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Abstract

Co-expression modules are groups of genes with highly correlated expression patterns. In cancer, differences in module activity
potentially represent the heterogeneity of phenotypes important in carcinogenesis, progression, or treatment response. To find
gene expression modules active in breast cancer subpopulations, we assembled 72 breast cancer-related gene expression
datasets containing ,5,700 samples altogether. Per dataset, we identified genes with bimodal expression and used mixture-
model clustering to ultimately define 11 modules of genes that are consistently co-regulated across multiple datasets.
Functionally, these modules reflected estrogen signaling, development/differentiation, immune signaling, histone
modification, ERBB2 signaling, the extracellular matrix (ECM) and stroma, and cell proliferation. The Tcell/Bcell immune modules
appeared tumor-extrinsic, with coherent expression in tumors but not cell lines; whereas most other modules, interferon and
ECM included, appeared intrinsic. Only four of the eleven modules were represented in the PAM50 intrinsic subtype classifier and
other well-established prognostic signatures; although the immune modules were highly correlated to previously published
immune signatures. As expected, the proliferation module was highly associated with decreased recurrence-free survival (RFS).
Interestingly, the immune modules appeared associated with RFS even after adjustment for receptor subtype and proliferation;
and in a multivariate analysis, the combination of Tcell/Bcell immune module down-regulation and proliferation module
upregulation strongly associated with decreased RFS. Immune modules are unusual in that their upregulation is associated with a
good prognosis without chemotherapy and agood response tochemotherapy, suggesting the paradoxof highimmune patients
who respond to chemotherapy but would do well without it. Other findings concern the ECM/stromal modules, which despite
common themes were associated with different sites of metastasis, possibly relating to the ‘‘seed and soil’’ hypothesis of cancer
dissemination. Overall, co-expression modules provide a high-level functional view of breast cancer that complements the
‘‘cancer hallmarks’’ and may form the basis for improved predictors and treatments.
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Introduction

The dream of personalized oncology has every woman

diagnosed with breast cancer matched with the treatment most

likely to save her life, without either under- or over-treatment.

Impeding the attainment of this dream is the complex, heteroge-

neous nature of breast cancer, with wildly variable histology,

morphology, hormone receptor and HER2 expression, progres-

sion tempo, risk of recurrence, and patterns of dissemination

during metastatic recurrence, much of which affects the need for

and response to systemic therapies. Differences in breast cancer

biology and prognosis are demonstrably reflected in underlying

differences in gene expression; indeed, variability in transcriptomic

profiles were first observed and summarized into five well-defined

intrinsic molecular tumor subtypes in Perou’s landmark study in

2000 [1,2], a classification largely recapitulated in the recent much

larger TCGA study incorporating protein expression, DNA

methylation, copy number aberrations, and microRNA expression

[3]. Other studies have produced different but related molecular

definitions of breast cancer heterogeneity, expanding the catalog of

breast cancer to perhaps ten molecular subtypes [4].

This study is an effort to further functionally characterize breast

cancer heterogeneity through the concept of modules; we hypoth-

esize that such modular decomposition could yield clinically

actionable components useful in achieving the goals of personalized

oncology. Many definitions for biological modules have been

proposed over the years [5,6]; what unifies these definitions is that

they attempt to simplify complex systems with large webs of

interacting components into a smaller set of functionally integrated

themes. The canonical ‘hallmarks of cancer’, while primarily

describing fundamental processes of carcinogenesis, can also be

viewed as an informal attempt to impose or extract a modular

structure on the complexity of cancer dynamics [7,8]. According to

this paradigm, the hallmarks of cancer include sustaining prolifer-

ative signaling, evading growth suppressors, resisting cell death,

enabling replicative immortality, inducing angiogenesis, and acti-
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vating invasion and metastasis (the original six). To these six, a recent

extension has added the reprogramming of energy metabolism and

evading immune destruction, with emphasis placed on the interplay

between malignant and hijacked ‘normal’ cells in the tumor

microenvironment [8].

The growing number of breast cancer related genome-wide gene-

expression profiling datasets provides an opportunity to perform a

comprehensive search for common patterns of gene co-expression

using a formal, computable approach to distinguish different gene

programs in breast cancer. Such co-expression modules can be

viewed as an empirically derived catalog of coherent gene groups that

might act together, and may have been selected for, as a unit to

perform a function important to the cancer. Thus, the activity of

modules within a tumor may be useful in understanding how that

cancer developed, its likelihood of distant recurrence without

systemic treatment, andpotential vulnerabilities that maybe targeted

by therapeutics [9,10,11,12,13,14,15,16,17]. A prior study compar-

ing the genomic and transcriptomic profiles of normal and malignant

breast identified 16 modules, one enriched for proliferation and two

for immune response [10]. Other studies have interrogated

transcriptomic profiles for associations between co-expressed gene

clusters and grade [12], aberrant chromosomal regions [13], and

tumorigenesis [15], among others. Though not explicitly termed

‘modules’, many other breast cancer gene expression studies

implicitly rely on and address gene expression modularity by

identifying cohesive gene expression clusters observable in unsuper-

vised hierarchical clustering, followed by gene set enrichment to

assign pathway-activation patterns that may be associated with a

phenotype [1,2].

In this study, we compiled a large repository of publicly

available transcriptomic data totaling 5,684 samples, obtained

from breast cancer patients and breast cancer cell lines, to identify

breast cancer co-expression modules. Cell lines capture much of

the heterogeneity observed in human tumors [18], and datasets

representing genetically and chemically perturbed cell lines may

yield modules important to treatment response to targeted

therapeutics. We identified a total of 11 conserved modules, many

of which are enriched for genes involved in at least one of the

canonical ‘hallmarks of cancer’ [7,8]. We then correlated the

expression levels of these modules to recurrence-free survival, site-

specific RFS and metastasis, chemotherapy response, and multiple

signatures [19,20,21,22]. We observed that whereas some of the

modules were similar to signatures previously linked with breast

cancer heterogeneity and therapy response, others appeared

unique. Activity of several of the unique modules was associated

with patient outcome, site of metastasis, or chemo-sensitivity. We

also assessed the level of heterogeneous expression and co-

regulation of the modules in breast cancer cell lines (BCCL),

providing insight into which in vivo genetic programs are most

and least represented by the BCCL forming the underpinnings of

most in vitro breast cancer studies. Viewed as a whole, our results

suggest that meta-analysis of breast-cancer related gene expression

data can be used to identify robust and potentially novel patterns

of gene co-expression that may highlight interesting cancer biology

and be useful for guiding treatment strategies.

Results

Breast Cancers are Distinguished via Common
Transcriptional Modules

We obtained 72 breast cancer gene expression datasets from the

Gene Expression Omnibus (GEO) and several other public

sources (see File S1) consisting of 5684 samples profiled on

Affymetrix U133-type arrays. Overall, this data compendium

represents normal breast tissue, breast tumors of every subtype,

laser micro-dissected (LMD) breast tumor epithelium and stroma,

pre-treatment tumors, post-treatment tumors, a few metastases,

and a variety of breast cancer cell lines, including genetically

perturbed derivatives, grown in serum or subjected to chemother-

apies or other compounds. We identified the subset of genes with a

strong bimodal gene expression pattern across the samples in each

dataset, motivated by the hypothesis that a pattern of ‘‘on or off’’

gene expression was much more likely due to biological control

rather than technical factors. Using unsupervised clustering of

genes with bimodal expression within each dataset, we identified in

total 683 clusters of co-regulated genes across the compendium, as

described in the Methods section.

