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ABSTRACT Multispecies microbial communities determine the fate of materials in
the environment and can be harnessed to produce beneficial products from renew-
able resources. In a recent example, fermentations by microbial communities have
produced medium-chain fatty acids (MCFAs). Tools to predict, assess, and improve
the performance of these communities, however, are limited. To provide such tools,
we constructed two metabolic models of MCFA-producing microbial communities
based on available genomic, transcriptomic, and metabolomic data. The first model
is a unicellular model (iFermCell215), while the second model (iFermGuilds789) separates
fermentation activities into functional guilds. Ethanol and lactate are fermentation prod-
ucts known to serve as substrates for MCFA production, while acetate is another com-
mon cometabolite during MCFA production. Simulations with iFermCell215 predict that
low molar ratios of acetate to ethanol favor MCFA production, whereas the products of
lactate and acetate coutilization are less dependent on the acetate-to-lactate ratio. In
simulations of an MCFA-producing community fed a complex organic mixture derived
from lignocellulose, iFermGuilds789 predicted that lactate was an extracellular come-
tabolite that served as a substrate for butyrate (C4) production. Extracellular hexanoic
(C6) and octanoic (C8) acids were predicted by iFermGuilds789 to be from community
members that directly metabolize sugars. Modeling results provide several hypotheses
that can improve our understanding of microbial roles in an MCFA-producing micro-
biome and inform strategies to increase MCFA production. Further, these models repre-
sent novel tools for exploring the role of mixed microbial communities in carbon recy-
cling in the environment, as well as in beneficial reuse of organic residues.

IMPORTANCE Microbiomes are vital to human health, agriculture, and protecting
the environment. Predicting behavior of self-assembled or synthetic microbiomes,
however, remains a challenge. In this work, we used unicellular and guild-based
metabolic models to investigate production of medium-chain fatty acids by a mixed
microbial community that is fed multiple organic substrates. Modeling results pro-
vided insights into metabolic pathways of three medium-chain fatty acid-producing
guilds and identified potential strategies to increase production of medium-chain
fatty acids. This work demonstrates the role of metabolic models in augmenting
multi-omic studies to gain greater insights into microbiome behavior.
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Mixed microbial fermentations have benefited humanity throughout history (1).
Since the mid-18th century, mixed-culture fermentations have produced valuable

chemicals and recovered energy from wastes (2). Many mixed microbial fermentations
involve the synergistic activities of several functional groups to convert organic sub-
strates into valuable products. In anaerobic digestion, fermentation products like acetic
acid (C2) and H2 are used to support microbial production of methane, thus enabling
the recovery of a large fraction of the chemical energy originally present in the complex
organic substrates. While anaerobic digestion technologies are well established, other
strategies to expand the range of potential products of mixed-culture fermentations are
only beginning to emerge. One example of such a mixed-culture fermentation is the
carboxylate platform, which produces medium-chain fatty acids (MCFAs) as a poten-
tially valuable set of bio-based products (3).

MCFAs are attractive carboxylate platform products because of their many industrial
uses (4). Octanoic acid (C8), an 8-carbon linear monocarboxylic acid, is a particularly
valuable MCFA because of its high market value and relative ease of recovery. Further,
when C8 is reduced to its corresponding alkane, it can substitute for octane in liquid
transportation fuels. Recent research has demonstrated the feasibility of using mixed-
culture fermentations to transform renewable resources into MCFAs (5–7). While C8 is
produced by some self-assembled bioreactor microbial communities, hexanoic acid
(C6) is often the primary MCFA, along with two short-chain fatty acids (SCFAs), acetic
(C2) and butyric (C4) acids (5–10).

The microbial metabolic networks involved in converting complex organic sub-
strates to MCFAs by mixed-culture fermentations are not fully elucidated. Conse-
quently, there is a lack of knowledge on how to obtain a carboxylate platform
community that produces C8 as the main MCFA, or how to minimize the accumulation
of SCFAs. Initial models of mixed-culture fermentations to produce products other than
methane have focused on simulating metabolic networks for production of C2, C4,
propionic acid, ethanol, lactic acid, and H2 from glucose (11). Subsequent models took
into account that multiple electron carriers (e.g., ferredoxin, NADH) play different roles
in these metabolic networks, enabling the simulation of energy-conserving electron-
bifurcating reactions during production of C4 by reverse �-oxidation (12). While a
recent model considered the role of homoacetogens as an H2-consuming member of
mixed-culture fermentation, it was limited to producing C4 as the major product of
reverse �-oxidation and did not include MCFA production (13). Additionally, recent
metabolic models assessed the potential for producing C2, C3, C4, and valerate (C5)
from amino acids (14). While all of these models have enabled predictions of mixed-
culture fermentations from a single organic substrate, they lack the ability to simulate
production of MCFAs from complex feedstocks.

In this study, we constructed a unicellular model (iFermCell215) and a guild-based
microbial community model (iFermGuilds789) that offer expanded substrates and
metabolic pathways compared to existing models. We used iFermCell215 and
iFermGuilds789 to analyze pathways that lead to MCFA production. Simulations were
performed with single organic substrates, including sugars, glycerol, lactate, and ace-
tate, with ethanol and acetate or lactate and acetate as cosubstrates, and with complex
organic mixtures. The iFermGuilds789 model was also used to evaluate predictions of
observed bioreactor behavior and of the flow of carbon and electrons through different
guilds within the mixed microbial community. In total, results of individual model
simulations generated new hypotheses on how to increase MCFA production by mixed
microbial communities. The metabolic networks in iFermCell215 and those in
iFermGuilds789 are shown in Fig. 1 and 2, respectively.

