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Abstract: Mental stress can lead to traffic accidents by reducing a driver’s concentration or increasing
fatigue while driving. In recent years, demand for methods to detect drivers’ stress in advance to
prevent dangerous situations increased. Thus, we propose a novel method for detecting driving
stress using nonlinear representations of short-term (30 s or less) physiological signals for multimodal
convolutional neural networks (CNNs). Specifically, from hand/foot galvanic skin response (HGSR,
FGSR) and heart rate (HR) short-term input signals, first, we generate corresponding two-dimensional
nonlinear representations called continuous recurrence plots (Cont-RPs). Second, from the Cont-RPs,
we use multimodal CNNs to automatically extract FGSR, HGSR, and HR signal representative fea-
tures that can effectively differentiate between stressed and relaxed states. Lastly, we concatenate the
three extracted features into one integrated representation vector, which we feed to a fully connected
layer to perform classification. For the evaluation, we use a public stress dataset collected from
actual driving environments. Experimental results show that the proposed method demonstrates
superior performance for 30-s signals, with an overall accuracy of 95.67%, an approximately 2.5–3%
improvement compared with that of previous works. Additionally, for 10-s signals, the proposed
method achieves 92.33% classification accuracy, which is similar to or better than the performance of
other methods using long-term signals (over 100 s).

Keywords: stress detection; physiological signals; galvanic skin response (GSR); heart rate (HR);
recurrence plot (RP); deep learning; convolutional neural network (CNN)

1. Introduction

Excessive mental stress can negatively affect people in numerous ways, such as by
causing various diseases or reducing concentration and work efficiency [1–4]. Particularly,
in driving situations, stress is closely related to driving safety. For example, stress can lead
to traffic accidents by impairing driving performance or reducing a driver’s ability to make
decisions to cope with dangerous situations [5,6]. Thus, the problem of recognizing stress
early has been tackled in several studies to reduce the possibility of traffic accidents [7–9].

To detect drivers’ stress, a variety of measurements have been used which can be
classified into three categories, namely, vehicle motion measurements, facial behavior
measurements, and physiological measurements. Vehicle motion measurements mainly
include drivers’ acceleration, braking, lane position, steering angle, and handle movement
patterns [10–12]. Such measurements are easily obtainable but dependent on vehicle types,
driving habits, or road conditions. Similarly, facial behavior measurements, such as eye
gaze status, pupil dilation, blink rate, yawning, and head movement, can be acquired
easily without interfering with the driver [13–15]. However, these measurements tend to
be unstable under certain conditions, such as poor lighting, bad weather, at night, or when
a driver is wearing eyeglasses.
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Meanwhile, physiological measurements are not affected by external factors unrelated
to stress, such as lighting conditions or driving manner. Moreover, physiological signals
collected by equipment attached to the body can provide relevant information on a driver’s
internal state, which are effective for stress recognition [16–18]. As stress response is related
to autonomic nervous system activity, galvanic skin response (GSR) signals associated with
sweat gland activity and heart rate (HR) associated with cardiac activity are often used
as reliable stress indicators [19,20]. Thus, measuring and utilizing various physiological
signals from low-cost and widely available equipment is highlighted in stress recognition
problems [14,21,22].

In stress recognition studies, feature extraction has been performed mainly in the
time or frequency domain of physiological signals. Time domain features were typically
extracted from time series segments truncated by window sliding strategies [2,6,23–28],
whereas frequency domain features were extracted from low- and/or high-frequency
regions [6,25–27,29,30]. Based on these features, statistical measures such as mean, standard
deviation, skewness and kurtosis were commonly calculated and used to differentiate
between stressed and non-stressed conditions [24]. Meanwhile, in other studies [14,31,32],
domain-dependent features defined according to experts’ domain knowledge on specific
signal types or human mental stress were used. Although such features are effective, they
are generally not robust to certain variations, such as noise and intrapersonal variability.

In addition, nonlinear features, such as recurrence quantification analysis (RQA) [33]
measurements, were employed in some stress recognition studies [6,34,35]. RQA measure-
ments are to quantify the structure of a recurrence plot (RP) [36] representing the recurrence
properties of time series data presented in the phase space trajectory. Although used in
several studies, RQA measurements are limited in their usefulness because they provide
less information than RPs themselves. So, it seems to be a prospective approach to learn
and extract features directly from the RP itself. Table 1 provides the types of features that
were used primarily in stress recognition studies.