We scored all samples in the compendium of datasets for the

activity of each of the 683 clusters using principal component

analysis, and identified 136 clusters that produced highly

correlated scores with at least six other clusters, which we selected

to represent recurrent patterns of similarly coordinated gene

expression. When we aggregated these highly correlated clusters,

11 co-expression modules consisting of 5–23 clusters were

observed (Figure 1). We validated the clustering in Figure 1 using

SigClust [23] (with 1000 simulations, the ‘‘hard thresholding’’

method reported by Liu et al. for estimating the eigenvalues of the

covariance matrix [23], and p-values determined empirically from

the simulated null distribution) to determine if each of the modules

was distinct from the other modules. Using this method, we

obtained p-values ,0.001 for all pairwise comparisons except for

Module 8 compared to Module 10 (p = 0.478). Using the more

recently described ‘‘soft thresholding’’ method for estimating the

eigenvalues of the covariance matrix used by SigClust [24], all of

the pairwise module comparisons were significant (p,0.001).

Because of the soft-thresholding results and the biological

differences we observed between Module 8 and Module 10

(described below) we chose to maintain the distinction between

Modules 8 and 10.

These cluster filtering and aggregation steps were based on the

hypothesis that important breast-cancer related biological differ-

ences between samples were likely to be present in multiple

datasets. Selecting only the genes that appeared in more than 33%

of the clusters comprising a given module, the 11 co-expression

modules were distilled to contain 4 to 247 genes that exhibit a

strong on-off expression between breast cancer samples and are

consistently co-expressed across multiple datasets (see File S1 for

gene lists). We hypothesize that these modules represent function-

ally coherent biological differences between breast tumors that

may highlight important biology and have clinical applications.

Modules are Enriched for Specific Functions and
Pathways

Functional/pathway enrichment analysis of the 11 co-expres-

sion modules in breast cancer using DAVID [25], g:Profiler [26],

and a manual literature search suggests that as expected, estrogen

signaling (Module 1), cell proliferation (Module 11), and ERBB2

signaling (Module 7) are represented; in addition, we found

modules associated with immune signaling (Modules 3–5),

development/differentiation (Module 2), histone modification

(Module 6), and the ECM (Module 10), as well as two stromal

wound repair/angiogenesis modules combining microenviron-

ment, developmental and immune genes (Modules 8 and 9).

The estrogen signaling module 1 (1-ER) contains 135 genes,

among them ESR1 and a plethora of genes known to be regulated

by estrogen. Module 1 also contains androgen receptor (AR) and

ERBB4, a component of the Her2 signaling cascade associated

with endocrine resistance [27] and sensitivity to the MTOR

Breast Cancer Co-Expression Modules
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inhibitor everolimus [28]. Module 7 (7-ERBB2), the ERBB2

signaling module, contains only 4 genes and is essentially a

minimal ERBB2 amplicon in Her2+ breast cancer. Proliferation

module 11 (11-Proliferation) contains 120 genes functionally

enriched for cell cycle mitosis, checkpoints, meiosis, and DNA

replication. Immune modules 4 and 5 (4-Immune, 5-Immune)

contain 82 and 80 genes, respectively. Both are highly enriched for

immune response functions and pathways, with 4-Immune leaning

toward T cell and B cell activation, and 5-Immune more enriched

for chemokine signaling, defense, and inflammatory responses.

Immune module 5 (5-Immune) has a partial overlap (35%) with 4-

Immune, but differs from 4-Immune in that it includes many more

chemokines and interleukins capable of inducing TNFalpha from

immune and epithelial cells. The third immune module (3-

Immune IFN) contains 25 genes, most involved in interferon-

mediated signaling. Module 6 (6-Histone) is small, with just 12

genes all belonging to histone families involved in nucleosome

assembly and organization, chromatin assembly, and telomere

maintenance. Module 2 (2-Dev/basal; 247 genes) contains a mix

of mostly basal cytokeratins, cell:cell adhesion genes, integrins

matrix metallopeptidases, and other cell differentiation genes,

yielding a functional enrichment for developmental processes.

Module 10 (10-ECM) represents extracelluar matrix (ECM) genes

and processes. Modules 8 and 9 are associated with stromal wound

repair/angiogenesis, with Module 8 dominated by genes involved

in hemostasis and blood vessel morphogenesis and wound

response, and Module 9 (9-ECM/Dev/Immune) a mix of ECM,

muscle/myeloid development, and inflammatory response genes.

Functional enrichments and representative genes for each of the

modules are summarized in Table 1, and a complete list of module

genes can be found in File S1. Examples of the coordinate

differential expression of module genes in different breast cancer

datasets are shown in Figure S1 in File S2, and covariance patterns

among the modules are shown in Figure 2. Consistent with other

publications, a low level of estrogen signaling (1-ER) is associated

with high proliferation (11-Prolif) and basal (2-Dev/Basal) gene

expression [1,2], and high immune signaling (3:5-Immune) [29],

the latter of which is associated with improved outcomes [30,31]

(Figure 2B).

Some Modules Correlate to Clinical Biomarkers of Breast
Cancer whereas Immune, Histone, and ECM Modules
Appear Novel

To evaluate whether the modules identified in this study are

represented in current intrinsic subtype classifiers (PAM50 [32])

and prognostic signatures clinically in use to differentiate breast

cancers (70-gene prognosis signature [33], and 21-gene recurrence

score [34]), we first quantified the overlap between the 958 genes

Figure 1. Clustered heat map used to define breast cancer co-expression modules. Cross-correlation heat map of the 136 robust
signatures derived from 72 datasets cluster into 11 coexpression modules.
doi:10.1371/journal.pone.0088309.g001
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comprising our 11 co-expression modules and the genes within

these three signatures. We found that of the 48 evaluable genes in

the PAM50 intrinsic subtype classifier, 30 (62.5%) overlap with

genes in Modules 1-ER, 11-Prolif, 7-ERBB2 or 2-Dev/Basal.

Similarly, 10 of the 16 (62.5%) and 12 of the 70 (17%) evaluable

genes in the 21-gene recurrence score and the 70-gene prognosis

signature, respectively, are distributed among the estrogen

signaling (1-ER), proliferation (11-Prolif), ERBB2 (7-ERBB2)

and/or developmental (2-Dev/Basal) modules. Genes from 7 of

the 11 breast cancer co-expression modules (immune modules 3–5,

histone module 6-Histone, the mixed modules 8-mixed and 9-

ECM/Dev/Immune, and the ECM module 10-ECM) are not

represented in these three signatures (Table 2).

In addition, as multiple gene sets can be used to derive similar

[35] or identical classification schemas, we evaluated whether

breast cancer module scores can be used to predict intrinsic

subtype classifications using univariate logistic regression modeling

and ROC analysis. Figure 3 shows the heatmap of the area under

the receiver operator characteristics curve (AUC) values summa-

rizing the predictive performance of the module scores in

GSE1456. As expected, Luminal A subtype was best predicted

by upregulation of the estrogen signaling module 1-ER,

(AUC = 0.926), with a sensitivity of 66% and a specificity of

95% at the Youden optimal threshold. Luminal B subtype was best

predicted by downregulation of the developmental/basal module

2-Dev/Basal, (AUC = 0.88), or upregulation of proliferation 11-

Prolif (AUC = 0.79) or interferon 3-Immune (AUC = 0.80) mod-

ules. Basal subtype was strongly associated with downregulation of

the estrogen signaling pathway 1-ER (AUC = 0.96), with a

sensitivity of 76% and a specificity of 98% at the Youden optimal

threshold, and also significantly associated to upregulation of

developmental/basal module 2 (AUC = 0.85) and proliferation

module 11 (AUC = 0.83). As expected, Her2 subtype is most

strongly predicted by the ERBB2 module 7-ERBB2 (AUC = 0.90),

though with a much higher specificity (98%) than sensitivity (53%).

Interestingly, Normal subtype is best predicted by upregulation of

the hybrid ECM/development module 9-ECM/Dev/Immune

(AUC = 0.88), and downregulation of the proliferation module 11-

Prolif (AUC = 0.86). These results generalize to all datasets we

tested, including METABRIC and GSE21653 (see Figure S2 in

File S2 for additional heatmaps, and AUC values for all datasets).

