT mut

Increased [82]

Decreased [83]

Alzheimer’s
App mut
Ps1/Ps2 KO
App/PsT mut

Decreased [30,32,84-86]

Increased [30,32]

Decreased/Increased* [26,84,87-89]

Huntington’s
Het mut

Decreased [38,90,91]

Decreased/Increased [92,93]

Parkinson'’s.
Dj-1 KO
Parkin KO

Decreased/Increased [94,95]

Decreased [94]

SCA
Scal mut
Fgf14 KO

Decreased [96,97]

Decreased [98]

The first column lists neurological conditions associated with impaired cognition, along with corresponding diseased-linked mutations that have been modeled in
mice. The remaining columns list reported alterations to LTP, LTD, synaptic inhibition, and connectivity in each group of mouse models. Asterisks indicate reports
of increased connectivity that are accompanied by concomitant decreases in connectivity in different neuronal subpopulations. As well as direct physiological
measurement of synaptic connectivity, indirect findings of altered dendritic spine density or axonal projections were considered indications of altered
connectivity. While the connections within CA3 are the primary focus of our simulations, studies of synapses throughout the hippocampus are listed to allow a
comprehensive comparison of existing data. When no hippocampal data was available, studies of other cortical neuron populations were included.
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convergence of theoretical predictions [1-3] and experi-
mental evidence [4-8] for how neural networks store
memories, and is thought to represent a basic process
essential to the learning capabilities of interconnected
brain networks [9,10]. Two key features supported by
autoassociative memory are pattern separation, and pat-
tern completion. Pattern separation is the ability to keep
distinct memory patterns separate during storage (Fig.
1A,B), while pattern completion is the ability to recall
an entire stored memory pattern in response to a
degraded or partial observation of elements of the stored
pattern (Fig. 1C,D). Analytical models of autoassociation
have described a trade-off between pattern completion
and separation functions that is influenced by the
strength of LTP and LTD [11]. Previous work also indi-
cates that autoassociative network capacity is dependent
on both excitatory connectivity levels and the properties
of synaptic inhibition [12,13]. Therefore, we hypothesize
that the cognitive diseased-linked synaptic pathologies
of LTP, LTD, inhibition, and connectivity should all
converge in affecting memory performance by shifting

A B

Pattern Storage Pattern Separation Failure
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1

Pattern Completion Failure

o+
C D
Pattern Completion

Figure 1 Autoassociative Memory: Pattern Storage,
Completion, and Separation. Autoassociative memory involves the
rapid automatic generation of internal representations of sensory
stimuli. Key functions of autoassociative memory are depicted with
stimulus patterns consisting of visualized airplane silhouettes. A)
Pattern storage includes the ability to simultaneously store
representations of multiple stimuli, such as similar yet distinct
airplane silhouettes. B) Pattern separation fails during pattern
storage when multiple distinct stimuli cannot be simultaneously
stored without interference. C) Pattern completion is the ability to
recall a stored representation when cued by a partial or degraded
observation of the stimulus, such as when an airplane is obscured
behind a cloud. D) Pattern completion fails when the degraded
stimulus is insufficient to result in recall of the entire stored
representation.
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the underlying trade-off between pattern completion
and pattern separation. In particular we predict that
while the net effect of some constellations of pathologies
will be severe deficits in pattern separation, other con-
stellations of pathologies will impair memory perfor-
mance due to severely impaired pattern completion.
Moreover, regardless of the underlying deficits, appro-
priate manipulation of any of the four synaptic functions
could help correct imbalanced autoassociative function.
These hypotheses of pathology and therapeutics were
tested using network simulations based on current con-
cepts of autoassociative function.

Results

Diverse disease models exhibit convergent synaptic and
circuit alterations

Examples of neurodevelopmental diseases that can
include memory deficits, where causative genes have
been identified and mouse models have been created,
include Angelman syndrome, Down syndrome, Fragile x
syndrome, FRAXE Syndrome, Rett Syndrome, Neurofi-
bromatosis, Tuberous Sclerosis, and various X-linked
Mental Retardations (XLMR) (Table 1, top). Transgenic
mouse models have also been created that are relevant
to neuropsychiatric conditions including schizophrenia,
a disease where memory impairment is an important
endophenotype (Table 1, middle). In addition to Alzhei-
mer’s disease, other neurodegenerative diseases often
more noted for their hallmark motor symptoms, also
feature important cognitive phenotypes, and mouse
models of neurodegenerative conditions with memory
alterations include Amyotrophic Lateral Sclerosis (ALS),
Huntington’s disease, Parkinson’s disease, and Spinocer-
ebellar Ataxia (SCA) (Table 1, bottom). Together, these
diverse mouse models provide a comparative window
into potential substrates of memory impairment. In par-
ticular reoccurring points of pathological changes
include: 1) Strength of LTP, 2) Strength of LTD, 3)
Relative inhibition, and 4) Connectivity levels.