Table 1. Type of features often used in stress recognition studies using physiological signals.

Feature Domain Physiological Signals Feature Examples Study

Time
GSR, ECG, HR,
ST, BR, SpO2,

BVP

Mean, Median, SD, RMS, Skewness, Kurtosis,
Maximum, Minimum, Interquartile range, Sum, Amplitude,
Rise time, Means of differences between adjacent elements,

Number of peaks

[2,6,23–28]

Frequency GSR, ECG, RSP Entropy, Power spectrum density, Power sum, The average
power, LF, HF, Ratio of LF/HF, Spectral peak features [6,25–27,29,30]

Domain-dependent GSR, ECG, RSP, EMG
Mean HP, Variation in HP, Variation in GSR, Differential

area between GSR and its first-order interpolation, Product
between RMS and SDCC, Trend-based feature generation

[14,31,32]

Nonlinear ECG RP, RQA, Poincare plot [6,34,35]

GSR: galvanic skin response; ECG: electrocardiogram; HR: heart rate; ST: skin temperature; BR: breath-flow rate; SpO2: oximetry; BVP:
blood volume pressure; RSP: respiration; EMG: electromyogram; SD: standard deviation; RMS: root mean squares; LF: low frequency; HF:
high frequency; HP: heart period; SDCC: standard deviation of the frequencies; RP: recurrence plot.

Furthermore, in driving situations, short-term monitoring is essential to driving safety.
However, many previous studies on stress detection used relatively long-term physiological
signals, typically several minutes long [30,37]. In some recent studies [14,26,38], short-term
ECG signals were often used which have high sampling frequency and correlation with
stress conditions. However, ECGs are inconvenient and suffer from noise vulnerability
from unstable contacts. Nowadays the leveraging of short-term (i.e., tens of seconds
long) GSR or HR signals is increasing, but still knowledge-based feature engineering
accompanied with conventional machine learning classifiers requires substantial time and
human efforts [2,6,14,28].
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To address above issues, in this study, we investigate the stress detection problem
using short-term GSR and HR signals easily obtainable from wearable devices. Unlike
conventional studies that utilize statistical features or domain knowledge-based feature
engineering, we explored the nonlinear features presented in continuous RPs of short-term
foot GSR (FGSR), hand GSR (HGSR), and HR signals, along with multimodal CNNs.

The main contributions of this study can be summarized as follows:

• Employing short-term (30-s or less) FGSR, HGSR, and HR signals, which have not
been fully utilized in previous stress classification studies.

• Investigating continuous RPs (Cont-RPs) obtained by converting one-dimensional
time series into two-dimensional matrices for exploring features differentiating be-
tween stressed and relaxed states.

• Proposing a multimodal CNN classifier based on Cont-RPs and validating its effec-
tiveness in drivers’ stress classification.

2. Materials and Methods

The proposed method using multimodal CNNs for stress detection is summarized in
Figure 1. The method consists of three CNNs for handling foot GSR (FGSR), hand GSR
(HGSR), and HR signals. Each CNN receives a nonlinear representation of the input signals
to train the network, in which the nonlinear representation is obtained by generating
continuous RPs (Cont-RPs), which is explained in Section 2.3. Next, the three outputs of the
last convolution block of each CNN are flattened and concatenated into one representation
vector, which is fed to a fully connected layer for stress class prediction.

Figure 1. Overview of proposed multimodal CNN approach using FGSR, HGSR, and HR signals for stress class prediction.

2.1. Driving Stress Dataset

The dataset used in this study was obtained from the Stress Recognition in Automobile
Drivers (SRAD) dataset in PhysioNet [37]. The SRAD dataset was originally collected to
determine drivers’ relative stress level based on physiological signals in real-world driving
environments. The dataset contains multiple types of physiological signals related to
different driving stress conditions obtained from nine healthy subjects in the context of
driving a given route through open roads. The prescribed route has two rest periods before
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and after driving, two highway driving periods, and three city driving periods. According
to [37], physiological signals from the rest and highway and city driving periods are related
to low, medium, and high levels of stress, respectively.

A total of 17 recordings ranging from 60 to 90 min are available to the public. Each
recording consists of six different physiological signals, including ECG, electromyogram
(EMG), FGSR, HGSR, HR, and respiration (RESP). In addition, another time series called a
“marker” is given for each recording to indicate the interval (i.e., start and end points) of
each period and its corresponding stress level. Figure 2 presents an example of the three
signals in one recording divided into seven segments according to the period-switching
lines extracted from the marker data. The magnitude of the physiological signals clearly
varied with the road conditions, which generated different stress levels.