As in the gene-based analysis above, immune modules 4/5,

histone module 6, and the ECM and stromal modules 8 and 10 are

not highly predictive of subtype in any of the datasets that we

analyzed.

Immune Modules are Highly Correlated to Other
Published Signatures

Since immune and ECM module genes or expression did not

seem to be strongly correlated to intrinsic subtype or to the 70- and

21-gene prognostic signatures, we were curious as to whether these

modules capture the same or different information from previously

published immune or ECM signatures. Immune signatures under

consideration include the STAT1 immune cluster [19], the IR-7

immune ER- prognostic signature [20], the IFN interferon cluster

[21], and T cell and B cell surface markers [22]. We investigated

relationships between the signatures by calculating Pearson

correlation coefficients (r) between signature-module pairs in three

datasets – GSE21653, GSE2034, and GSE1456– with median

values reported here. Modules 4-Immune and 5-Immune are

similar to these published immune signatures, based on covariance

Figure 2. Module correlation patterns. A) A clustered heatmap of Pearson correlation coefficients over all module pairs (using Pearson distance,
and average linkage). Dark red denotes high correlation (r R 1), dark blue high anti-correlation (rR 21), and white a lack of correlation (r > 0). B) This
network representation of (A) illustrates the correlation and anti-correlation topology of module expression; red links denote module pairs with
Pearson correlation coefficients r .0.25, whereas blue links denote module pairs with r,20.25. These figures represent the covariance of ,3700
samples from 24 datasets listed in File S1.
doi:10.1371/journal.pone.0088309.g002
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of signature scores: module 4-Immune was highly correlated to T

cell (r = 0.96) and B cell (r = 0.94) surface markers, and somewhat

less so to the STAT1 immune cluster (r = 0.83). Similarly, module

5-Immune was highly correlated to the STAT1 immune cluster

(r = 0.94) and to T cell (r = 0.91) and B cell (r = 0.89) surface

markers, and somewhat less so to the interferon IFN cluster

(r = 0.81) and the IR-7 signature (r = 0.81). Module 3-Immune-

IFN appeared to be most similar to the interferon cluster (r = 0.91),

Table 1. Functional enrichment of modules.

Module
Size
(# genes) Pathway/functional enrichment (%FDR) Representative genes

1-ER 135 Estrogen signaling, cell-cell signaling (0.045), hormone estrogen/
stimulus (2.24)

ESR1, PGR, FOXA1, GATA3, TFF1, TFF3; TFAP2B; SLCA1;
AGTR1, MAPT, MUC1, AR, ERBB4

2-Dev/basal 247 Ectoderm development (9.15E-04), epidermis development
(0.055), cell adhesion (0.063), vitamin metabolic process (0.63)

KRT5, 7, 14; DSC2, DSC3; ITGB6, ITGB8; ITGB6,8; COL2A,
DKK1, ELF5, EN1, FOXC1, GATA6, GJB5

3-Immune-IFN 28 Response to type 1 interferon, cytokine mediated signaling,
immune response (1.93E-06), response to virus (3.37E-06),
RIG-I like receptor signaling (.015),
DNA replication and repair (0.2)

STAT1; IFI27, IFI44, IFI44L, IFI6, IFIH1, IFIT1, IFIT2, IFIT3

4-Immune 82 Immune response (1.15E-18), lymphocyte activation (3.3E-13),
leukocyte activation (7.31E-12), positive regulation of immune
system (1.76E-09), T cell activation (2.7E-05)

CD2, CD8A, CD7, CD3G; GZMA,B,K; TNFRSF17, CD27; IL21R,
IL2R; CCR2, CCR7, CCL19

5-Immune 80 Immune response (4E-24), defense response (1.2E-14),
inflammatory response (1.01E-07), chemokine signaling
(9.23E-06), cytokine-cytokine receptor interaction (4.33E-06)

CCL13, CCL18, CCL19, CCL5, CCL8, CXCL10, CXCL12,
CXCL13, CXCLL9, CXCLR6, IRF1, IL32

6-Histone 12 Nucleosome assembly (1.27E-15), chromatin assembly (1.71E-15),
protein-DNA complex assemply (2.48E-15), nucleosome
organization (2.98E-15), telomere maintenance (1.7E-10), lupus

HIST1H1C, HIST1H2AE, HIST1H3D, HIST1H4H, HIST2H2BE

7-ERBB2 4 ERBB2 amplicon. EGFR signaling pathway, EGFR activity,
ErbB3 class receptor binding, oncogenomic recombination
hotspot (0.001)

ERBB2, GRB7, STARD3, PGAP3

8-Stromal-mixed 82 Regulation of cell proliferation (0.001), regulation of signal
transduction (0.019), Hemostasis (0.02), blood vessel
morphogenesis/development (0.11), response to wounding (0.36)

FBN2, PLAT, SERPINE1, L1CAM; TGFB2, VIM, LYN, BONF,
CAV1, CAV2, DKK1, FOXF2, IGFBP6

9-ECM/Dev/
Immune

110 Extracellular region/part/space (6.41E-10), response to hormone
stimulus (3.5E-05), extracellular matrix (3.89E-05), regulation of
inflammatory response (0.001), muscle organ development
(0.0027)

RBP4, TF, CXCL2, TIMP4, ADIPOQ, CHRDL1, EDNRB, FABP4,
FIGF, GPC3, IL6; HOXA10, HOXA5, HOXA7; WIF1, GHR, IGF1,
PPARG

10-ECM 58 Proteinaceous ECM (2.7E-18), ECM (1.3E-17), collagen (6.1E-10),
ECM-receptor interaction (2.2E-09), cell adhesion (4.7E-10)),
signaling by PDGF (2.3E-07),
focal adhesion (2.1E-07)

ASPN, COL1A1, COL3A1, COL5A1, COL6A1-3; FBN1, FN1,
LOX, LUM, NID1;FAP; CDH13, GPR124, PDGFRA

11-Prolif 120 Cell cycle mitotic (5.87E-30), cell cycle (1E-16), cell cycle
checkpoints (1.94E-09), oocyte meiosis (4.84E-06),
KISc (1.04E-05), p53 signaling (0.0091), DNA replication (0.12)

CCNB1, CCNB2, CCNE2, MKI67, AURKA-B, E2F8, CENPA,
KIF11, TOP2A, HJURP, RAD21, RAD51AP

This table summarizes the pathway and functional themes of the genes in each module, obtained from applying DAVID and g:Profiler algorithms. FDR = false discovery
rate (reported for DAVID results).
doi:10.1371/journal.pone.0088309.t001

Table 2. Overlap between module genes and established signatures.

Module PAM50 (Intrinsic subtypes)
70-gene prognosis signature
(MammaPrintTM)

21-gene recurrence score
(Oncotype DX)

1-ER ESR1, FOXA1, MLPH, PGR, NAT1, SLC39A6 SCUBE2 ESR1, PGR, SCUBE2

2-Dev/Basal FOXC1, MIA, SFRP1, KRT14, KRT5, CDH3 NMU, HRASLS, TSPYL5

7-ERBB2 ERBB2, GRB7 ERBB2, GRB7

11-Prolif CEP55, MELK, CDC20, ACTR38, CCNB1, CDC6, RRM2,
KIF2C, MKI67, UBE2C, PTTG1, EXO1, MYBL2, BIRC5

CENPA, NMU, ECT2, NUSAP1, GPR126, RFC4,
PRC1, MELK

MKI67, MYBL2, BIRC5,
CCNB1, AURKA

Total 30/48 (62.5%) 12/54 (22%) 10/16 (62.5%)

Modules 1-ER, 11-Prolif, 7-ERBB2 and 2-Dev/Basal share genes in common with the PAM50 gene set used to evaluate intrinsic subtype, the NKI70 prognostic classifer
used in MammaPrint, or the 21-gene prognostic signature used in OncotypeDX. Immune modules 3–5, histone module 6-Hist, the stromal modules 8 and 9-ECM/Dev/
Immune, and the ECM module 10-ECM have no genes in common with these signatures. Listed genes are present in both the specified module and the labeled
signature. Genes in bold face are present in the module and multiple signatures.
doi:10.1371/journal.pone.0088309.t002
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with much less shared signal with T cell (r = 0.47) and B cell

(r = 0.41) markers. In contrast, the ECM-enriched modules we

identified were not as highly correlated to published gene

expression signatures classifying ECM components (clusters

ECM1, ECM2, ECM3 and ECM4 [36]). Module 10-ECM was

only moderately correlated to the ECM3 cluster (r = 0.69), and

moderately anti-correlated to the ECM1 cluster (r = 20.57).