RESULTS AND DISCUSSION
Simulation of mixed-culture fermentations with iFermCell215. We first investi-

gated predictions derived from an iFermCell215 model under conditions where single
substrates were consumed within this unit. The iFermCell215 model depicts a simplified
representation of fermentation in a mixed microbial community where interspecies
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FIG 1 Summary of metabolic networks in iFermCell215. Metabolites with an asterisk are required for biomass production. Open hexagons indicate consumption of
ATP (orange), NADH (green), NADPH (gray), and reduced ferredoxin (red). Closed hexagons indicate production of these compounds and consumption of ADP (orange),
NAD� (green), NADP� (gray), and oxidized ferredoxin (red). For reversible reactions, larger arrowheads indicate the reaction directionality corresponding with
consumption and/or production of ATP, NADH, NADPH, and reduced ferredoxin. Dashed lines indicate multiple reactions. Key reactions are indicated according to the
abbreviations used in iFermCell215 (Data Set S3). Pathways are identified by number: (1) upper glycolysis; (2) phosphoketolase metabolism of fructose; (3) nonoxidative
pentose phosphate pathway; (4) phosphoketolase metabolism of xylulose; (5) glycerol utilization; (6) lower glycolysis; (7) gluconeogenesis; (8) pyruvate formate lyase;
(9) lactate metabolism; (10) pyruvate flavodoxin oxidoreductase; (11) pyruvate dehydrogenase; (12) acetate metabolism; (13) ethanol metabolism; (14) incomplete citric
acid cycle with glyoxylate shunt; (15) anaplerotic metabolism of phosphoenolpyruvate, pyruvate, and oxaloacetate; (16) ATP citrate lyase; (17) propionate production
via the acryloyl-CoA pathway; (18) propionate production via the methylmalonyl-CoA pathway; (19) even-chain reverse �-oxidation; (20) odd-chain reverse �-oxidation;
(21) homoacetogenesis via the Wood-Ljungdahl pathway; (22) ferredoxin-dependent hydrogenase; (23) proton-translocating hydrogenase; (24) electron-confurcating
hydrogenase; (25) proton-translocating ferredoxin:NAD� oxidoreductase; (26) NAD(P) transhydrogenase. For clarity, not all reactions or metabolites are shown. More
information on the reactions and metabolites contained in iFermCell215 is provided in Data Set S4.
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FIG 2 Summary of metabolic networks for six functional guilds contained in iFermGuilds789. Refer to Fig. 1 for details on pathways included
in the iFermGuilds789 model. More information on the reactions and metabolites contained in the iFermGuilds789 model is provided in
Data Set S4.
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transfer of metabolites is assumed to have no energetic penalty and is similar to
previously published models of mixed-culture fermentations (11–13). For this analysis,
we required that all possible solutions released �50 kJ per mol ATP produced (15).

Using flux sampling, iFermCell215 provided 101 solutions that maximized biomass
production depending on the substrates provided to the simulation (Fig. 3). For
instance, when we modeled the utilization of glucose or xylose as the sole substrate,
iFermCell215 predicted multiple solutions that allowed for maximum biomass produc-
tion (40% of electron equivalents [eeq] are incorporated into biomass) with H2, C2, C4,
C6, and C8 as predicted products (Fig. 3A). None of the solutions in this flux sampling
analysis predicted ethanol or lactate as significant products. The predicted biomass
yield (eeq incorporated into biomass per eeq consumed) decreased with glycerol (37%),
lactate (20%), and ethanol (5.9%) as sole substrates. Consumption of ethanol as a sole
substrate was predicted to produce C8 and H2 as the most energetically favorable
solution (Fig. 3D), whereas consumption of lactate as a sole substrate produced optimal
solutions through heterofermentation (Fig. 3C) and consumption of H2 and CO2 was
predicted to produce C2 for optimal biomass growth, which is consistent with the
activity of homoacetogens (Fig. 3E). These results suggest that sugars, glycerol, and
lactate can produce significant amounts of multiple fermentation products, including
C2, C4, C6, and C8, while supporting optimal biomass production and that production
of ethanol or lactate, the two common fermentation products described as interme-
diates in MCFA production (16), are not as energetically favorable as producing other
fermentation products. It further suggests that consumption of ethanol as a sole
substrate should favor production of C8 and, therefore, that ethanol may be a better
intermediate product for optimizing C8 production than lactate. However, since the
fermentation of complex organic substrates by mixed communities often results in
accumulation of multiple fermentation products, we also simulated conditions under
which ethanol and acetate or lactate and acetate were cosubstrates for MCFA produc-
tion.

Simulation of ethanol and acetate utilization with iFermCell215. Ethanol is a
substrate that has often been used for chain elongation (17), and early work on MCFA
production was performed using the ethanol- and acetate-consuming Clostridium
kluyveri (18, 19). During initial work with C. kluyveri, it was proposed that C4 could be
produced from two moles of ethanol, without using acetate as an electron acceptor
(19). Recent work has confirmed that C. kluyveri produces MCFAs from ethanol as a sole
substrate in batch experiments (20), in agreement with the iFermCell215 prediction
(Fig. 3E). Production of MCFAs from C2 as a sole substrate has not been observed and
is not predicted by iFermCell215. Past studies of ethanol elongation have investigated
optimal ratios of ethanol-to-acetate for MCFA production (17, 21, 22). Here, we use
iFermCell215 to assess impacts of different molar ratios of acetate to ethanol (C2:EtOH)
on predicted product formation.