Figure 2. Example of multiple physiological signals within one recording segmented based on different road conditions.

In this study, only nine recordings (i.e., drive 06, 07, 08, 09, 10, 11, 12, 15, and 16)
were used where the marker signals were clear, and all three signals were provided. The
excluded eight recordings do not contain all three sensor signals, or their marker signals
are not clear in terms of transient time between each period, as shown in Table 2.

Table 2. Excluded recordings in our paper and the reasons.

Excluded Recording Reason

drive 01 Marker signal is missing.
drive 02 HGSR signal is missing.
drive 03 Marker and HR signals are missing.
drive 04 Marker signal is not clear.
drive 05 HR signal is missing.
drive 13 HGSR signal is missing.
drive 14 HR signal is missing.
drive 17 Marker signal is missing.

The statistical characteristics of the nine recordings used in our experiment are given
in Table 3. In this table, it is observed that the values of the three signals (FGSR, HGSR, and
HR) are in very different ranges depending on subjects. Moreover, in some subjects, the
range of signal values very overlaps between low and medium stress levels or between
medium and high stress levels. To clarify the usefulness of Cont-RPs for the three signals,
this study focused on the problem of distinguishing between low stress levels in rest and
high stress levels during city driving.
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Table 3. Mean and standard deviation of the three physiological signals for 9 recordings used in experiment.

Sensor FGSR HGSR HR

Status
(Stress
Level)

Rest
(Low)

Highway
Driving

(Medium)

City
Driving
(High)

Rest
(Low)

Highway
Driving

(Medium)

City
Driving
(High)

Rest
(Low)

Highway
Driving

(Medium)

City
Driving
(High)

drive 06 7.42 ± 1.80 7.25 ± 1.22 10.29 ± 2.64 18.36 ± 1.32 16.19 ± 1.77 19.36 ± 1.91 80.24 ± 9.35 88.31 ± 10.50 99.75 ± 13.19
drive 07 9.21 ± 3.36 12.76 ± 1.16 12.81 ± 1.72 5.46 ± 1.71 6.76 ± 1.17 7.75 ± 1.20 70.9 ± 8.41 73.44 ± 5.55 78.22 ± 7.60
drive 08 2.89 ± 0.93 6.44 ± 0.90 6.80 ± 1.19 3.21 ± 0.67 5.45 ± 0.97 6.03 ± 1.54 63.65 ± 12.53 66.49 ± 11.04 74.87 ± 24.93
drive 09 3.55 ± 1.70 5.12 ± 0.99 5.27 ± 1.10 4.40 ± 2.39 5.66 ± 1.35 6.60 ± 1.69 71.24 ± 15.33 73.36 ± 18.20 74.03 ± 15.36
drive 10 4.62 ± 3.23 6.96 ± 2.12 9.66 ± 2.23 6.98 ± 4.05 6.44 ± 1.75 9.32 ± 2.60 75.35 ± 10.60 77.66 ± 7.92 83.73 ± 12.99
drive 11 3.24 ± 0.89 5.61 ± 0.86 6.23 ± 1.28 3.53 ± 1.21 7.32 ± 1.36 8.52 ± 1.94 60.64 ± 9.53 71.42 ± 21.00 75.54 ± 23.85
drive 12 3.32 ± 2.99 4.07 ± 1.27 5.35 ± 3.40 7.67 ± 2.70 15.44 ± 2.21 15.53 ± 2.00 78.72 ± 4.57 87.59 ± 4.06 88.44 ± 6.32
drive 15 4.35 ± 1.38 6.84 ± 0.80 7.69 ± 1.37 4.55 ± 1.01 6.67 ± 1.25 7.77 ± 1.86 69.83 ± 24.91 67.98 ± 11.01 72.36 ± 14.48
drive 16 3.74 ± 0.91 5.71 ± 0.74 6.90 ± 1.31 16.09 ± 1.84 20.10 ± 1.07 21.21 ± 2.11 89.16 ± 10.30 101.9 ± 12.65 106.1 ± 17.57

2.2. Preprocessing

To analyze the three signals, namely, FGSR, HGSR, and HR, from the input recordings,
we preprocessed them in the following way. First, we resampled each signal to equalize
the sampling frequency and produced RPs with an appropriate size, that is, neither too
large nor too small, to adequately represent time-varying patterns. Specifically, in the
SRAD dataset, two types of GSR signals (i.e., FGSR and HGSR) are given at a sampling rate
between 33 Hz and 35 Hz, and the HR signals have a sampling rate between 0.5 Hz and 1 Hz.
Therefore, we downsampled the GSR signals and upsampled the HR signals to equally
obtain 16 samples per second. By doing so, reducing computational complexity while
maintaining key information on the signal changes caused by driving stress was possible.