Neural Network Simulation of Autoassociation

To explore the impact of synaptic alterations on auto-
associative functions, we used a neurobiologically rea-
listic, reduced network model of autoassociation that
allowed modulation of each of the four points of
synaptic pathology. This model was based on a pub-
lished model of hippocampal area CA3, in which the
subpopulations of neurons that are active during dis-
tinct gamma cycles are the substrates of memory sto-
rage and recall [13,14]. While replicating the concept
of this previous model, our implementation used sim-
plified biophysically realistic neurons with properties
taken from a model of rhythm generation in the hip-
pocampus [15] (see methods, Fig. 2). It should be
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Figure 2 Autoassociative Network Model. (A) The architecture of the 100 neuron network is illustrated with four exemplar excitatory neurons
(blue). The recurrent interconnections (associational synapses) in a network with full connectivity are shown with blue triangles. Excitatory
synapses are also made from each excitatory neuron onto a single interneuron that represents the total inhibition of the network (red neuron).
Feedback inhibitory connections made by the interneuron onto each excitatory neuron are shown with red circles. Feedback inhibition onto the
interneuron is represented using an autaptic connection. Depicted in green is the input to each neuron used to activate a neuron as part of a
stimulus pattern. Each biophysically reduced model neuron had membrane properties based on a model of rhythm generation in the
hippocampus [15] (see methods). (B) Voltage-gated Fast Na* conductance steady state activation and inactivation (top) and time constants
(bottom) of the m and h gating variables are shown. (C) Voltage-gated Delayed Rectifier K* conductance steady state activation (top) and time
constant (bottom) of the n gating variable is shown. (D) AMPA conductance time courses are shown. (E) GABA conductance time courses are
shown.
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noted that the model used here resembles previous
models that use biophysically detailed individual neu-
rons within a simplified neural circuit [16,17], rather
than models with more complex network interactions
and more sophisticated memory function, but simpler
single neuron representations [18-20]. All of our simu-
lations focused on networks of 100 excitatory neurons
with feedback inhibition, and each pattern to be stored
and recalled consisted of the activation of a set of
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10 individual neurons (Fig. 2,3). Each of the four
synaptic phenotypes observed to be increased or
decreased in mouse models of cognitive impairment
corresponded directly to variables within the simula-
tions as follows:

Connectivity

The connectivity level of the recurrent excitatory
synapses was set to a given value (for example 50%;
Fig. 3A), which was implemented by constraining the

Figure 3 Synaptic Connectivity and Plasticity. A) Example matrix of potential synaptic interconnections between the 100 excitatory neurons
in a network with 50% connectivity. Gray squares show possible (silent) synapses, and white squares indicate the absence of anatomical
synapses, as a function of postsynaptic (x axis) and presynaptic (y axis) neuron identity. B) Synaptic plasticity was implemented with the
parameter, g™ AMPA specifying the strength of a fully potentiated synapse resulting from co-activation of a presynaptic and postsynaptic
neuron during storage of a stimulus pattern. The parameter y-™® determined the strength of depression resulting from asynchronous activation
of a presynaptic and postsynaptic neuron during different stimulus patterns within a set of stored memories. The resulting profile of plasticity for
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potentiated to strongly depressed are illustrated with the color scale from red to blue. D) The synaptic strength matrix of the example network
is shown after 30 patterns have been stored. Note that while more synaptic connections have been potentiated, accumulation of overlap
between the patterns has resulted in stronger average depression in the network compared to the storage of 5 patterns.
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average number of randomly selected postsynaptic target
neurons for each presynaptic neuron.

LTP and LTD

In the absence of any stored memories, all potential
synaptic connections were silent with no AMPA recep-
tor (AMPAR) conductance. LTP was implemented by
potentiating synapses between presynaptic and postsy-
naptic neurons that both fired action potentials within
the time window of a single gamma cycle during pattern
storage. The strength of LTP was defined by the maxi-
mal excitatory synaptic conductance variable, g™**
AMPA. LTD was implemented by depressing synapses
between presynaptic neurons and postsynaptic neurons
that were active during storage of different stimulus pat-
terns within a set of simultaneously stored patterns. The
parameter, "', defined the strength of LTD (see meth-
ods, Fig 3B). The result of these plasticity mechanisms
is that as larger numbers of patterns are simultaneously
stored in the network, more silent synapses are poten-
tiated, and more of those potentiated synapses are also
reduced in strength by LTD due to accumulated overlap
of the stimulus patterns (Fig. 3C,D).