When supplied with both ethanol and C2, the iFermCell215 predicted growth rate
of 0.11 h�1 (Fig. 4A) is more than double the predicted growth rate with ethanol as the
sole substrate (Fig. 4A, C2:EtOH � 0), suggesting an ecological advantage for microor-
ganisms that can coutilize ethanol and acetate. This growth rate can be achieved at
C2:EtOH ratios from 0.56 to 1.28 mol:mol. At ratios of 0.56 mol:mol and lower, C8 and
H2 are the only major predicted products (Fig. 4, left panels). At ratios between 0.56
and 1.20, a mixture of C8, C6, and C4 is predicted by iFermCell215, and at ratios of 1.28
and above, C4 is predicted as the sole product. These model predictions are consistent
with previous experimental work that shows that low ratios of C2:EtOH improve
specificity of C8 production (21). The overall production rate of MCFAs, however, has
been shown to improve at higher ratios of C2:EtOH (21). The highest overall MCFA
production rate was achieved by Spirito et al. at a ratio of 0.53 mol:mol (21), which is
very close to the model-predicted ratio of 0.56 that optimizes biomass growth and C8
production. The production of H2 at low ratios of C2:EtOH raises the question as to the
impact of H2 partial pressure on the thermodynamic feasibility of the model results. We
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used iFermCell215 to calculate the maximum H2 partial pressure for all 101 scenarios
and found that the lowest allowable H2 partial pressure for growth is greater than
106 atm (see Fig. S1 in the supplemental material), indicating that the proposed
transformations are thermodynamically favorable under all bioreactor H2 partial pres-
sure conditions.

FIG 3 Flux sampling results for iFermCell215 with objective function to optimize biomass production when fed substrates indicated
within the plots: glucose (A), xylose (B), glycerol (C), lactate (D), ethanol (E), and H2 and CO2 (with H2 as the limiting substrate) (F). Box
plots show the results of 101 simulations. Median values are indicated by a horizontal line within the box, and the top and bottom of the
box indicate the 25th and 75th percentiles, respectively. Whiskers indicate values within 1.5 times the interquartile range, and closed
circles indicate values outside this range.

Scarborough et al.

September/October 2020 Volume 5 Issue 5 e00755-20 msystems.asm.org 6

https://msystems.asm.org


FIG 4 Flux sampling results for iFermCell215 when consuming ethanol and acetate (A to D) or lactate and acetate (E to H)
at different molar ratios of acetate to ethanol (C2:EtOH) or acetate to lactate (C2:Lactate). Results are shown for fluxes of
octanoate (C8), hexanoate (C6), butyrate (C4), and H2. These results are shown as box plots, as described previously (Fig. 3),
representing the results of 101 simulations for each modeled ratio. The predicted growth rate (h�1) is shown for ethanol (A)
and lactate (E) as red triangles plotted on the secondary y axis.
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In total, iFermCell215 predicts that the C2:EtOH ratio either could be used to
improve production of C8 as a desired product or could be an indication that the
environmental conditions in a bioreactor would lead to a mixture of fermentation
products. At low C2:EtOH ratios (�0.56), iFermCell215 predicts that C8 should be the
abundant product. At medium C2:EtOH ratios (0.56 to 1.20), iFermCell215 predicts that
a mixture of C4, C6, and C8 would be produced, while at high ratios (�1.20) of these
substrates, iFermCell215 predicts C4 would be the predominant product. Therefore, in
a microbial community fermenting a mixture of substrates, iFermCell215 predicts that
different ratios of ethanol and C2 will impact the composition and abundance of
products. Additionally, iFermCell215 predicts that, if feeding a reactor with ethanol and
C2, attention should be paid to creating a feeding regime that optimizes production of
the target product.

Simulation of lactate and acetate utilization with iFermCell215. In addition to
ethanol, lactate is often used as a substrate for microbial chain elongation. The
well-studied Megasphaera elsdenii has been shown to produce MCFAs from lactate (23),
and recent chain elongation studies with microbial communities have explored lactate
as both a substrate (9, 24) and a proposed key intermediate that supports chain
elongation from carbohydrate fermentation (25, 26). While ethanol and lactate are both
potential fermentation products and substrates for chain elongation, iFermCell215
predicts that the pathways for utilization of these substrates have key differences that
impact the terminal fermentation products, as shown in the flux sampling analyses
(Fig. 3D and E), and may impact the products when C2 is a cosubstrate. Therefore,
similar to the analysis shown above for C2:EtOH ratios, we used iFermCell215 to assess
impacts of different C2-to-lactate ratios.

In the case of lactate, the predicted growth rate does not change when C2 is a
cosubstrate (Fig. 4E). This suggests that, unlike ethanol and C2 coutilization, there is no
apparent energetic benefit (reflected in growth rate) for a microorganism to coutilize
lactate and C2. Low ratios of C2:lactate are predicted by iFermCell215 to produce a
variety of end products, including C8, C6, C4, and H2 (Fig. 4, right panels). As the
C2:lactate ratio increases, the product distribution is predicted by iFermCell215 to
change, with a decrease in MCFA and H2 production accompanied by an increase in C4
production, and at ratios of 0.96 and above, C4 is predicted as the sole product. Like
ethanol and C2 coutilization, lactate and C2 coutilization is not predicted by iFer-
mCell215 to be impacted by bioreactor H2 partial pressure (Fig. S1). These results
suggest that when lactate is a key intermediate in an MCFA-producing community,
controlling the relative amounts of C2 and lactate may not be an effective strategy for
increasing C6 and C8 production. However, as with ethanol, an excess amount of
acetate is predicted by iFermCell215 to increase C4 production.

The predicted differences in product formation when acetate is cometabolized with
ethanol or lactate suggest important differences in the metabolism of these substrates.
Therefore, to understand these differences, we also used iFermCell215 to assess the
predicted metabolic pathways of ethanol and lactate utilization.