Second, we applied a median filter to eliminate noise and artifacts that can be caused
by poor electrode contact or undesirable body movements. Median filtering is efficient for
reducing the impact of these spiky noises, and easier to implement than other complicated
filtering techniques. Variations in the magnitude of physiological signals from different
people or under different environments (external factors such as temperature and humidity)
exist. Thus, to compare signals of different amplitudes, we normalized them to have zero
mean and unit standard deviation.

Finally, we generated short-term (10 s and 30 s) samples by segmenting the signals
into a fixed window size with a 50% overlap between adjacent segments and assigned the
same label to each sample as the original. To formulate the stress prediction problem, we
used only the samples labeled as one of two stress levels, in which low-level stress (i.e.,
relaxed) was assigned to the rest periods, and high-level stress (i.e., stressed) was assigned
to the city driving periods. If some transitions are involved in one sample, from the relaxed
state to the stressed state, or vice versa, the sample was not considered for further analyses.

2.3. Stress-Relevant Characteristics of Cont-RPs

To investigate nonlinear properties distinct in the stressed and relaxed states, we
converted the one-dimensional time series into two-dimensional matrices representing
Cont-RPs. A conventional RP [36] is represented as a binary matrix, indicating the recurring
states of dynamic system in the phase space. Specifically, we marked each component in
the RP matrix as 1 if the distance between the two states in the phase space is less than the
predefined threshold value, and 0 otherwise. Existing RP-based studies are based mainly
on these binarized RPs.

Unlike such studies, we attempted to utilize all the information contained in the matrix
of distances between the two states in the phase space without binarization. Therefore, the
RP matrix used in this study contained components with continuous values, indicating the
degree of recurrence between the two states, rather than binary values, which are referred
to as Cont-RPs.

Examples of Cont-RPs for the three short-term FGSR, HGSR, and HR signals are
presented in Figure 3 (for 10 s) and Figure 4 (for 30 s). We set the embedding dimension to
3 and the time delay to 2 so that the resulting Cont-RPs can well classify between stressed
and relaxed states. In the figures, the magnitude of the components in the Cont-RPs is
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the Euclidean distance between two embedded states in phase space, visualized as color
intensities with low and high values shown as dark blue and yellow, respectively.

Figure 3. Examples of Cont-RPs for short-term (30 s) FGSR, HGSR, and HR signals.

Figure 4. Examples of Cont-RPs for short-term (10 s) FGSR, HGSR, and HR signals.

Overall, the Cont-RP patterns showed the difference between the stressed and relaxed
states. One distinct trait was that complex and irregular patterns were observed in the
stressed state, whereas monotonous and regular patterns were observed in the relaxed
states. Specifically, clearer distinctions between the two states were observed in the ex-
amples of both GSR signals regardless of their length (both 30 s and 10 s). Netting or
bubble-shaped patterns appeared irregularly in the stressed conditions, whereas smooth
transitions were mostly observed in the relaxed state, with few drastic transitions in inten-
sity changes. In addition, slight differences were observed between the FGSR and HGSR
signals, despite both being GSRs. This outcome appeared presumably because the two
GSR signals were measured on drivers’ different body parts doing different activities while
driving. Thus, they are likely complementary when used together.
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Meanwhile, the Cont-RPs of the HR signals had characteristics differing from those
of the Cont-RPs of the GSR signals. Figures 3 and 4 show checkerboard patterns with
regularly arranged squares with a similar size in the relaxed state, thereby indicating that
the HR signals changed regularly. Meanwhile, in the stressful situations, bright vertical
and horizontal lines appeared irregularly in contrast to the relaxed state. In addition, given
the short-length (10 s) of the signals, their Cont-RPs manifested more localized patterns
that corresponded to the 1/9 region of the 30 s Cont-RPs, as shown in Figures 3 and 4.

The Cont-RPs of the three types of signals exhibited different aspects of characteristics
related to stress. Therefore, examining the three signals individually to extract stress-
relevant features would be worthwhile. For this purpose, we employed multimodal CNN,
which is detailed below.