Relative Inhibition

The strength of the feedback inhibitory conductance,
gGABA, received by each pyramidal neuron was set
relative to the average maximal excitatory conductance
received by excitatory neurons, as defined by the Inhibi-
tion Ratio variable (see methods). Thus, the strength of
LTP, LTD, connectivity, and inhibition could all be var-
ied to simulate pathological conditions or therapeutic
modulation via manipulation of single variables.

Measuring Pattern Completion and Pattern Separation

Sensory stimulus patterns representing distinct mem-
ories each consisted of the direct activation of 10 of the
100 neurons in the network. Sets of stimulus patterns,
equivalent to a list of multiple memories to be main-
tained simultaneously, were selected at random with lar-
ger sets having greater average overlap between the
stimulus patterns. Sets of patterns were stored in the
network by calculating and applying the synaptic plasti-
city resulting from the storage of an entire set of stimu-
lus patterns (for example a set of 5 patterns each
consisting of the activation of 10 neurons). Since inter-
leaved learning was assumed, the dynamics of sequential
storage of different patterns were not modeled [13]. Pat-
tern separation was tested by activating the 10 neurons
of each stored pattern, and evaluating any spurious fir-
ing in the remainder of the network during the time
window corresponding to the peak of a single gamma
cycle (Fig. 4A). Activation of one or more neurons not
participating in a pattern was considered separation fail-
ure for that pattern. Pattern completion was evaluated
by activating 9 out of 10 neurons in a stored pattern,
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and checking for evoked firing of the 10" neuron of
that pattern within the same gamma cycle (Fig. 4B).
Lack of firing of the 10th neuron during that gamma
cycle was considered pattern completion failure. This
reduced network of 100 neurons using stimuli consisting
of activation 10 neurons was sufficiently complex to
model pattern completion and separation analogous to
that depicted in Fig. 1. Rates of pattern completion and
pattern separation errors per memory pattern as a func-
tion of the number of simultaneously stored stimulus
patterns were measured for each set of simulation con-
ditions (see methods, Fig. 4C,D). Initial simulations
revealed that both pattern completion and pattern
separation error rates increased as the number of simul-
taneously stored memories increased.

Wild-type Synaptic Properties

While biologically plausible values of each synaptic
property serve as a good starting point for the baseline
model, the necessary simplifications of the model make
it difficult to predict exact wild-type values of synaptic
properties. For example, relative inhibition is specified
using the ratio of GABA, receptor (GABALR) to
AMPAR conductance in each spatially reduced neuron.
However the dynamics of synaptic interaction in spa-
tially complex neurons, can enhance the ability of inhi-
bition to oppose excitation [21,22], suggesting amplified
GABAAR to AMPAR conductance ratios may be needed
in the simplified simulation. Because of such considera-
tions, we decided to determine wild-type network para-
meters via an empirical assessment of storage and recall
performance. To avoid focusing on a non-unique set of
optimal parameters we explored network performance
over a broad range of parameter space by creating a
database with 960,000 combinations of parameter values
(gMaXAMPA, yLTD, Relative Inhibition, and Connectivity
%) and memory storage conditions (see methods). While
different metrics could be used to assess network per-
formance, we defined optimal networks based on the
maximal error rate, which was calculated as the greater
of pattern completion or pattern separation error rates.
Using this measure, pattern completion and pattern
separation errors were equal in their ability to limit net-
work performance.

In the initial evaluation of optimal parameter combi-
nations, 100% connectivity levels were always found to
allow the best performing networks, although this
required extremely low values of LTP, and extremely
high values of LTD and inhibition. However, anatomi-
cally-based estimates of in vivo connectivity within CA3
are more sparse, with estimates ranging from very low
up to 50% [13,23].The higher value of 50% connectivity
is consistent with physiological observations of ~50% in
cultured brain slices that have re-grown CA3
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Figure 4 Simulated Pattern Separation and Completion. Simulated autoassociative functions are illustrated (after deAlmeida et al, 2007). A)
The simulated membrane potentials of all 100 excitatory neurons (blue) are illustrated (top) for the time window corresponding to the peak of a
single gamma cycle. Green symbols indicate the 10 neurons activated during storage of a stimulus pattern. Also shown (bottom) on an
expanded voltage scale are the overlaid near-threshold membrane potentials of the 10 neurons participating in the stimulus pattern (green
symbol), the other 90 excitatory neurons in the network, and the inhibitory neuron (red). Pattern separation is successful when, as new
memories are stored, only the 10 stimulated neurons fire action potentials, without extraneous firing in the network during the cycle. Pattern
separation fails when extraneous firing in one or more neurons outside of the stimulus occurs during pattern storage (black). B) Pattern
completion is tested by stimulating only 9 of the 10 neurons in a stored pattern. The neuron that is part of a pattern but not stimulated during
the degraded stimulus presentation is depicted with an open green symbol. Pattern completion is successful when synaptic input from the
other 9 neurons is able to elicit firing in this neuron (black) within the restricted time window shown, corresponding to a single gamma cycle.
Failure of pattern completion occurs when the degraded stimulus is unable to induce firing in the un-stimulated neuron. C) The rate of pattern