Predicted metabolic pathways for ethanol and lactate utilization. The flux
sampling analysis obtained with iFermCell215 consuming ethanol as a sole substrate
converged to a solution in which C8 was the only significant fermentation product
(Fig. 3E). The flux of electron equivalents in this simulation predicted that reactions
catalyzed by ferredoxin hydrogenase (Hyd1), proton-translocating ferredoxin:NAD�

oxidoreductase (also known as Rhodobacter nitrogen fixation complex [RNF]), a coen-
zyme A transferase (CoAT), and acetate kinase (AckR) were key enzymes used in the
network (Fig. 5A). The genome of the well-studied ethanol chain-elongating organism,
C. kluyveri, is predicted to contain genes that encode the proteins for catalyzing all of
these reactions (27). Further, Hyd1 is the only hydrogen-producing gene annotated in
the genome of C. kluyveri.

The flux through the above-described enzymes predicts extensive use of energy-
conserving mechanisms that rely on the generation of an ion-motive force (IMF). When
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ethanol is the sole substrate (Fig. 5A), iFermCell215 predicted that the IMF is generated
by the ATP synthase while hydrolyzing ATP. The model predicts that the RNF enzyme
uses the IMF to generate reduced ferredoxin and that ATP is provided by acetate kinase.
The reverse �-oxidation cycle uses an electron-bifurcating acyl coenzyme A (acyl-CoA)
dehydrogenase that also generates reduced ferredoxin, and redox balance is main-
tained by Hyd1 that uses the reduced ferredoxin to generate H2 (Fig. 5A). When C2 is
available in addition to ethanol, iFermCell215 predicts that no net H2 production is
required for redox balance (Fig. 5B). Instead, iFermCell215 predicts that the activities of
several enzymes are reversed, with the RNF complex generating IMF, ATP synthase
producing ATP, and acetate kinase consuming ATP to generate acetyl-CoA. Thus, the
same set of reactions is predicted to be important by iFermCell215 when using ethanol
as a sole substrate or ethanol and C2 as cosubstrates, but the predicted direction of key
reactions changes (Fig. 5A and B). These predictions suggest that organisms that
elongate ethanol may readily transition between utilizing ethanol as a sole substrate
and coutilizing ethanol and C2 since the same enzymes are predicted to be used, and
the coutilization of C2 and ethanol improves growth rates (Fig. 4A).

FIG 5 Predicted pathways of ethanol utilization by iFermCell215 using pFBA when ethanol is the sole substrate (A), ethanol and acetate are cosubstrates (B),
lactate is a sole substrate (C), and lactate and acetate are cosubstrates (D). Flux values (shown as white text) have units of mmol gDCW�1 h�1. For both scenarios,
the model was constrained to take up 1 mmol gDCW�1 h�1 of ethanol or 1 mmol gDCW�1 h�1 of lactate. For scenarios with acetate coutilization, acetate was
provided in excess. Key reactions indicated by red text include a ferredoxin hydrogenase (Hyd1), a CoA transferase (CoAT), a proton-translocating
ferredoxin:NAD� oxidoreductase (RNF1), ATP synthase (ATPS4r), NADH:NADP transhydrogenase (THD2), and energy-conserving hydrogenase (ECH). Metabolite
abbreviations are defined in Data Set S2.
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Unlike ethanol utilization, lactate conversion to acetyl-CoA is predicted by iFer-
mCell215 to produce CO2, formate, and reduced ferredoxin (Fig. 5C and D). The
Wood-Ljungdahl pathway is also predicted by iFermCell215 to use this CO2, formate,
and reduced ferredoxin to produce C2 (Fig. 5C and D). The predicted ability to generate
reduced ferredoxin during lactate consumption (compared to only NADH from ethanol
consumption) enables iFermCell215 to utilize a much wider range of pathways for
generating energy and maintaining redox balance. The reverse �-oxidation cycle also
uses an electron-bifurcating acyl-CoA dehydrogenase under these conditions, gener-
ating reduced ferredoxin, with RNF also predicted to be active in redox balancing.
These predictions of iFermCell215 explain the wide range of products that are possible
from utilization of lactate as sole substrate and coutilization of C2 and lactate. Further,
this suggests that limiting the available metabolic pathways can impact the predicted
products from lactate. Indeed, removing specific reactions in iFermCell215 impacts the
predicted product spectrum (Text S1, Fig. S2). This demonstrates that strategies to
improve MCFA production may depend on the available set of microbial transforma-
tions and may differ between bioreactor microbial communities.

Simulating community behavior with iFermCell215 and iFermGuilds789. The
iFermCell215 model predicted that multiple substrates could lead to C8 production
(Fig. 3), but that biomass could be maximized by coproduction of other fermentation
products. We wanted to assess if this single-unit model could simulate the observed
product yields of a mixed microbial community fed lignocellulosic biorefinery residues,
a complex organic substrate (5, 25). The previously described bioreactor was fed
lignocellulosic biorefinery residues for 96 days, at which time its microbial community
was evaluated using metagenomic and metatranscriptomic analyses along with end
product sampling. To represent organic substrate metabolism, the substrate uptake
fluxes were set according to the observed consumption of compounds in the feedstock
(Table S2). We constrained iFermCell215 by setting the growth rate of the model to
0.0069 h�1, corresponding to the bioreactor retention time of 6 days, and we again
constrained the model only by requiring a minimum of 50 kJ of free energy release per
mol of ATP produced. Flux sampling results from this scenario predicted a range of
potential products (Fig. 6A), including ethanol, C2, H2, even-chain carboxylic acids, and
odd-chain carboxylic acids. Overall, the amount of MCFAs predicted by iFermCell215
exceeded observed values, exposing a limitation of the single unit model.