2.4. Feature Learning and Classification Based on Cont-RPs

To automatically learn the stress-relevant features of the three types of physiological
signals, we constructed a multimodal CNN model consisting of three CNNs for the three
signals and one dense layer to generate the probabilities of each stress class (e.g., stressed or
related) from their outputs. As inputs for each CNN for training, the Cont-RPs of each type
of signal were given. That is, three CNNs were for learning the inherent features contained
in the Cont-RPs of FGSR, HGSR, and HR signals. The entire procedure is depicted in
Figure 5, which can be divided into three phases, that is, first, learning representative
feature maps through the three CNNs from the Cont-RPs of the three types of signals;
second, combining their flattened outputs into one integrated representation vector; and
third, generating class probabilities based on the representation vectors by learning the
relationships between them through a fully-connected layer with a sigmoid function.

Figure 5. Detailed configuration of proposed multimodal CNN model for feature learning and stress classification.

To learn the representative feature maps of the Cont-RPs, we built three CNNs with
the same architecture, as depicted in Figure 5. The architecture of our CNNs is the same as
the front part of the VGG16 model [39], but all the parameters were trained from scratch
based on our training dataset. That is, each CNN consisted of five convolution blocks, each
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of which contained a two-dimensional convolution, rectified linear unit (ReLU) activation,
and max pooling layer. The first two convolution blocks (i.e., ConvBlocks 1 and 2) included
two convolution layers, whereas the remaining blocks contained three convolution layers.
In addition, 3 × 3 filters with a stride of 1 were used for all the convolution layers and
2 × 2 filters with a stride of 2 were used for the max pooling layer, similar to [39]. The
convolution layers learn spatial information and extract features using kernels with sliding
window strategy, while pooling layers reduce the spatial dimension of feature maps. After
going through the fifth convolution block in each CNN, the resulting three feature maps
were flattened (i.e., three vectors with dimension of 256) and combined into one integrated
representation vector with dimension of 768. Subsequently, this vector was fed to the dense
layer, and the sigmoid function was used as the activation function for the output layer to
predict the probabilities of the two classes, that is, the stressed and relaxed states.

3. Results and Discussion
3.1. Experimental Setup

For the experiments, we implemented the proposed method in Python using Keras
with Tensorflow backend and carried out with an NVIDIA Titan X and 12 GB of RAM.
In the SRAD dataset, the number of samples for the relaxed state (minority class) was
fewer than the number of samples for the stressed state (majority class). The classifier
from the imbalanced data was prone to bias toward the majority class, whereas the mi-
nority class samples were not well learned. To handle the class imbalance problem, we
performed random undersampling on the stressed samples to balance the class distribution
between the stressed and relaxed states. Consequently, we obtained 1872 30-s samples and
5348 10-s samples for the model development.

To assess the effectiveness of the proposed method, we used leave-one recording-out
(i.e., recording-wise) cross-validation. That is, for each round, we used one recording
for testing and the remaining eight recordings for model training. We conducted this
procedure to evaluate the generalization ability of the trained model for new recordings of
completely unknown individuals not included in the training data. We performed a grid
search to get optimal hyperparameters such as learning rate, batch size and the number
of epochs. For example, we considered a suite of different batch sizes from 1 to 20, the
number of epochs between 1 to 30, and learning rate from 0.1 to 0.00001. We then trained
our multimodal CNN model for 15 epochs with a batch size of 4 and used the Stochastic
Gradient Descent (SGD) optimizer with a learning rate of 0.001 for the weight update.

We measured classification performance using accuracy, precision (positive predictive
values), recall (sensitivity), the F1-score, and area under the curve (AUC). Accuracy and
the AUC describe the overall performance across all classes of samples, whereas precision,
recall and the F1-score calculated for each class present a method’s ability to distinguish
between certain classes. These indices can be calculated as follows:

Accuracy = (TP + TN)/(TP + TN + FP + FN) × 100%,

Precision = TP/(TP + FP) × 100%,

Recall = TP/(TP + FN) × 100%,

F1-score = (2 × Precision × Recall)/(Precision + Recall)

where TP is the number of correctly classified positive samples, TN is the number of
correctly classified negative samples, FP is the number of negative samples incorrectly
classified as positive and FN is the number of positive samples incorrectly classified
as negative.