separation errors is shown as a function of the number of stored patterns for an example set of network parameters. D) The rate of pattern
completion errors as a function of the number stored patterns is shown.
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connections severed during slice preparation, but main-
tain the total synaptic input levels seen in acutely pre-
pared slices [24,25]. Supporting an upper limit on total
connectivity, pathological increases in connectivity
within neuronal subpopulations are often accompanied
by decreased connectivity in other subpopulations
[24-26]. Therefore, to maintain biological realism and
minimize neuronal number in the simulations, while
defining wild-type networks, we searched the parameter
space of the other three synaptic properties, while con-
straining wild-type connectivity levels to 50%. Optimal
balanced networks were found by searching for para-
meter combinations that produced the lowest maximal
error (the higher error in either pattern separation or
pattern completion). This analysis revealed that a rela-
tively broad contour of LTP, LTD, and inhibition, para-
meter space could support optimal balanced network
function (Fig. 5A). Thus, the illustrated 100 best para-
meter combinations reflect a diversity of approximately
equally well-balanced wild-type networks, perhaps ana-
logous to variability in the in vivo networks of healthy
individuals (Fig. 5B). Accordingly, in assessing the
impact of simulated synaptic pathologies, we considered
the average effect of pathologies to each of these 100
optimal ‘wild-type’ parameter combinations.

Pattern Separation and Completion with Single Synaptic
Pathologies

To test the isolated impact of each synaptic pathology
on memory performance, we analyzed pattern comple-
tion and separation error rates as LTP, LTD, inhibition,
and connectivity, were each varied relative to the opti-
mal wild-type networks (Fig. 6). These simulations
revealed a striking trade-off between pattern completion
errors and pattern separation errors. In particular,
increasing or decreasing the value of any given synaptic
function could decrease one type of error, but at the
expense of increasing the other. High connectivity,
strong LTP, weak LTD, or weak inhibition, all reduced
pattern completion errors, but did so at the expense of
increased errors in pattern separation. Conversely, low
connectivity, weak LTP, strong LTD, and strong inhibi-
tion could all reduce pattern separation errors, but at
the expense of increased errors in pattern completion
(Fig. 6). The observed extreme error rates in either pat-
tern completion or separation, resulting from the synap-
tic pathologies are predicted to be sufficient to impair
performance on standard memory tasks. On one hand,
low rates of separation errors during storage are irrele-
vant in the face of intolerable rates of completion failure
during recall. Conversely, low rates of completion error
during recall would be masked by intolerable rates of
separation failure during storage. Thus, imbalanced net-
works with a bias towards either pattern separation or
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pattern completion are potential substrates of the learn-
ing and memory impairments observed in neurological
disease.

Interaction Between Multiple Synaptic Alterations
Because the synaptic pathologies all shifted the trade-off
between completion and separation, we examined the
interaction of multiple simultaneous pathologies (Fig. 7).
This analysis of simultaneous increases or decreases in
all combinations of the four synaptic properties showed
that any two synaptic alterations that could both alone
caused a separation or completion bias, would together
cause an exacerbation of the bias. Conversely any two
synaptic alterations that caused opposites shifts in net-
work balance had the potential to at least partially offset
each other. This finding of interchangeable effects of
simultaneous synaptic alterations has implications for
compensatory mechanisms and therapeutic re-balancing
of network function. Given that intolerable levels of
error in either pattern separation or pattern completion
could be limiting factors in memory performance,
manipulations that shift the balance so as to ameliorate
extreme imbalances should be of therapeutic benefit.
Specific examples of imbalances causing increased maxi-
mal error resulting from various synaptic pathologies,
along with therapeutic ameliorations of these effects by
manipulation of independent synaptic properties are
shown in Fig. 7. In such attempts to correct networks
disrupted by one abnormal synaptic property via manip-
ulations of independent synaptic properties, more
balanced minimization of both types of error can be
achieved, even if some residual increased errors relative
to the optimal networks remain.