In an attempt to better represent the compartmentalized nature of activities
within mixed microbial communities, we developed the functional guild model
iFermGuilds789. In iFermGuilds789, the metabolic activities of a mixed microbial com-
munity are partitioned among a number of functional guilds. This biological division of
labor negates the free exchange of reducing equivalents (e.g., NADH, ferredoxin) and
of many pathway intermediates (e.g., acetyl-CoA) between community members, ulti-
mately constraining how individual organisms maintain redox balance, which can
potentially impact ATP and product yields. For instance, the single unit model
(iFermCell215) cannot predict the production of lactate via an NADH-dependent de-
hydrogenase and reconsumption of lactate via an electron-confurcating dehydroge-
nase, activities that may happen in a mixed microbial community that includes lactate
producers and lactate consumers. The iFermGuilds789 model contains fermentation
pathways in six guilds (Fig. 2), with each guild including predictions on transport
reactions to simulate uptake and release of intermediate metabolites by the most
abundant members of the community as predicted from previous metagenomics
analyses (25).

To simulate the activities in the MCFA-producing bioreactor, we used a version of
iFermGuilds789 with only four guilds, which represented the most abundant commu-
nity members in the bioreactor as determined by metagenome sequencing (25).
These guilds included the sugar-elongating “Candidatus Weimeria bifida” (SEOs),
lactate-elongating “Candidatus Pseudoramibacter fermentans” (LEOs) (28), five
sugar-fermenting Lactobacillus species (SFOs), and three hydrogenic sugar-fermenting
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Coriobacteriaceae species (HSFs) (25). We constrained the abundance of each guild in
iFermGuilds789 according to the relative abundance of DNA for each guild in the
bioreactor. Guilds were assumed to have all pathways associated with their guild
(Fig. 2), and we required each guild to have the same growth rate of 0.0069 h�1. The
results of this iFermGuilds789 simulation (Fig. 6B) predicted a narrower range of
products than iFermCell215 (Fig. 6A), with even- and odd-chain fatty acid products
predicted. With these parameters, the iFermGuilds789 model overpredicted the pro-
duction of C2 and C8 while underpredicting C4 and C6 production.

In an additional iFermGuilds789 simulation, we restricted pathways in guild mem-
bers based on previous metatranscriptomic analyses (25). SEOs were constrained to use
glucose, xylose, and glycerol; SFOs were restricted to consuming glucose, xylose, xylans,
glucans, and glycerol; HSFs were constrained to consume only glucans, glucose, and
glycerol; and LEOs were restricted to consuming only lactate and glycerol. Further, SEOs
and LEOs were constrained to not produce odd-chain volatile fatty acids (propionate,
pentanoate, and heptanoate). LEOs were further constrained to not use acetate kinase,
which is absent from the genome of “Candidatus Pseudoramibacter fermentans” (28).
This iFermGuilds789 simulation predicted ranges of ethanol, lactate, C2, and C6 that
contained the experimentally observed values (Fig. 6C). With these parameters, C8 and
H2 production was overpredicted by iFermGuilds789, while C4 production was under-
predicted.

One potential explanation for the differences in the various iFermGuilds789 predic-
tions may be the specificity of chain-elongating enzymes for producing products of
defined chain lengths. This could include any of the enzymes catalyzing the four steps
of reverse �-oxidation itself or the terminal enzymes that cleave the final products of
reverse �-oxidation from CoA. We tested this by constraining the flux through CoAT
and acyl-CoA hydrolase reactions for both SEOs and LEOs according to carbon-chain
length. When constraining both CoAT and acyl-CoA hydrolase in both SEOs and LEOs
to 0.02 mmol g dry cell weight (DCW)�1 h�1 for C8 and 1 mmol gDCW�1 h�1 for C6,

FIG 6 Predicted and observed product formation for a mixed-culture fermentation bioreactor fed lignocellulosic biorefinery
residues. (A) Predictions with iFermCell215; (B) predictions with iFermGuilds789; (C) predictions with iFermGuilds789 with
reactions knocked out based on metagenomic analyses of the microbial community; (D) predictions with iFermGuilds789 with
additional constraints for maximum fluxes through acyl-CoA and CoAT reactions for C6 and C8 production in SEOs and LEOs.
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iFermGuilds789 modeling predictions aligned much better with community perfor-
mance (Fig. 6D). This suggests that reverse �-oxidation and/or terminal enzymes in this
pathway have higher affinity for C4 and C6 than for C8 in this specific microbial
community.

Taken together, initial predictions from iFermCell215 (Fig. 6A) and iFermGuilds789
(Fig. 6B) did not align with observed bioreactor performance. Predictions of
iFermGuilds789 improved by incorporating knowledge of specific reactions within each
guild (Fig. 6C). Further, the best alignment between observations and model predic-
tions resulted from constraining the fluxes related to individual products with
iFermGuilds789 (Fig. 6D). This suggests that accurate predictions of MCFA production
may require incorporation of enzyme affinity and additional characterization of en-
zymes from chain-elongating species to improve modeling predictions.

Assessing interspecies metabolite flux using iFermGuilds789. Our previous
analyses predicted that microbes within the MCFA-producing microbial community
perform different functions, compete for resources, and participate in interspecies
transfer of metabolites that allows for conversion of lignocellulosic biorefinery residues
to SCFAs and MCFAs (25). We used iFermGuilds789 to predict the function of each guild
in the transformation of substrates as well as the production and transfer of interme-
diate metabolites between microbes. In this case, unlike previous simulations with
iFermGuilds789, we did not constrain the growth rate (Fig. 6B to D) or fluxes for MCFA
production (Fig. 6D). Instead, we constrained iFermGuilds789 to accumulate extracel-
lular products at the rates observed in the MCFA-producing bioreactor (Table S2),
constrained the reactions within each guild as described above, and predicted fluxes
using parsimonious flux balance analysis (pFBA), which calculates a single flux distri-
bution when the model is constrained to the observed production rates. Under these
conditions, iFermGuilds789 predicted a growth rate of 0.0051 h�1, which is 74% of the
expected growth rate (0.0069 h�1). This growth rate corresponds to a retention time of
8 days (compared to the actual retention time of 6 days), and these differences may
reflect difficulty in estimating the amount of metabolically active cells in the reactor or
absence of unknown metabolic pathways that may increase the predicted growth rate.