3.2. Performance Evaluation

We evaluated the performance of the proposed stress detection approach using two
different lengths (i.e., 10-s and 30-s) of input signals. The overall classification results are
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summarized in Table 4. From this table, it is found that for the 30-s input signals, overall
classification accuracy (and F1-score) was 95.67%, whereas that for the 10-s input signals
was 92.33%. Moreover, the AUC difference between the 30-s and 10-s input signals was not
exceedingly large, with the AUC as 0.9870 and 0.9619, respectively.

Table 4. Classification performance of proposed method based on input signal length.

Input
Length Class Precision

(PPV)
Recall
(Sensitivity) F1-Score Overall

Accuracy AUC

30 s Stressed 95.7% 96.0% 95.8%
Relaxed 95.9% 95.8% 95.7%

95.89% 95.67% 95.67% 95.67% 0.9870

10 s Stressed 91.7% 92.8% 92.3%
Relaxed 92.4% 91.7% 91.9%

91.67% 92.78% 92.33% 92.33% 0.9619

Figure 6 represents aggregated confusion matrices which include the aggregation of
all classification results obtained from leave-one recording-out cross-validation. We can
observe that only a small portion of stressed and relaxed samples (3.8% of stressed samples
and 4.6% of relaxed samples for classification using 30-s signals; 7.4% of stressed samples
and 8.5% of relaxed samples for classification using 10-s signals) were incorrectly classified
into each other.

Figure 6. Aggregated confusion matrices for each input signal length (30 s and 10 s). The number
in parentheses of each quadrants of the confusion matrices indicates the total number of samples
classified as each case.

Interestingly, reducing the length of the input signals from 30 s to 10 s did not signif-
icantly degrade our proposed method’s ability to distinguish between the stressed and
relaxed states. This finding showed that our proposed method performed relatively well in
detecting the stressed state using only short-length 10-s inputs.

As shown in Figure 7, the proposed method’s classification performance in the indi-
vidual recordings varied from 86% to 100% for the 30-s signals and from 85% to 99% for
the 10-s signals. In addition, when using the 10-s signals, classification accuracy decreased
slightly by 1 to 7% compared with when using the 30-s signals.

Next, we compared the performance of our multimodal CNN model with that of
three unimodal CNNs for the FGSR, HGSR, and HR signals, and the results are presented
in Table 5. This table shows that the combined use of the three physiological signals
significantly improved classification performance by approximately 5% to 33% for the
30-s signals and by 2% to 36% for the 10-s signals. Moreover, among the three unimodal
CNNs, the FGSR-CNN demonstrated a fairly satisfactory performance, whereas the HR-
CNN exhibited a fairly poor performance. The accuracy of the HGSR-CNN decreased by
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approximately 10% to 14% depending on the length of the input signals compared with
that of the FGSR-CNN.

Figure 7. Classification performance in individual recordings based on input signal length (30 s and
10 s).

Table 5. Classification performance of proposed method based on input signal length and
sensor type.

Signal Stressed Relaxed Overall

Length Type Precision Recall Precision Recall F1-Score Accuracy AUC

30 s FGSR 92.67% 87.50% 89.67% 92.50% 90.62% 90.83% 0.9091
HGSR 82.71% 79.57% 82.86% 77.00% 76.57% 78.29% 0.7825
HR 67.25% 59.75% 64.25% 66.00% 61.00% 62.50% 0.6274
3 types 95.67% 96.00% 95.89% 95.78% 95.67% 95.67% 0.9870

10 s FGSR 92.88% 88.50% 89.63% 92.38% 90.50% 90.38% 0.9101
HGSR 83.56% 82.67% 83.56% 79.00% 79.83% 80.67% 0.8141
HR 63.86% 61.86% 55.57% 57.43% 56.71% 59.57% 0.5963
3 types 91.7% 92.8% 92.4% 91.7% 92.33% 92.33% 0.9619

Regarding the variations in model performance, there was not much difference be-
tween 30-s and 10-s signals in FGSR. That is, the performance of stress detection with
FGSR was not significantly affected by the length of input signal. This indicates that the
Cont-RPs of short-term FGSR signals can be effective for stress classification in that they
will reflect the traits able to differentiate between stressed and relaxed states. Moreover,
HGSR performs slightly better for 10-s signals than for 30-s signals, which means that
the short-term HGSR signal may be a more reliable indicator for stress detection than the
long-term HGSR signal.