Finally, we examined correlations between modules and the

proliferation signature MS-14 associated with recurrence in

hormone receptor positive (HR+) patients [37]. As expected,

module 11-Prolif was highly correlated to the proliferation

signature MS-14 (r = 0.97). Thus, the immune and proliferation

modules are capturing the same information as other published

immune and proliferation signatures and markers, but the ECM

module appears to be distinct (see Figure S3 in File S2 for the

correlation heatmap, and Table S1 in File S2 for the correlation

coefficients).

Tumor Intrinsic vs. Extrinsic Modules
Since the microenvironment is known to play an important role

in breast cancer [38], and since most of the gene expression

datasets used to derive the modules are from tumor samples

containing a mixture of epithelial cells, stroma, and infiltrating

immune cells, we attempted to assess which of the modules might

be tumor cell-intrinsic (gene co-expression occurring within the

actual malignant cells) and which tumor cell-extrinsic (gene co-

expression occurring in or dependent on other cells in the tumor

microenvironment). To investigate, we compared module score

distributions and coherence (the relative co-expression of the genes

in each module) in tumors relative to breast cancer cell lines.

Specifically, we applied the F-test to compare the variances of

module scores in representative breast cancer cell lines (BCCL; see

Methods) and a human tumor dataset (GSE21653), and used a t-

test to compare Fisher-transformed Pearson correlation coeffi-

cients for all pairs of genes in each module between tumor and

BCCL datasets. We reasoned that for tumor-extrinsic modules,

module scores might be highly variable across tumor samples and

that the expression of the genes within a module would be highly

coherent but that the module scores would be less variable and the

module gene expression would be less coherent in BCCL. For

tumor-intrinsic modules, score variability and gene expression

coherence would be high across both types of samples. We

hypothesized that the immune and ECM modules would be

extrinsic, since we expected the signal for these modules to come

from tumor infiltrating immune cells and ECM components that

are absent in BCCL cultures.

We indeed found T cell/B cell immune modules 4-Immune and

5-Immune to be extrinsic, with much more variable module scores

Figure 3. Modules vs. intrinsic subtype heatmap. This heatmap shows hierarchically clustered AUC scores summarizing how well each intrinsic
subtype can be predicted by each coexpression module score. Red denotes high positive predictive value (AUC R 1), green high negative predictive
value (AUC R 0), and black a non-informative relationship (AUC<0.5). This figure represents GSE1456, with AUC’s clustered using Euclidean distance
and complete linkage. (Heatmaps using other datasets can be found in Figure S2 in File S2.).
doi:10.1371/journal.pone.0088309.g003
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in human tumors than in BCCL (p-values ,2E-21; Figure 4A) and

much more correlated gene expression in breast tumors (mean

Fisher-transformed r = 0.85 and 0.73, respectively) than in the

breast cancer cell line panel (mean Fisher r = 0.045 and 0.068,

respectively) (Figure 4B). In contrast, the interferon-related

immune module 3-Immune-IFN appears to be intrinsic, with

equally variable module scores in both tumors and BCCL (p-value

0.16) and correlated gene expression in both tumors (mean Fisher

r = 0.97) and cell lines (mean Fisher r = 0.69). The module most

highly enriched for ECM-related genes, 10-ECM, was coherent in

cell lines (mean Fisher r = 0.38) as well as in breast tumors (mean

Fisher r = 0.58), with similar module score variability in both

contexts (Figures 4A–B), and thus appears to be tumor cell

intrinsic. Module 9-ECM/Dev/Immune, with its mixture of

ECM, immune, and developmental genes, also had coherent gene

expression in the tumor biopsy dataset (mean Fisher r = 0.36) but

not in the breast cancer cell lines (mean Fisher r = 0.027)

(Figure 4B), with variable expression in the former but not the

latter (p-value,9E-34; Figure 4A), and thus appears tumor-

extrinsic. To assess whether the pattern we observed in GSE21653

applies more generally, we analyzed several additional data sets

(GSE1456, GSE3494, GSE2034) and concluded that the intrinsic/

extrinsic classifications generalize to all datasets we tested (see

Figure S4 in File S2). Taken together, these data suggest that

BCCL reflect much of the gene expression diversity between

tumors with the exception of the tumor cell-extrinsic modules 4-

Immune, 5-Immune and 9-ECM/Dev/Immune.

We also used t-tests to compare module expression levels in

microdissected tumor epithelium and stroma (GSE5847). As

expected, ECM modules 8–10 have significantly higher mean

expression levels in stroma compared to epithelium (see Figure S5

in File S2). Expression of immune modules 3–5, however, did not

differ in the two compartments. These results suggest either

immune contamination in the epithelial compartment, or

immune-specific signaling of epithelial cells that occurs only in a

native (not cell line) micro-environment.

Low Expression of Immune Modules in a High-
proliferation Background Predicts Poor Prognosis

Historically, the development of effective treatments for breast

cancer, such as Herceptin for HER2+ breast cancer and endocrine

therapy for ER+ breast cancer, has been driven by observations of

recurrent molecular aberrations in tumors that are associated with

differential patient outcomes. Our breast cancer co-expression

modules were derived independently of clinical data, and thus we

wondered whether any modules might have prognostic signifi-

cance. To investigate, we scored a previously published [31],

pooled dataset of 683 adjuvant untreated node-negative patients

from datasets GSE2034, GSE5327, GSE7390 and NKI295 for

module expression, and performed univariate and multivariate

Cox Proportional Hazards survival modeling with and without

adjustment for receptor status and the proliferation module 11-

Prolif. All p-values were adjusted for multiple testing using the

Benjamini-Hochberg (BH) method; associations with a BH p-

value,0.05 were considered significant.

The very strongest association to recurrence was high prolifer-

ation (see Table S2 in File S2 for all p-values). Consistent with

many prior studies, we found that high expression of the

proliferation module 11-Prolif was significantly associated with

decreased RFS, and high expression of the estrogen signaling

module 1-ER was significantly associated with increased RFS.

Both associations retained statistical significance even after

adjustment for ER and Her2 status, suggesting that the ER

module 1-ER might be capturing information on recurrence risk

beyond that encoded in ER status.

The more interesting associations were immune and stromal.

The stromal module 9-ECM/Dev/Immune was significantly

associated with increased RFS in univariate and receptor-adjusted

analysis, though not after adjustment for proliferation, suggesting

that the stromal milieu represented by this module is associated

with less proliferative tumors. The B cell/T cell module 4-Immune

was associated with decreased RFS in univariate analysis

(Figure 5A), in multivariate analysis adjusted for ER and HER2

status, and in multivariate analysis adjusted for receptor status and

proliferation. It was significant overall, and in ER positive and ER

negative subsets (see Figure S6 in File S2 for survival plots).