By constraining the substrates and products according to observed community
behavior, iFermGuilds789 predicted that SFOs and HSFs consumed xylans and glucans,
while SEOs consumed xylose, glucose, and 99% of the glycerol (Fig. 7). SFOs were
predicted to produce ethanol, lactate, and C2, while HSFs were predicted to produce a
small amount of the lactate and C2. SEOs are also predicted to produce lactate and C2.
In total, 22% of the eeq in the feedstock are predicted by this instance of iFer-
mGuilds789 to be converted to lactate and 27% are predicted to be converted to C2.
All of the lactate and 52% of the C2 are predicted to be consumed by LEOs. LEOs are
predicted to produce all of the C4, and the C4 is not predicted to be consumed by other
guilds. SEOs are predicted to produce all of the C6 and C8 along with all of the H2 from
carbohydrates. SEOs are further predicted to have a flux for C6 production of 0.46 mmol
gDCW�1 h�1 and C8 production of 0.033 mmol gDCW�1 h�1 (Data Set S5), both of
which are lower than the maximum flux constraints applied previously (Fig. 6D).

Predicted routes of sugar and lactate elongation. The above prediction that
essentially all MCFAs were produced by SEOs consuming xylose, glycerol, and glucose,
while LEOs produced C4 from lactate and C2, was different than the predictions made
earlier based on transcriptomic analyses alone (25). To gain further insights into SEO
and LEO metabolism, we investigated the specific reactions predicted for both guilds
by iFermGuilds789. SEOs are predicted to produce pyruvate via glycolysis. Some
pyruvate is predicted to be converted to lactate, while most is converted to acetyl-CoA
via pyruvate flavodoxin oxidoreductase (PFOR, Fig. 8A). iFermGuilds789 also predicted
that acetyl-CoA is derived from the phosphoketolase pathway (PKETX, Fig. 8A). Acetyl-
CoA is predicted to be directed to reverse �-oxidation, but a portion is also predicted
to be hydrolyzed by an acyl-CoA hydrolase. Acyl-CoA hydrolase enzymes are also
predicted as terminal enzymes of reverse �-oxidation rather than energy-conserving
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CoA transferase enzymes (CoAT). SEOs are further predicted to use Hyd1 for hydrogen
production, to generate IMF via RNF1, and to produce ATP via ATP synthase (ATPS4r)
(Fig. 8A).

LEOs are predicted to convert lactate to pyruvate via an electron-confurcating
lactate dehydrogenase (ECLDH, Fig. 8B), and pyruvate is predicted to form acetyl-CoA
via PFOR. All of the acetyl-CoA is predicted to undergo reverse �-oxidation, and C2 is
incorporated by a CoAT that transfers the CoA from butyryl-CoA to acetyl-CoA (Fig. 8B).
LEOs are predicted to consume equimolar concentrations of C2 and lactate, which was
previously predicted to favor C4 production (Fig. 4). Further, LEOs are not predicted to
produce H2. iFermGuilds789 predicted that H2 produced by Hyd1 is reconsumed via a
proton-translocating energy-conserving hydrogenase that produces reduced ferre-
doxin (ECH, Fig. 8B). This ferredoxin augments that produced by PFOR and is predicted
to be used for lactate consumption by ECLDH and the RNF complex. The use of an
energy-conserving hydrogenase for ferredoxin production from H2 has been demon-
strated previously (29).

While both SEOs and LEOs are predicted by iFermGuilds789 to use reverse
�-oxidation to elongate acetyl-CoA, the energy-conserving and redox-balancing reac-
tions needed to support this process are predicted to differ. While SEOs are predicted
to use an acyl-CoA hydrolase as the terminal enzyme of reverse �-oxidation, LEOs are
predicted to use a CoAT which conserves energy by activating C2 to acetyl-CoA, which
would otherwise require ATP. In the previous metatranscriptomic analyses of these
community members (25, 28), we found that both SEOs and LEOs expressed genes for
both acyl-CoA hydrolases and CoAT. The specificity of these predicted chain-elongating

FIG 7 Predicted substrate flow through a mixed-culture fermentation producing a mixture of MCFAs from a complex
feedstock using iFermGuilds789. Values were obtained using pFBA while constraining the products according to observed
bioreactor performance. The relative abundance of each functional guild was assumed based on reactor DNA abundance.
The relative amounts of eeq in the substrates, products, and intermediates are also provided. Line width indicates the
relative amount of each substrate consumed and product created by each of the functional guilds. H2 was not measured,
so for these simulations it was assumed that the difference between eeq in the substrate and eeq in the measured soluble
and insoluble products represented H2 production. In this simulation, 22% of the eeq in conversion residue was predicted
to be directed to lactate as an intermediate and 27% was predicted to be directed to acetate.
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enzymes for different substrates, however, is not known. The iFermGuilds789 model
predictions reinforce the potential importance of terminal enzymes in reverse
�-oxidation in determining the final product length; specifically, the model predicts
that all C4 is produced using CoAT and that all MCFAs are produced using acyl-CoA
hydrolase.