Discussion and Conclusions

Substrates of Imbalanced Network Performance

The simulation results demonstrate that increases or
decreases in LTP, LTD, inhibition, or connectivity, as
observed in mouse models of disease-linked mutations,
can shift the balance of autoassociative function towards
intolerable error in either pattern completion or pattern
separation. However, in individual patients, the impacts
of disease-linked mutations will likely be modulated by
multiple genetic and environmental factors. For exam-
ple, even when identical mutations are examined in dif-
ferent background mouse strains (different genetic
contexts) opposite pathologies in connectivity are
observed within models of Fragile x Syndrome [27,28]
or AD [29]. In addition, many synaptic phenotypes
develop with age, indicating that disease-linked muta-
tions have different impacts during development and
aging, perhaps in part due to induction of compensatory
mechanisms [30]. The various factors that could contri-
bute to manifestation of pathology in the four synaptic
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Figure 6 Each Synaptic Pathology Alters the Trade-Off between Completion and Separation. The average performance of the 100 best
parameter combinations illustrated in Figure 5, were used to represent optimal autoassociative performance. To simulate pathological changes
in each synaptic property, parameter values were increased or decreased by various degrees in each of the 100 optimal networks, and the error
rates in pattern completion and separation were re-assessed. A) Changes in the strength of LTP were implemented by increases or decreases in
g™ ™AMPA, relative to optimal values (opt, y axis). B) Changes in the strength of LTD were implemented by multiplying optimal v values by
different amounts. C) Connectivity levels were increased or decreased relative to the optimal level (50%). D) Changes in relative inhibition were

implemented by multiplying optimal values by different amounts. Each simulated pathology shifted the trade-off between completion and
separation, with opposite effects when the synaptic properties were increased or decreased.

phenotypes are illustrated in Fig. 8A. Regardless of the
underlying origins, however, the ability of multiple
synaptic alterations to compound or counteract each
other in shifting the balance between pattern completion
vs. separation errors (Fig. 7) suggests that a large num-
ber of combinations of synaptic pathologies will have a
net effect of a bias towards either pattern completion or
pattern separation.

To intuitively understand the basis of the interactions
between the different points of synaptic pathology it is
important to appreciate that the underlying substrates of
successful pattern completion (and failed separation)

necessarily converge at action potential generation,
while essential to pattern separation (and failed comple-
tion) is lack of inappropriate spiking. Thus while the
effects of LTP, LTD, inhibition and connectivity levels
all impinge on the ability of synaptic inputs to drive
output spiking, other perturbations that also effect
input-output coupling will also alter the balance
between completion and separation. For example, while
beyond the scope of the present analysis, neuromodula-
tory influences that alter intrinsic excitability are also
aberrant in disease states and are expected to alter
pattern separation and completion functions [19,31].
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Figure 7 Concomitant Synaptic Modulations Can Exacerbate or Rescue Imbalances. A-F) Changes to optimal network balance are shown
for each permutation of simultaneous changes in two of the four synaptic properties. Grayscale values illustrate increases in max error rate
relative to the optimal networks. Optimal networks are central in the 2D plots, bordered with a black box. Increasing max error rates resulting
from alterations to single parameters are seen in the vertical or horizontal deviations from the optimal networks, while the remainder of each
plot shows the effects of concomitant alterations to both parameters. Examples of pathological shifts towards intolerable pattern completion
error (separation performance bias, red circles), or pathological shifts towards intolerable pattern separation error (completion performance bias,
blue circles) are highlighted for individual synaptic pathologies. Error rates for these highlighted data points are shown, with pale red and blue
bars illustrating completion and separation error rates within tolerable limits defined by optimal network performance. Completion or separation
error rates exceeding tolerable limits are illustrated with dark red or dark blue, respectively. For each highlighted pathology, examples of
therapeutic shifts towards more tolerable error rates that could be achieved by manipulating the other synaptic property are shown with red
arrowheads (amelioration of separation biases) or blue arrowheads (amelioration of completion biases). Note that while increases in connectivity
are included for completeness, that upper limits are likely biologically constrained, limiting the plausibility of the low error regions of parameter
space seen with high connectivity (see text).
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Figure 8 Personalized Therapeutics Based on Assay of Network Imbalance. A) The origins of pathological changes in the synaptic
phenotypes of LTP, LTD, inhibition, and connectivity are indicated. In addition to direct effects of disease-linked mutations (Table 1), and other
genetic or environmental factors, effects of feedback due to developmental or age-related changes, as well as homeostatic compensatory
mechanisms, are indicated. B) The key prediction of the simulations is that the summed impact of any constellation of synaptic pathologies will
be to imbalance network performance in one of two directions, 1) Separation bias, where despite very low pattern separation error, intolerable
errors in pattern completion underlie memory impairment, or 2) Completion bias, where despite very low completion error, intolerable errors in
pattern separation underlie memory impairment. C) The proposed approach of using assays of network imbalance to prescribe therapeutic
targets is illustrated. Manipulations of each of the synaptic properties predicted to have therapeutic benefits are listed for each type of network
imbalance (large arrows). The dashed box is to emphasize that the approach of predicting therapeutics based on assay of network imbalance is