In a multivariate Cox regression analysis, the combination of T

cell/B cell immune module down-regulation and proliferation

module upregulation associated with decreased RFS in these

chemo-naı̈ve patients (more so than immune down-regulation or

proliferation up-regulation alone), suggesting that cancers with a

high proliferation rate in the absence of an activated immune

system are prone to recur (Figure 5A–C). These results demon-

strate that co-expression modules, especially those reflecting

proliferation, immune, and stromal/developmental pathways,

associate with differential survival of patients even after adjustment

for clinical variables.

Immune Modules are Associated with Response to
Chemotherapy and to a Good Prognosis without
Chemotherapy

A paradox in breast cancer is that some of the same features

that are associated with poor long term survival, such as high

grade and ER negativity, are also associated with superior

response to chemotherapy (high pCR rate) in the neoadjuvant

setting; conversely, features associated with better long term

survival, such as Luminal A classification and low grade, are

associated with inferior chemo-sensitivity (low pCR rate) [39].

Given this paradox and its likely relevance to optimizing treatment

strategies, we were interested in investigating whether modules

associated with the prognosis of chemo-naive patients were the

same or different from those predicting response to chemotherapy,

and for those that overlap, in determining the direction of

association.

To this end, we constructed logistic regression models of

pathologic complete response (pCR) to neoadjuvant chemother-

apy as a function of module scores in groups of patients with gene

expression data from pre-treatment biopsies (GSE22093; [40]),

and compared the results to the RFS association analyses of

adjuvant untreated patients summarized in Table S2 in File S2.

For modules associated with the prognosis of chemo-naı̈ve patients

and with response to chemotherapy, three patterns were observed

based on the direction of association (Figure 5D and Table S3 in

File S2; significance threshold: BH p-value ,0.05). High

expression of the estrogen module 1-ER was significantly

associated with a good prognosis but a poor response to

chemotherapy (positive prognostic, negative predictive). Upregula-

tion of the proliferation module 11-Prolif was significantly

associated with a poor prognosis, but a good response to

chemotherapy (negative prognostic, positive predictive). These

observations are consistent with the prognosis/chemo-response

paradox described above. The third pattern we observed, of

biomarkers that significantly associate with good prognosis and a

good response to chemotherapy, is less well established. The

cytotoxic T/B cell immune modules 4-Immune and 5-Immune fall

in this category, as patients with highly expressed immune

modules are more likely to respond well to chemotherapy than
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Figure 4. Diversity and coherence of module expression in breast cancer cell lines compared to whole tumors. A) This bar plot
compares standard deviations of module scores in representative BCCL (a composite of data from the Sanger, GSK, and Neve et al. datasets, see
Methods) and a breast tumor biopsy dataset (GSE21653). *** p,1E-10 (F-test for difference in variance in module score). B) This box plot shows the
distributions of Pearson correlation coefficients for all pairs of genes in each module, respectively, for the BCCL and tumor datasets. *Modules 4-
Immune, 5-Immune, and 9-ECM/Dev/Immune can be considered tumor-extrinsic, as their constituent genes are uncorrelated in cell lines but highly
correlated in patient tumor biopsies (median r.0.35).
doi:10.1371/journal.pone.0088309.g004
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those with low immune module expression, and are also more likely

to have a good prognosis without chemotherapy (positive

prognostic, positive predictive). This last category suggests a

subpopulation of high immune patients who respond well to

chemotherapy but would do well without it.

Notably, in multivariate analysis, the most significant module

pairs for predicting pCR were the combined high expression of

any of the cytotoxic T/B cell immune modules, 4-Immune

especially, with high expression of the proliferation module 11

(AUC = 0.79; Table S4 in File S2), the same pair highlighted in

Figure 5 that best predicts RFS in chemo-naı̈ve patients.

ECM/stromal Modules Associate with Different Sites of
Metastasis

The ‘‘seed and soil’’ hypothesis states that specific organs may

harbor metastases from one type of cancer by stimulating their

growth better than other types of cancer, in an interaction that is

Figure 5. Recurrence free survival of chemotherapy naı̈ve patients with highly proliferating tumors depends on immune module
activation. Kaplan-Meier analysis shows that patients with high 11-Proliferation expression AND low 4-Immune expression have poorer outcomes
than patients with low 11-Proliferation OR high 4-Immune expression (C). To demonstrate how dividing the patients according to the activity of both
modules increases sensitivity to detect patients with poorer outcome, we include K-M plots of RFS as a univariate function of 4-Immune (A) and 11-
Prolif (B). Module activity was dichotomized using the median for 11-Prolif and the lower tertile for 4-Immune. D) Immune modules are an exception
to a Simpson’s paradox in breast cancer that some of the same features that are associated with poor outcome are also associated with superior
response to chemotherapy (high PCR rate). Modules 11-Prolif and 1-ER both conform to this paradox, as high 11-Prolif is associated with a good
response to chemotherapy but a poor outcome, whereas high 1-ER is associated with good outcome but a poor response to chemotherapy. Immune
modules 4/5-Immune are an exception to this paradox, as they are associated with a good outcome without chemotherapy and a good response to
chemotherapy in treated populations.
doi:10.1371/journal.pone.0088309.g005
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dynamic and reciprocal [41]. Since many of the modules are

dominated by ECM or other stromal themes, we wondered

whether there might be a relationship between the ECM-related

modules and preferred site of metastasis, or progression tempo of

disease at different sites. To investigate, we used the clinical site-

specific metastasis annotation assembled by Bos and colleagues in

their brain metastasis study [42] to assemble a pooled dataset of

572 samples from 3 GEO data sets (GSE2034, GSE2603,

GSE12276), pre-processed as described in Methods. In this

dataset, there were 261 patients who developed metastases in

lung, bone, brain, or multiple sites, and 311 patients who

remained metastasis free over the course of their follow up. We

asked three questions: first, we used Cox proportional hazards

modeling to look for associations between module expression levels

and development of metastasis in a specific site. This involved

survival analysis of patients who did not recur (n = 311) combined

with those who recurred in a specific site, for instance bone only

(n = 157; for a total of 468 cases). A second type of analysis

concerned site of metastasis among those who recurred. We used

logistic regression modeling to assess whether module expression

levels were significantly different in patients who developed bone-

only metastases (n = 157) as compared patients who developed

lung or brain metastases (n = 67). Finally, we performed Cox

survival analysis on patients who developed a particular site of

metastasis to evaluate the relationship between module expression

and time to recurrence. P-values were corrected for multiple

testing using the Benjamini-Hochberg method, and multivariate

models adjusted for ESR1 and ERBB2 expression were construct-

ed for site-specific RFS and metastasis analyses to assess statistical

significance beyond receptor subtype. Results are summarized in

Tables S5 and S6 in File S2, and illustrated in Figure 6.

As expected, high 1-ER expression was significantly associated

with bone-specific rather than lung- or brain-specific metastases

(BH p-value 3.05E-11; Figure 6A), and with longer times to

metastasis irrespective of metastatic site (see Table S6 in File S2 for

p-values). High expression of 11-Prolif and 2-Basal were associated

with visceral metastases and with shorter disease free intervals

prior to recurrence (see Figure 6A,B and Tables S5 and S6 in File

S2), also consistent with prior publications on the relationship

between basal, proliferative cancers and recurrence [1,2]. The

more novel findings concern the stromal modules 8–10, which

appear to associate with different sites of metastases despite similar

themes and correlated expression patterns (Pearson r = 0.38–0.66).

We found that high expression of 10-ECM was associated with

decreased bone-specific RFS even after adjustment for ER and

ERBB2 (Figure 6C, Table S6 in File S2). In contrast, the stromal

module 8-stromal-mixed was associated with decreased lung- and

brain- specific RFS and with lung or brain metastases rather than

bone metastases in a logistic model (Tables S6, S5 in File S2).