Furthermore, SEOs are predicted by iFermGuilds789 to maintain redox balance by
producing H2 with Hyd1, while LEOs are predicted to recycle all H2 internally using both
Hyd1 and ECH. Previous metatranscriptomic analyses showed that both LEOs and SEOs

FIG 8 Predicted chain elongation metabolism by SEOs and LEOs using iFermGuilds789. Predicted flux values are shown
as white numbers and have units of mmol gDCW�1 h�1. (A) SEOs are predicted to produce all of the hexanoate (hxa) and
octanoate (octa) in the community and use an acyl-CoA hydrolase (ACH) reaction as the terminal step of reverse
�-oxidation. (B) LEOs are predicted to produce all of the butyrate in the community while using a CoA transferase (CoAT).
LEOs are predicted to recycle all of the H2 that they produce via an energy-conserving hydrogenase. Metabolites are
defined in Data Set S3.
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expressed genes for both Hyd1 and ECH (25). This agrees with iFermGuilds789 predic-
tions for LEOs, but not for SEOs, which are predicted to use only Hyd1. When
constraining iFermGuilds789 to require SEOs to use ECH, there are no changes in
interspecies metabolite transfer (Data Set S5), but SEOs are predicted to generate
additional ATP via ATP synthase while reducing flux through other energy-conserving
pathways to achieve the same growth rate (Data Set S5). These findings suggest that
SEOs and LEOs have multiple methods for conserving energy and maintaining redox
balance and that this metabolic flexibility can maintain the same overall transformation
of complex substrates to products. This metabolic flexibility may reflect ecological
advantages for fermenting organisms but also challenges for the accurate predictions
of MCFA production, which may strongly depend on the specific organisms present in
the microbial community.

Implications of modeling results. The predictions of our models generated several
hypotheses that should be explored with further analyses. First, the single unit iFer-
mCell215 predicted production of MCFAs from ethanol as a sole source of electrons and
carbon (Fig. 4A to D), and this is supported by recent experiments with mixed cultures
(21). More work is needed to determine bioreactor conditions that promote elongation
of ethanol as a sole substrate or with low C2:EtOH ratios. The iFermCell215 simulations
predict a threshold of 0.56 mol C2 per mol ethanol below which C8 production benefits
from C2 coutilization and above which C8 production starts to decrease and to be
replaced by production of shorter acids. This shift in product profile was predicted by
iFermCell215 to be associated with reversal in the direction of enzymatic activities
related to energy-conserving metabolism, an observation that still lacks experimental
verification.

Second, even though lactate is a known substrate for chain elongation (9),
iFermGuilds789 simulation results suggest that, in this mixed community, lactate may
be converted to C4 instead of C6 or C8 (Fig. 7). Although at lower C2-to-lactate ratios
iFermCells215 simulations predicted that this ratio was not as influential on determin-
ing the product distribution as the C2:EtOH ratio, the model also predicted that excess
C2 could result in C4 production instead of C6 or C8 production from both intermediate
metabolites (Fig. 4). The iFermGuilds789 simulation predicted coutilization of C2 and
lactate at a molar ratio of 1.0 (Fig. 8B), and according to the iFermCell215 simulations
(Fig. 4), this is already an excess C2 condition predicted to yield C4 as the main
fermentation product. These results have the important implication that efforts di-
rected to construct synthetic communities or control self-assembled communities for
production of MCFA should focus on minimizing C2 production and accumulation.

Third, iFermCell215 modeling results suggest that controlling product formation
from lactate may not be possible by controlling C2-to-lactate ratios (Fig. 4E to G),
whereas C2:EtOH ratios suggest very specific targets to maximize C8 production
(Fig. 4A to D). This suggests that for MCFA production from complex organic substrates,
in addition to targeting the reduction of C2 production, efforts should also be directed
to creating conditions under which ethanol instead of lactate is the key intermediate
metabolite for MCFA production. However, this may not be achievable in self-
assembled communities, and since simulations predict that the products of lactate
fermentation are dependent on specific metabolic features of LEOs (Fig. S2), it is
important to continue the discovery of the natural diversity of lactate fermentation
metabolisms, which eventually could help identify preferred LEOs for the development
of novel strategies to promote MCFA production when lactate is the key intermediate
metabolite.

Fourth, iFermGuilds789 predicts that enzyme affinity plays a major role in deter-
mining the final products of reverse �-oxidation and mixed-culture fermentation
(Fig. 6D). Additional work is needed to assess the affinity of reverse �-oxidation,
acyl-CoA hydrolase, and CoA transferase enzymes for different chain lengths to identify
ideal microorganisms or to engineer microorganisms to improve MCFA production.
Past studies have identified and engineered acyl-ACP thioesterase enzymes (the ter-
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minal enzyme of fatty acid synthesis via the fatty acid biosynthesis pathway) with high
affinity for C8 (30–32). Similar studies should be performed with acyl-CoA hydrolase and
acyl-CoA transferase enzymes to characterize and improve the terminal enzymes of
reverse �-oxidation.

Since many microbes in natural and self-assembled fermentation communities remain
uncultured, our knowledge and ability to predict important metabolic networks rely largely
on information from metagenomics, metatranscriptomics, and metabolomics analyses to
build the functional activities in each guild (25, 33). We show in this work that metabolic
modeling offers additional insight that is not gained by these analyses but that is critical in
the evaluation of the microbial communities and in developing a hypothesis of how to
direct metabolism toward a specific set of fermentation products. From prior analyses (25),
we anticipated that both SEOs and LEOs participated in MCFA production, but the
iFermGuilds789 simulation of interspecies metabolite flux (Fig. 7) predicted that to
achieve the observed growth rate of the microbial community, C6 and C8 were
produced solely by SEOs, while LEOs were responsible for production of C4. This
difference between predictions based on metatranscriptomic and simulation analyses
can be tracked to the importance of coutilization of fermentation products (i.e., C2 and
lactate), which is easier to explore using metabolic models.

iFermCell215 and iFermGuilds789 are examples of first-generation predictive mod-
els of a mixed-culture fermentation. Their utility can be improved by obtaining addi-
tional knowledge of metabolic pathways involved in fermentation through studying
individual microbes within each functional guild. Further effort is needed to simulate
poorly appreciated conditions that shape community structure, such as the toxicity of
fermentation products on the specific guilds or the contribution(s) of low-abundance
microbes to the overall activity of the mixed-culture fermentation. Further, the objec-
tive function to maximize biomass growth may not always represent the true objective
of a fermenting microbial community. While there is no direct evidence that polymer
storage is occurring in these organisms, other undescribed traits that enable resiliency
may be present. Additionally, while most studies investigating the minimum required
free energy release have found values close to 50 kJ per mol ATP (34), ATP production
may be possible with less free energy release (35). Lastly, computational methods to
predict the abundance of specific guilds, rather than relying on relative abundances as
a model input, are needed. Efforts to assemble such models have begun for the human
gut microbiome (36, 37), and as these approaches are applied to mixed microbial
fermentations, their benefits to the production of MCFA and other chemicals of societal
importance will continue to improve.