Theory of Personalized Therapeutics

That the four examined points of synaptic pathology
all further converge in causing one of two distinct net-
work imbalances provides a potential point of thera-
peutic intervention (Fig. 8B). In particular, a pattern
completion bias predicts one direction of therapeutic
manipulation for each synaptic property, while a
separation bias predicts therapeutic value for the oppo-
site directions of manipulation (Fig. 8C). If pattern
completion vs. pattern separation performance were to
be extensively evaluated in cognitive disease, two gen-
eral possibilities exist: 1) Some causes of disease will
consistently involve a separation bias, while other
causes will always involve a completion bias, 2) Even
within the same disease, the complex interaction of
genetics and environment with disease progression will

result in some patients with a completion bias and
others with a separation bias.

In the case of uniform biases within a disease this
model is useful in predicting cross-therapeutic value of
drugs with different targets. All of the reported synaptic
phenotypes in AD would push network balance towards
a separation bias predicting unambiguous therapeutic
targets (Fig. 8C, top), which is supported by the obser-
vation that decreasing inhibition rescues memory per-
formance in mice modeling AD [32]. However, in other
disease models, phenotypes causing opposite biases co-
exist (Table 1), and the appropriate therapeutic targets
are thus unclear because they will depend on the rela-
tive magnitude of the different pathologies. For example
Down syndrome model mice exhibit AD-like pheno-
types of reduced LTP, enhanced LTD, and enhanced
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inhibition, but also exhibit enhanced recurrent connec-
tivity that would favor a completion bias. Insight comes
from the observation that as with AD model mice,
GABA R antagonists can rescue impaired memory in
the Down syndrome model mice [33,34] which is con-
sistent with a net pattern separation bias. Therefore, in
addition to drugs decreasing inhibition, the theory pre-
dicts that drugs enhancing LTP, and connectivity, and/
or reducing LTD should also be of therapeutic value in
Down syndrome (Fig. 8C, top; Table 2). In another
example, schizophrenia models exhibit phenotypes both
supporting a separation bias (impaired LTP, and
decreased connectivity) and supporting a completion
bias (impaired LTD, and decreased inhibition). In this
case, that enhancement of GABAR function can rescue
impaired memory in Schizophrenia patients[35,36], sug-
gests a net completion bias dominates. Therefore, along
with positive modulators of GABAARs, drugs that would
selectively reduce LTP, enhance LTD, and/or decrease
connectivity are also predicted to be valuable for treat-
ing cognitive deficits in Schizophrenia (Fig. 8C, bottom;
Table 2). Further examples of extrapolating cross-thera-
peutic efficacy come from mouse models that have been
treated with manipulations that can increase LTP. In
particular, enhancements of LTP by PAK inhibition in
Fragile x Syndrome model mice [37], by BDNF increases
in Huntington’s disease model mice [38,39], or by
reduction of o CaMKII inhibitory phosphorylation in
Angelman syndrome model mice [40], are all accompa-
nied by rescued memory performance. These findings
are consistent with an underlying pattern separation
bias in these conditions, and predict efficacy of the cor-
responding list of therapeutic targets (Fig. 8C, top;
Table 2).

In the case of non-uniform biases within a disease
group, assaying pattern completion vs. separation would
be especially valuable for prescribing personalized thera-
peutics. Moreover, this approach could allow therapeutic
prescription even in patients with learning and memory
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impairments with unknown etiologies and no clear dis-
ease diagnosis. Fig. 9 illustrates this personalized thera-
peutics approach using the example of a heterogeneous
group of patients with the type of pathologies seen in
Schizophrenia models (Table 1). Genetic and environ-
mental diversity is represented by starting with the 100
optimal networks with different underlying combina-
tions of synaptic properties, and by implementing vary-
ing degrees of the pathological decreases in each
synaptic pathology as observed in mouse models of
Schizophrenia. While the average autoassociative func-
tion in the simulated Schizophrenia cohort reflects a
completion bias, high variability between the individuals
is evident (Fig. 9B). Simply treating the entire group
with manipulations such as enhanced inhibition, would
results in some therapeutic rebalancing of the group on
average, consistent with the findings that GABAAR posi-
tive modulators can improve memory performance in
schizophrenia patients. However, assay of individual
autoassociative biases in each simulated patient leads to
the identification of both patients with completion
biases that would especially benefit from manipulations
including increased inhibition, as well as a some patients
with separation biases who would benefit from opposite
manipulations including decreased inhibition (Fig. 9C,
D).