Module 9-ECM/Dev/Immune was similar to 1-ER in that it

associated with bone-specific rather than visceral metastases

(Table S5 in File S2), and with increased lung-specific RFS

(Figure 6D), though it did not associate with longer time to

recurrence in those patients who suffered recurrence (Table S6 in

File S2). Together, these results suggest that the stromal

microenviroments represented by modules 8–10 might play a role

in the preferred sites of metastasis of breast cancers, possibly

relating to the ‘seed and soil’ hypothesis of cancer dissemination.

Discussion

In this study, we identified 11 breast cancer co-expression

modules comprising 958 genes (Table 1), using 72 datasets of

publicly available gene expression data from breast cancer patients

and breast cancer cell lines (File S1). Each module consists of a

block of genes with bimodal expression patterns and highly

correlated expression levels in multiple datasets. A caveat of our

module identification algorithm, which selected only those genes

with bimodal expression patterns, and only those clusters that

appear with high fidelity in multiple datasets, is that there may be

additional clusters that represent aspects of breast cancer biology

that either might be less commonly interrogated by datasets in our

compendium or which have a less dramatic effect on gene

expression; in addition, the uneven stability results in the

partitioning of stromal modules 8 and 10 suggests that analysis

of an alternate collection of datasets might have identified

somewhat different stromal coexpression clusters. This filtering

method, however, allowed us to exclude patterns of gene

expression that are private to individual datasets such as technical

artifacts, as well as weaker patterns of coordinate gene expression

identified in the clustering step. This work is similar in spirit to the

study of Bessarabova et al [14], though it differs in the number of

independent data sets that were used to derive the modules, in the

combined use of human tumor and breast cancer cell line datasets,

the methods used to define bimodal gene expression and

modularity, and unlike the work reported by Bessarabova et al.

our explicit goal was to define common modules across datasets.

The 11 co-expression modules in breast cancer that we

identified represent many of the biological properties and

processes that are known to vary between breast tumors and

reflect many of the functions implied by the ‘hallmarks of cancer’

(see Figure 7). As expected, in addition to modules involved in

estrogen (1-ER) and Her2 signaling (7-ERBB2), we identified a

module involved in cell proliferation (11-Prolif) and another

module enriched for basal-cell related genes (2-Dev/Basal).

Additional tumor-cell extrinsic modules seem related to T cell

and B cell immune system activity (4–5-Immune), the importance

of which for anti-tumoral activity is increasingly well appreciated.

We also identified a number of modules that reflect heterogeneity

between breast tumors that are perhaps somewhat more novel.

These include a tumor-cell intrinsic immune-related module that is

strongly enriched for interferon-related genes (3-Immune IFN), as

well as a module consisting exclusively of histones (6-Hist) and

three modules of genes enriched in ECM and stromal-related

genes (8–10). One can think of these co-expression modules as a

data reduction transformation: several tens of thousands of probes

representing genes are reduced to a handful of modules

representing a higher order organization of genetic regulatory

function in breast cancer. Thus, each woman’s tumor can be

categorized in terms of the activity levels or subclassifications over

each of these modules (e.g., tumor A has downregulated estrogen

signaling in a high T cell/B cell immune, highly proliferative

background, without high ERBB2 signaling but with a richly

upregulated ECM scaffold).

We compared the modules to intrinsic subtype and other well-

known prognostic signatures to see if our data driven approach

was able to rediscover known aspects of breast cancer heteroge-

neity, and possibly uncover new themes.

We found that a little over half of PAM50 genes used to

evaluate intrinsic subtype were also found in modules, but only a

minority of the modules were represented among the PAM50

genes (Table 2): estrogen signaling (1-ER), proliferation (11-Prolif),

Her2 signaling (7-ERBB2), and to a small degree the develop-

mental/basal module (2-Dev). Similarly, genes from the 21-gene

recurrence score and the 70-gene prognosis signature that overlap

module genes are also distributed among these same four modules.

Genes from immune modules 3–5, histone module 6-Histone, the

mixed development/immune module 9-Dev/Immune, and the
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ECM modules 10-ECM and 8 are not represented in these

signatures. Moreover, these modules were not highly predictive of

intrinsic subtype, further suggesting that they might represent

additional aspects of breast cancer biology variability and we were

thus interested to know if these modules might define clinically

significant differences between tumors.

The immune modules, 4-Immune and 5-Immune especially, do

however appear to be very well represented by several published

immune signatures. Module 4-Immune was highly correlated to T

cell and B cell surface markers [22], module 5-Immune to the

STAT1 immune cluster [19], and Module 3-Immune to the

interferon IFN cluster [21]. In contrast, ECM-enriched modules 9-

Dev/ECM/Immune and 10-ECM, both significantly upregulated

in stroma relative to epithelium, are not as well represented by the

published ECM signatures we evaluated [36]. The proliferation

module 11-Prolif is highly correlated (nearly interchangeable) to

the proliferation signature MS-14 [37] associated with prognosis of

HR+ patients, as well. These results add further evidence to the

growing body of work emphasizing the importance of immune

signaling and proliferation in breast cancer, and point out that

despite the different origins of these signatures, they seem to

converge on common signals and resulting classifications.

Since breast cancer progression is known to be influenced by the

microenvironment, we tried to assess modules as being tumor cell-

Figure 6. Different organ sites of metastasis are associated with different ECM/stromal modules. A) Boxplot of ECM/stromal module
expression in primary tumors that metastasized to bone only vs. lung or brain. Also included are the non-stromal subtype-associated modules with
the strongest associations, 1-ER (preferential to bone), and 2-Dev/Basal and 11-Prolif (preferential to viscera). Upregulation of 10-ECM was associated
with decreased bone-specific RFS (C), whereas downregulation of 9-ECM/Dev/Immune was associated with decreased lung/brain-specific RFS (D).
Upregulation of the proliferation module 11-Prolif was associated with a shorter time to recurrence in bone (B) and lung (Table S6 in File S2), as
opposed to 1-ER, which associates with longer times to recurrence to either site (also Table S6). Asterisks in (A) denote statistically significantly
different (see Table S5 in File S2 for p-values).
doi:10.1371/journal.pone.0088309.g006
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intrinsic or tumor cell-extrinsic by comparing module expression

in breast cancer cell lines and human tumors. As expected,

coordinated differential expression of either of the two B Cell/T

cell immune modules was not observed in the breast cancer cell

lines, perhaps reflecting the presence of infiltrating immune cells in

tumors. One immune module appears to be tumor cell intrinsic,

however: the interferon responsive 3-Immune IFN module. The

ECM module 10-ECM was similarly intrinsic despite the lack of

tumor stroma interactions, while Module 9-ECM/Dev/Immune

was extrinsic. These differences are worth investigating further, as

they may provide clues as to the nature of the ‘dynamic

reciprocity’ between tumor cells and their local ecology and

microenvironment [43]. Overall, the analysis of module expression

variability and coherence in breast cancer cell lines as compared to

tumors suggests that cell lines reflect most of the diversity found

between tumors with the exception of modules 4-Immune, 5-

Immune and the stromal module 9-ECM/Dev/Immune. Impor-

tantly, these ‘extrinsic’ modules are associated with patient

outcome, response to standard chemotherapy, or preferential site

of metastasis, and thus point to themes that if included might

improve in vitro models.

As some of our modules reflect aspects of breast cancer

heterogeneity that are currently used for clinical decision making,

we expected that these modules would be associated with clinical

outcome. We were similarly interested in whether some of our

more novel modules might also be clinically important as they

might then be a useful source for biomarkers or drug targets

discovery.