Further, the change in performance among different recordings is not very significant
in our multimodal CNN model for both 30-s and 10-s signals, compared to other unimodal
CNNs (refer to Figure 8). Of the three unimodal CNNs, FGSR is the most stable for different
recordings regardless of the input signal length. For HR, longer signals appear more stable
when classifying stressed/relaxed states. That is, 30-s signals have less variations between
different recordings than 10-s signals.
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Figure 8. Comparison of the performance variations of our multimodal CNN model and three
unimodal CNNs for FGSR, HGSR and HR signals depending on input signal length and sensor type.

We also compared the classification performance of multimodal CNN with two base-
line neural network models. All three models in Table 6 used CNN architecture to extract
features from FGSR, HGSR, and HR signals, and perform stress classification via concatena-
tion of three vectors and fully connected layers as proposed multimodal CNN. Specifically,
the multimodal 1-D CNN is a classifier that takes three one-dimensional sequence of FGSR,
HGSR, and HR, and outputs the probability of stressed and relaxed states. The three
inputs are the preprocessed signals before generating Cont-RPs. The multimodal VGG16
model has the same structure as proposed multimodal CNN but uses default parameters
of existing VGG16 without parameter learning.

Table 6. Classification performance of proposed method compared with baseline CNN classifier.

Signal Input Classification Stressed Relaxed Overall

Length Type Model Precision Recall Precision Recall Accuracy

30 s 1-D
sequence

Multimodal
1-D CNN 82.56% 86.78% 86.89% 80.22% 83.44%

Cont-RP Multimodal
VGG16 87.88% 81.88% 85.22% 86.11% 84.11%

Cont-RP Multimodal
CNN 95.67% 96.00% 95.89% 95.78% 95.67%

10 s 1-D
sequence

Multimodal
1-D CNN 83.11% 84.33% 86.33% 82.44% 83.33%

Cont-RP Multimodal
VGG16 84.55% 81.33% 84.55% 86.44% 84.00%

Cont-RP Multimodal
CNN 91.7% 92.8% 92.4% 91.7% 92.33%

Table 6 shows that the performance of two models (multimodal CNN and multimodal
VGG16) with three Cont-RPs as input is approximately 1% to 12% and 1% to 9% higher
than that of multimodal 1-D CNN model with one-dimensional sequence as input for 30-s
and 10-s input signal, respectively. The results indicate that Cont-RPs have more useful
features for stress classification than one-dimensional signals as itself which have been
used in most previous studies. Even with the same VGG structure, the performance of
multimodal CNN model which have learned stress-relevant features based on Cont-RP
samples is about 8% to 10% higher than that of multimodal VGG16 model.
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3.3. Comparison with Related Works

A number of related studies were conducted on the problem of classifying drivers’
stress based on physiological signals, including GSR and/or HR. Table 7 shows the classifi-
cation performance of other two-class (stressed and relaxed) stress classification methods
compared with that of the proposed method. Although some of the other methods were
tested using different datasets, they were also included in this table for reference.

Table 7. Comparison of other 2-class stress classification methods in real-time driving scenarios.

Method Dataset Used Signals Input
Length Classifier Accuracy

[30] SRAD FGSR, HR, RESP 5 min Logistic
Regression 81.39%

[40] Self-collection HGSR, HR, HRV,
Breath Rate 100 s CNN 92%

[41] SRAD FGSR, HGSR, HR 30 s SVM 93%
Proposed SRAD FGSR, HGSR, HR 30 s Multimodal CNN 95.67%
Proposed SRAD FGSR, HGSR, HR 10 s Multimodal CNN 92.33%

HRV: heart rate variability; RESP: respiration.

Most of the studies in this table used multisensor signals for detecting drivers’ stress,
which is favorable in the creation of a reliable system. For example, Wang et al. [40]
proposed a CNN-based driving stress detection scheme using GSR, HR, HRV and breathe
rate, and obtained 92% accuracy in a two-class classification. It is worth noting that the
authors analyzed their own collected dataset, which differs from the dataset (i.e., SRAD)
used in our experiments. Jiménez-Limas et al. [30] detected two driver stress classes
using logistic regression and 5-min FGSR and HR signals and respiration rate. As drivers’
conditions should be detected as quickly as possible to prevent potential accidents, long
signals (over 100 s) are not very helpful in detecting drivers’ stress early in actual situations.
Lopez-Martinez et al. [41] classified two stress levels using support vector machine (SVM)
and achieved high accuracy. However, the achieved performance is 2.67% lower than that
of our model based on the same length (30 s) of signals.