How pattern separation and pattern completion defi-
cits in neural networks will read out in indirect beha-
vioral measurements such as tests of prospective
interference may be complicated, but could be deter-
mined by experiments correlating behavior and read-
outs of neural network separation/completion function.
However, the promise for implementing such an
approach of assay-based therapeutic prescription is
good, since non-invasive touchscreen-based memory
tests already exist, including explicit measurement of
pattern separation function, in both mouse models [41]
and human patients [42,43]. While higher-order proces-
sing strategies could confound behavioral read-outs of

Table 2 Example Cross-Therapeutic Predictions for Overall Averages of Disease Populations

Disease or model

Memory rescue observed with

Other predicted targets

Alzheimer’s mouse
Down synd. mouse

| Inhibition [32-34]

1 LTP, 1 connectivity, | LTD

Human Schizophrenia

1 Inhibition [35,36]

| LTP, | connectivity, 1 LTD

Angelman mouse
Fragile x mouse
Huntington’s mouse

1 LTP [37-40]

| Inhibition, | LTD, 1 connectivity

The first column lists disease conditions or mouse models where therapeutic rescue of memory has been observed. The second column lists the synaptic
property that was targeted or observed to be altered by the treatment (see discussion for details). The third column lists other predicted targets that should
function to rebalance memory performance by altering the pattern completion vs. pattern separation bias with the same polarity as the observed effective

treatment (see Figure 8). Note that while differential involvement of compensatory mechanism, genetic context, etc,, between individuals is expected to result in
heterogeneity within a given disease group, that significant improvements were seen on averaged measures of memory function in these studies supports these
coarse predictions of therapeutic efficacy within groups. The potential need for personalized assay of completion vs. separation function is illustrated in Figure 9.
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Figure 9 Example of Personalized Therapeutics in Groups with Heterogeneous Pathologies. The personalized therapeutics approach is
illustrated using the example of a group of patients with pathological decreases in LTP, LTD, Inhibition, and Connectivity, as have been reported
in various models related to Schizophrenia, for example (Table 1). To provide analogy with the heterogeneous genetic and environmental factors
seen in human patients, the 100 optimal neural networks were each perturbed with randomly varying degrees of decreases in each synaptic
property, such that an average pattern completion bias was seen in the population, consistent with average rescue of memory impairment by
increased inhibition in populations of Schizophrenia patients (see Discussion). A) The maximal error in each of the pathologically perturbed
networks is illustrated. For direct comparison with the wild-type networks in Figure 5, values of LTP, LTD, and inhibition are illustrated, while
connectivity rates are not shown. B) The pattern completion and separation error rates with 30 patterns stored are illustrated for each of the
individual pathological networks. Completion or separation error rates exceeding average tolerable limits of wild-type networks are illustrated
with dark red or dark blue, respectively. Red arrowheads indicate assayed pattern separation biases, where GABAAR antagonists would be
prescribed, while blue error heads indicate pattern completion biases, where GABAAR positive modulators would be prescribed (majority of
individuals). C) The maximal error rates in each network following therapeutic correction as indicated in panel B, is shown. D) The pattern
completion and separation error rates following therapeutic improvement with drugs targeting inhibition are shown for the individual networks.

basic network functions [42], direct assay of autoassocia-
tive function can be performed in rodent models using
recordings of neuronal ensemble activity [4-6], and has
been demonstrated in humans using functional imaging
[7]. Although the current simulations focused on

autoassociative function in the key region of CA3, inter-
actions across multiple neural circuits are known to
underlie cognitive behaviors like learning and memory.
Nonetheless, much of the cortex is organized in recur-
rent circuits, and could process and store information in



Hanson and Madison BMC Neuroscience 2010, 11:96
http://www.biomedcentral.com/1471-2202/11/96

a sparser but analogous manner to CA3. Therefore,
especially in cases contributed to by genetic disruptions
with potentially widespread effects, the predicted manip-
ulations aimed at rebalancing function could be broadly
beneficial across neural networks underlying a patholo-
gically extreme cognitive style. Ultimately tests of the
types of predictions outlined in Fig. 8 and detailed
above, will support or refute this theorized approach of
personalized cognitive therapeutics.