In univariate analysis, upregulation of the proliferation module

(11-Prolif) was significantly associated with recurrence in node

negative, adjuvantly untreated patients. Upregulation of T cell/B

cell immune modules associated with recurrence free survival,

even after adjustment for ER, ERBB2, and proliferation. These

immune modules were significant in the population as a whole,

and in ER positive and ER negative patient subsets. Another

interesting module was the stromal module 9, with its mix of

developmental, immune, and ECM genes, which also associated

with recurrence free survival.

Figure 7. Co-expression module hallmarks of breast cancer. This figure is a model of possible correspondence between co-expression
modules and cancer hallmarks, annotated by clinical associations and coherence in cell lines vs. tumors. The inner annotation ring is colored to
represent association to chemotherapy response; the 2nd from center represents association to RFS in adjuvant untreated patients and site-specific
RFS in a mixed treated/untreated patients; and the 3rd from center classification of intrinsic or extrinsic.
doi:10.1371/journal.pone.0088309.g007
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In multivariate analysis, the most robust pair of modules for

predicting recurrence in these chemo-naive patients was the

combination of a low Tcell/Bcell immune module score and a

high proliferation module score, suggesting that cancers with a

high proliferation rate in the absence of an activated immune

system are prone to recur.

Ourmultivariate results areconsistentwith thewinning strategyby

the Metagene Attractor team (Cheng, Yang and Anastassiou) in the

Sage Bionetworks-DREAM breast cancer prognosis challenge, of

applying immune and (LYM) and proliferation (CIN) metagenes

derived from an analysis of co-expressed genes in multiple cancer

types to successfully predict prognosis in the METABRIC dataset

(https://sagesynapse.wordpress.com/category/breast-cancer-

challenge/) [44]. These results also suggest that treatment strategies

that target proliferation while boosting anti-tumoral immunity might

be especially effective for high risk patients.

We also found interesting associations between some of the

more novel modules and site specific metastasis. As expected, the

estrogen module was associated with bone-specific rather than

lung- or brain-specific metastasis, whereas the proliferation and

basal modules associated with visceral rather than bone metastasis.

In addition, we found that the ECM/stromal modules 8–10

appeared to associate with different sites of metastasis despite

similar themes, possibly relating to the ‘seed and soil’ hypothesis of

cancer dissemination. Further analysis of these ECM/stromal

modules may help identify treatment strategies that target the

microenvironment or tumor-microenvironment reciprocity to

prevent metastasis.

Finally, in comparing modules associated with response to

chemotherapy (pCR vs. not) to those associated with the prognosis

of chemotherapy-naive patients, the most common pattern we

observed was that of modules associated with good prognosis or a

good response to chemotherapy (but not both). For instance, high

expression of the estrogen module is associated with a good

prognosis but a poor response to chemotherapy, whereas

upregulation of the proliferation module is associated with a poor

prognosis but a good response to chemotherapy. This pattern is

consistent with studies suggesting that poor prognosis patients such

as those with triple negative disease are more likely to respond to

chemotherapy than are good prognosis patients, but that a non-

response in these patients likely results in a poor outcome [39].

The third pattern we observed, of biomarkers that associate with

good prognosis and a good response to chemotherapy, is less

recognized. The cytotoxic T/B cell immune modules fall in this

category, as patients with highly expressed immune modules were

more likely to respond well to chemotherapy than those with low

immune module expression, and were also more likely to have a

good prognosis without chemotherapy. These results are consistent

with numerous publications linking the efficacies of a variety of

chemotherapies to anti-tumoral immune responses, and suggest

the possibility of a paradox – that in some high-immune patients,

the same host processes contributing to an excellent response to

chemotherapy might preclude its necessity. This observation

further supports a treatment strategy boosting anti-tumoral

immunity in low-immunity or check-point blocked patients with

highly proliferating tumors, either prior to or in combination with

neoadjuvant cytotoxic chemotherapy.

Overall, co-expression modules provide a high-level functional

view of breast cancer that complements the ‘cancer hallmarks’

and may form the basis for improved predictors and treatments.

Methods

Identifying and Scoring Transcriptional Modules
To identify breast cancer co-expression modules we used the

Gene Expression Omnibus (GEO) and several other public

sources to assemble a data compendium consisting of 72 public

gene expression datasets that had been profiled on U133-

generation arrays (U133A, HT-U133A, U133Av2 and

U133_Plus2). These datasets were comprised of samples from

both human breast tumor and breast cancer cell lines, and the data

compendium consisted of a total of 5684 samples (see File S1 for

complete list of datasets). Gene-level expression estimates were per

dataset obtained using RMA [45] and an EntrezGene-directed

CDF [46]. Each dataset was then filtered to the probesets common

to the four platforms. Within each dataset, a per array measure of

sample quality (avg.z) was derived by first z-score normalizing each

gene and then calculating an average expression value per array

[47]. The final expression estimates for each gene were the

residual of a linear model of measured gene expression as a

function of avg.z in each dataset. These quality adjusted

expression estimates were used to minimize correlation between

gene expression profiles due to differences in array quality. The

bimodality of gene expression was scored for each gene within

each dataset using MCLUST [48] and the Bimodality Index (BI)

[49]. The significance of the observed bimodality was assessed by

comparing the observed BI score to BI scores observed in 10,000

random samples of the normal distribution. Each random sample

was of the same size as the dataset from which the observed BI

score was derived. This empiric p-value was used to derive a

Benjamini-Hochberg FDR [50] and genes with a BI FDR ,0.05

were considered to have significantly bimodal gene expression in

that dataset.

Within each dataset, genes with significantly bimodal gene

expression were organized into clusters using a model-based

clustering algorithm (MCLUST) and the Bayesian Information

Criterion (BIC) to determine the optimal number of clusters [51].

Principal component analysis was performed with the genes in

each cluster within the dataset where that cluster was identified.

The resulting gene loadings for the first principal component were

defined as a metagene for the pattern of gene coexpression in that

cluster. The scalar projection of each of the samples in the

compendium in the direction of this metagene was used as a score

of relative cluster expression. This projection was calculated as the

inner product of the normalized gene expression data for each

sample and the metagene. The similarity between the gene

expression dynamics of each cluster were identified by calculating

the pairwise Pearson correlation coefficients (r) between the scores

derived for each of the clusters. Clusters with an r .0.7 with at

least six other clusters were kept for further analysis under the

assumption that these clusters represent frequently observed

patterns of dynamic gene expression. The similarity between the

expression of these clusters was assessed by hierarchical clustering

(Euclidean distance metric, complete linkage clustering) of the

Pearson correlation coefficients between clusters and each cluster

was assigned to one of eleven modules (Figure 1). To validate the

clustering, we used SigClust [23] with 1000 simulations, the ‘‘hard

thresholding’’ method reported by Liu et al. for estimating the

eigenvalues of the covariance matrix [23], and p-values deter-

mined empirically from the simulated null distribution. We also

applied the more recently described ‘‘soft thresholding’’ method

for estimating the eigenvalues of the covariance matrix used by

SigClust [24].

A final step was to identify the common genes within each

module: the genes in each of the final modules consisted of the
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genes that were in .33% of the correlated clusters that

contributed to each module. Gene weights for each of the final

modules were defined as the first principal component of each

gene set across the union set of samples in the datasets that

contributed a cluster to the module. New Affymetrix U133

generation datasets were scored for module expression by first

RMA and z-score normalizing as described above and then

projecting the weight vector for each module (weights in

SI_Datasets_Genes) onto that dataset using an inner product.

Similarly, for cross-platform application, such as that performed

on the Metabric dataset [4] assayed on the Illumina HT-12.v3

platform, we z-score normalized the EntrezGene median-col-

lapsed expression data and projected the module weights onto the

module genes represented in the dataset.

Analyzing Modules for Functional or Pathway
Enrichment

To investigate whether co-expression modules contain recog-

nizable functional or regulatory themes, we applied the pathway/

functional enrichment analysis software tools DAVID [25] and

g:Profiler [26] using multiple testing corrected p-values that

control for false discovery, with the whole human genome as

background (the default).