MATERIALS AND METHODS
Metabolic networks of mixed-culture fermentation that contain reactions that occur during anaerobic

metabolism of a previously described lignocellulosic biorefinery residue (25) were assembled. The first
network, iFermCell215, contains 215 reactions and 154 metabolites, models mixed-culture fermentation
as a single unit, and expands the metabolic pathways and substrate range of previously published
mixed-culture fermentation networks (11–13). iFermCell215 describes metabolism of exogenous sub-
strates including glucans, glucose, xylans, xylose, and glycerol, along with lactate, ethanol, acetate, CO2,
and H2, which are potential intermediates in this mixed-culture fermentation (Fig. 1). The code for
iFermCell215 is provided in Data Set S1 in the supplemental material.

The second network, iFermGuilds789, represents activities of different guilds (i.e., groups of organ-
isms with similar functions) within the microbial community. The iFermGuilds789 network describes the
same reactions and metabolites as in the iFermCell215 model, but these are separated into six functional
guilds with each guild representing a subset of compartmentalized reactions (Fig. 2). iFermGuilds789 also
includes additional transport reactions that simulate metabolite exchange among guilds. Combining the
six guilds, the iFermGuilds789 network includes 789 reactions and 579 metabolites. The guilds in the
iFermGuilds789 model represent previously described organisms that perform fatty acyl chain elongation
from sugars (SEOs), sugar-fermenting organisms that produce lactate, acetate, and ethanol as fermen-
tation products (SFO), hydrogen-producing sugar fermenters (HSFs), organisms that perform fatty acyl
chain elongation from lactate (LEOs) or ethanol (EEOs), and homoacetogenic organisms (HAOs). These
guilds were selected based on organisms that have been found in MCFA-producing bioreactors (25, 33)
or suggested to play a role in MCFA production (13). Examples of organisms falling within each functional
guild are described in Text S1. The code for iFermGuilds789 is provided in Data Set S2.

When constructing each metabolic network, reactions were added to capture the exchange of
substrates and products with the extracellular space (38). In addition to intracellular (denoted by “_c” in
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the metabolic models) and extracellular (“_e”) compartments, a compartment for ion-motive force
generation was included (denoted by “_i” in the metabolic models). Where possible, standard metabolite
and reaction abbreviations from the Biochemical, Genetic, and Genomic (BiGG) knowledgebase were
used (39). All reactions were balanced for mass and charge assuming an intracellular pH of 7.0 with the
dominant ionic form of all metabolites obtained from the BiGG database (39).

Since many members of this mixed microbial community are Firmicutes, simplified biomass equations
for both models were created based on the biomass composition of the well-studied Gram-positive
bacterium Bacillus subtilis (40–42). We simplified all of the biosynthetic pathways for production of
biomass components to capture 16 precursor compounds produced by the models. The precursor
compounds included �-ketoglutarate, oxaloacetate, glucose-6-phosphate, glucose-3-phosphate,
3-phosphoglycerate, pyruvate, phosphoenolpyruvate, acetyl-CoA, erythrose-4-phosphate, ribulose-5-
phosphate, ATP, NADPH, NAD�, ammonium, sulfate, and H2O. Additional information and calculations
for the biomass equation are provided in Text S1 and Data Set S3. Both metabolic models (iFermCell215
and iFermGuilds789) and instructions for their use are also available at https://github.com/mscarbor/
Mixed-Culture-Fermentation-Models.

The production capabilities of both metabolic networks were simulated using standard constraint-
based methods (43). Given a defined set of substrate fluxes entering the system from the outside
environment (the _e compartment), these methods predict the steady-state flux distribution out of the
cell and through the metabolic networks created by individual reactions, subject to physiochemical con-
straints. In this work, we used flux sampling (44) and parsimonious flux balance analysis (pFBA) (45). Flux
sampling was performed using artificial centering hit and run (ACHR) (44) using 101 simulations and randomly
generated seeds. A solution with pFBA provides a flux distribution by minimizing the sum of all fluxes
predicted by the model (45). When modeling bioreactors with the presence of solute gradients across the cell
membrane, we considered the ATP required for transport as described in Text S1. The objective function for
all modeling scenarios was to maximize biomass production. When simulating the iFermGuilds789 network
for a steady-state condition, we required all individual guilds to achieve the same growth rate (h�1). All
simulations were performed in Python 3.7 using the COBRApy package (v 0.18.1) (46).

Throughout this work, we present results in terms of electron equivalents (eeq), which report the
number of electrons potentially transferred to an electron acceptor if the compound is completely
oxidized (using factors provided in Table S1 to convert from molar concentrations to eeq concentrations).
For each scenario, we calculated the overall reaction thermodynamics using the predicted stoichiometry
of the model and the standard free energy of formation (ΔGf

0) of metabolites (Table S1) obtained from
KBase (47). Unless otherwise noted, we ensured that at least 50 kJ was available per ATP produced with
standard concentrations (all molar concentrations � 1 M and partial pressures � 1 atm) at a temperature
of 35°C and at neutral pH (15, 48).
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