Methods

Network Simulations

Network simulations were constructed using NeuroCon-
struct [44] and simulations were run using Neuron [45].
Custom Matlab (Mathworks) scripts were used to gener-
ate stimulus pattern sets, calculate synaptic plasticity,
and analyze simulation output. Each neuron was mod-
eled as an isopotential sphere with a radius of 10 pm
and had a membrane capacitance of 1.0 pF/cm?® and
contained a leak conductance with Eje, = -67 mV
(GLeak = 0.1 uS/cm?), and Fast Na* (G, = 100 pS/cm?),
and Delayed Rectifier K" (Gx = 80 uS/cm?) conduc-
tances, based on a reduced model of hippocampal
rhythm generation [15] (see Fig. 2). Na* current was
calculated as: Iy, = Gram®h(V,-Ena), with Exa = 90
mV, K* current was calculated as: Ix = Ggn*(Vim-Ex),
with Ex = -100. AMPA conductances of excitatory
synapses had time courses described by Gaypa = exp™™
fau2) _ exp@u) with taul = 1 and tau2 = 4, Exnpa = O
mV, and GABA, conductances had time courses
described by: Ggapa = exp/®"2_exp/uD) | with taul =
2 and tau2 = 8, Egapa = -80 mV. Synaptic delays were
1 ms and axonal conduction times were considered
negligible.

Connectivity

For each simulation of a given connectivity level, three
different connectivity profiles were generated using dif-
ferent random seeds in NeuroConstruct. The average
performance of simulations using 10 different random
sets of memories in each connectivity profile was calcu-
lated. Error rates are presented as mean + SEM of the
average performance in three connectivity profiles.

Synaptic Plasticity

The weight of associational connections (W) following
synaptic plasticity was determined using an adaptation
of the equation used in the model of autoassociation
we based our simulations on [13]: Wy; = niju/(niju*yn
+ni,»10*y10+nij01* v°1), where ni,»u is the number of pat-
terns where presynaptic(i) and postsynaptic(j) neurons
fire together, and nijlo and nijm are the number of pat-
terns where presynaptic or postsynaptic neurons fire

independently within a set of stored patterns. For
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simplicity in our implementation, y'! was set to a value
of 1, and y'® and y°! shared the same value, y*P.
This yielded the equation; W= g"M**AMPA *ni,-ll/
(nij11+(nij10+nij01)*yLTD), where the normalized strength
of maximal potentiation, gMaxAMPA, defines the
strength of LTP, and the single parameter, "™, defines

the strength of LTD (Fig. 3B).

Inhibition

The strength of the excitatory synapses onto the inhibi-
tory neuron was set to 90% of g"**AMPA. The strength
of inhibitory synaptic conductances in the network was
set relative to the maximal total excitation received by a
pyramidal neuron during a stimulus pattern involving
10 neurons such that: gGABA = g™**AMPA*10*Con-
nectivity Level*Relative Inhibition.

Database Generation

Parameter permutations consisting of 20 connectivity
levels spaced between 5 and 100%, 20 gMaXAMPA
values spaced between 2.78 and 55.56 nS, 20 logarith-
mically spaced Inhibition Ratio values between 0.01
and 100 (corresponding to 1.83 fold increments), and
yLTD values logarithmically spaced between 0.1 and 10
(corresponding to 1.27 fold increments) were evalu-
ated. For each of these 160,000 permutations of synap-
tic properties, 6 different sized pattern sets were
assessed using multiple connectivity and stimulus pat-
tern random seed conditions (see connectivity), for a
total of 180 simulations per parameter combination.
To facilitate the required large number of simulations,
an approximation was made, based on the fact that the
presence or absence of a spike in each individual neu-
ron (which determines pattern storage or pattern com-
pletion success or failure), is determined entirely by, 1)
the total excitatory conductance resulting from the
properties of synaptic plasticity in the context of con-
nectivity, and 2) the strength of inhibition. Therefore,
a table of spike thresholds as a function of both total
excitatory and inhibitory conductance received by a
neuron was generated from a set of simulations with
systematic variations in these properties. During crea-
tion of the database, pattern separation and pattern
completion errors were assessed based on neuronal fir-
ing patterns determined by comparing values of total
excitatory and inhibitory conductances in each neuron
to the table of firing thresholds. Validation of this effi-
ciency measure was performed by directly comparing
several key parameter combinations using the thresh-
old-table approximation with full explicit simulations.
Optimal balanced networks were defined as the para-
meter combinations with the lowest maximal error
(the higher error in either pattern separation or pat-
tern completion), thus reflecting an even breakdown of
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pattern separation and completion for a given number
of stored patterns.
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