Comparing Modules to Intrinsic Subtype and other
Signatures

To determine whether any of the modules we identified were

related to clinical breast cancer biomarkers, we calculated the

overlap between module genes and the PAM50 intrinsic subtype

gene set [1,32], the NKI70 MammaPrintH gene set [33], and the

21 genes used in OncotypeDXH [34]. Since different gene sets can

be used to derive an identical classification schema, we also fit

univariate logistic regression models relating intrinsic subtype

assignments to module scores in GSE1456, GSE21653, and

METABRIC, and then performed ROC analysis on these models

to calculate an AUC estimate of how well each individual module

is able to predict each subtype. For comparison of modules to

other previously published signatures, pretreatment biopsies in

GSE21653, GSE1456, and GSE2034 were scored for expression

of the STAT1 immune cluster [19], the IR-7 immune signature

[20], the IFN interferon cluster [21], the proliferation signature

MS-14 [37], and for subsets of T cell and B cell surface markers

[22] by calculating the mean expression levels of signature genes

weighted by +1 or 21 according to direction of association with

RFS as previously described [31]; ECM1-4 cluster scores were

calculated as the Pearson correlations between expression of the

genes in the published ECM signature and the four ECM

centroids, respectively [36]. Pearson correlation coefficients (r)

between the module and signature scores were calculated to assess

relatedness.

Comparing Tumor Cell-intrinsic to Tumor Cell-extrinsic
Co-expression

To compare co-expression of genes within a module as well as

module score variability in breast cancer cell lines (BCCL) and

human breast tumor biopsies, we collected Affymetrix gene

expression data for cell lines in the Sanger (http://www.

broadinstitute.org/cgi-bin/cancer/publications/pub_paper.

cgi?mode = view&paper_id = 189), GSK (https://array.nci.nih.

gov/caarray/project/woost-00041/), and Neve et al. [18] data-

sets, RMA normalized with quality adjustment as described above,

and eliminated redundancy by combining highly correlated cell

line samples (r.0.9) with the same name, resulting in a BCCL

dataset of 111 cell line samples. Modules in BCCLs were

compared to those in human breast tumor biopsies (GSE1456,

GSE21653, GSE2034, and GSE3494) by calculating Pearson

correlation coefficients for all pairs of genes in each module,

respectively, for the two datasets, and by applying a Student’s t-test

to the Fisher-transformed correlation coefficients to test for

differences in mean correlation levels. Modules with uncorrelated

gene expression in BCCL (mean r ,,0.1) but correlated gene

expression in tumors (median r .0.35) were considered extrinsic.

We also used the F-test to compare the variances of the scores

from each module in the tumor and BCCL datasets, and applied a

t-test to assess differences in module expression in tumor

epithelium and stroma (GSE5847; [52]).

Analyzing Modules for Association with RFS, Chemo-
response, and Site-specific Metastases

To assess associations between module scores and breast cancer

prognosis, we scored a previously published [31], pooled dataset of

683 adjuvant untreated node-negative patients from datasets

GSE2034, GSE5327, GSE7390 and NKI295 for module expres-

sion, and performed univariate and multivariate Cox Proportional

Hazards survival modeling with and without adjustment for

receptor status and proliferation (11-Prolif), using the Survival

software package [53] in R. As previously described [31], the

processed data from each source was mean-centered indepen-

dently, mean-collapsed by gene symbol, and the 10,219 unique

genes common to all platforms combined using distance weighted

discrimination (DWD). To assess the association between module

expression and chemotherapy response (GSE22093), we con-

structed logistic regression models of pathologic complete response

(pCR) as a function of module scores followed by ROC analysis

using functions from EPICALC and STATS software packages in

R [54]. For our analysis of site specific metastasis, we used the

clinical site-specific metastasis annotation assembled by Bos and

colleagues in their brain metastasis study [42] to assemble a pooled

dataset of 572 samples from 3 GEO data sets (GSE2034,

GSE2603, GSE12276). These samples were preprocessed by: 1)

RMA normalizing samples run on the same platform together, 2)

merging datasets by probe id, using the annotation from GEO,

and 3) ComBat batch adjusting to combine datasets, prior to

scoring them for module expression. We used Cox proportional

hazards modeling with and without adjustment for ER and

ERBB2 expression to analyze for associations between module

expression and site-specific RFS, and logistic regression modeling

to assess whether module expression levels were significantly

different in patients who developed bone-only metastases as

compared to patients who developed lung or brain metastases. P-

values were adjusted for multiple testing using Benjamini-

Hochberg method [50], and all calculations were performed in

the R computing environment [54].

Supporting Information

File S1 This supplementary file contains a complete list of the

datasets used to define the modules, as well as the genes in each

module and their associated weights.

(XLS)

File S2 This file contains six supplementary figures and six

supplementary tables, as follows: Figure S1. Examples of the
coordinate differential expression of module genes in
different breast cancer datasets. Descriptions of these

datasets can be found in file S1. Clustering was performed with

Euclidean distance and complete linkage. Figure S2. Subtype-
module relationships are consistent in multiple data-
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sets. Heatmaps in (A) and (B) show hierarchically clustered AUC

scores summarizing how well each intrinsic subtype can be

predicted by each coexpression module score. Red denotes high

positive predictive value (AUC R 1), green high negative

predictive value (AUC R 0), and black a non-informative

relationship (AUC<0.5). Clustering was performed using Euclid-

ean distance and complete linkage. (C) This table shows the mean

values of each module in each intrinsic subtype for all three

datasets analyzed (GSE21653, METABRIC, and GSE1456),

along with AUC values. Figure S3. Module-signature
correlation heatmap. A correlation heatmap showing the

median Pearson correlation coefficient between each module and

each published signature, using datasets GSE1456, GSE21653,

and GSE2034 (see Table S1 in File S2 for coefficients). Clustering

of the correlation coefficients was performed using Euclidean

distance and complete linkage. Figure S4. Intrinsic/extrinsic
classifications are consistent in multiple datasets. (B,D,F)

These bar plots compares standard deviations of module scores in

representative BCCL (a composite of data from the Sanger, GSK,

and Neve et al. datasets, see Methods) and a human breast tumor

dataset. *** p,1E-10 (F-test for difference in variance in module

score). (A,C,E) These box plots show the distributions of Pearson

correlation coefficients for all pairs of genes in each module,

respectively, for the BCCL and tumor datasets. ***Modules 4-

Immune, 5-Immune, and 9-ECM/Dev/Immune can be consid-

ered tumor-extrinsic, as their constituent genes are uncorrelated in

BCCLs but highly correlated in human tumor biopsies in all

datasets tested (median r.0.35). Datasets: GSE21653 (Figure 4),

GSE1456, GSE2034, GSE3494. Figure S5. Module expres-
sion in microdissected tumor stroma vs. epithelium. We

used the dataset GSE5847 to compare module expression levels in

micro-dissected tumor epithelium and stroma. Only ECM/

stromal modules 8–10 had significantly different expression levels

(BH p-value ,0.05). Figure S6. Upregulation of a T cell/B

cell immune module was associated with RFS in ER+
and ER- subsets. These Kaplan-Meier plots show that T cell/B

cell immune module 5-immune is significantly associated with

RFS in ER+ and ER- patient subsets in our dataset of 683 node-

negative adjuvantly untreated cases. Module expression was

dichotomized at the median. Table S1. Pearson coefficients (r)

for module-signature pairs, from multiple datasets. Table S2.
Recurrence free survival analysis of the pooled prognostic dataset

of 683 node-negative adjuvant untreated cases. Table S3.
Associations between module expression and pCR. Table S4.
Associations between module pairs and pCR. Table S5. Site of

metastasis analysis. Table S6. Site-specific RFS analysis.

(PDF)
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