In addition to Table 7, where comparison was done with the performance of stress
classification for two classes, there are other studies using the same SRAD dataset to
perform stress level classification for three classes which is slightly different from our
purpose. Chen et al. [26] extracted features from GSR, ECG and respiration data and
achieved 89.7% accuracy in by kernel-based classifiers. Meanwhile, Wang et al. [42]
employed Adaboost classifier for driving stress detection system by using only FGSR data
and resulted in high accuracy (90.09%). Although a single sensor is convenient to use,
unstable results can occur in that no additional sensor data compensate for lost information
due to inaccurate and missing signals. Healey and Picard [37] classified 5 min intervals
of data into three stress levels with linear discriminant analysis (LDA). They used ECG,
EMG, respiration rate and two GSR data, achieving the highest accuracy in the listed
studies. Singh et al. [43] utilized 10 s signals of HGSR and photoplethysmogram (PPG)
sensor for three-class classification, resulted in 89.23% accuracy. It is worth noting that they
analyzed their own collected dataset, which is different from the data we used (SRAD) in
our experiments.

The significance of our proposed method is in employing short-term (30-s or less)
signals of GSR and HR, which are acquired while real driving but not fully utilized in stress
classification. As mentioned in Section 1, considering GSR and HR related to ANS activity,
experimental results have shown that GSR and HR signals of short length (30-s or less)
are useful as stress indicators. Although the proposed model achieved good performance
for unseen recording in leave-one recording-out cross-validation, the performance of our
model is still limited by the small number of samples used in the experiment due to the lack
of public available dataset collected in the actual driving environment. In the future, we
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plan to measure more physiological signals in simulated driving environment and conduct
additional experiments to obtain more reliable results for the proposed model.

3.4. Visualization of Learned Feature Distributions

As mentioned in Section 2.4, a set of convolution blocks (1~5) in each CNN extracted
features from the Cont-RPs of each type of input signal and outputted a 256-dimensional
vector. As we employed three types of physiological signals as input, the concatenation
of the three outputs led to one 253 × 3 = 768 integrated representation vector, which was
then fed to a fully connected layer for stress classification. To visually confirm that the
representation vectors learned from the Cont-RPs of the FGSR, HGSR, and HR signals were
discriminative between classes, we reduced the dimension of the representation vectors
from 768 to 2 using the t-stochastic neighbor embedding (t-SNE) method [44] and visualized
them in a reduced two-dimensional space, as shown in Figure 9. The t-SNE method is a
nonlinear dimensionality reduction technique that can transform high-dimensional vectors
into low-dimensional vectors by preserving the intrinsic structure of the data.

Figure 9. Distribution of our learned representation vectors embedded in two-dimensional vector space learned from FGSR,
HGSR, and HR signals (red: stressed, green: relaxed).

In Figure 9, the representation vectors are colored by class, with red and green denoting
the stressed and relaxed classes, respectively. The two classes were well distinguished in
terms of 30-s and 10-s signals, which illustrated that our model learned satisfactory features
from the Cont-RPs of the FGSR, HGSR, and HR signals for distinguishing between classes.

Interestingly, Figure 9 shows that the distributions of the two classes were in the form
of their own long bands. Given that we split the continuous long-time signals into multi-
ple short-length segments, we can infer that the learned representation vectors not only
distinguish between classes but also contain consecutive temporal features between them.

4. Conclusions

In this study, we proposed a new method for detecting drivers’ stress based on
short-term physiological signals, namely, FGSR, HGSR, and HR, which can be easily
obtained by wearable devices. Specifically, by constructing the two-dimensional nonlinear
representation of the Cont-RPs of short-term (10 s and 30 s) input signals, we were able to
learn their corresponding satisfactory representation vectors through multimodal CNNs
that can well distinguish between stressed and relaxed states. Experimental results using
the publicly available SRAD dataset showed that the proposed method demonstrated
superior performance in detecting drivers’ stress, overall accuracy of 95.67% with 30-s
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signals and 92.33% with 10-s signals, and a performance improvement of approximately
2.5–3% compared with conventional studies using long-term (100 s or more) signals.

As demand to leverage various types of physiological signals acquired by wearable
devices increases, the proposed method is expected to be widely used for detecting drivers’
stress in real driving scenarios. Moreover, the proposed method’s use of short-term signals
may be highly attractive for real-time applications. In future research, we plan to determine
whether the proposed method can be applied to other types of physiological signals.
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