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THE BIGGER PICTURE The use of high-quality whole-slide scanners enables the fast acquisition of large
amounts of image data, showing extensive context and microscopic detail at the same time. While manual
examination of these images of considerable size is highly time consuming and error prone, state-of-the-
art machine-learning approaches enable efficient, automated processing of whole-slide images. In this
paper, we focus on a particularly powerful class of deep-learning architectures, the so-called generative
adversarial networks. Over the past years, the high number of publications on this topic indicates a very
high potential of generative adversarial networks in the field of digital pathology. In this survey, the most
important publications are collected and categorized according to the techniques used and the aspired
application scenario. We identify the main ideas and provide an outlook into the future.

Concept: Basic principles of a new
data science output observed and reported
SUMMARY

Image analysis in the field of digital pathology has recently gained increased popularity. The use of high-qual-
ity whole-slide scanners enables the fast acquisition of large amounts of image data, showing extensive
context and microscopic detail at the same time. Simultaneously, novel machine-learning algorithms have
boosted the performance of image analysis approaches. In this paper, we focus on a particularly powerful
class of architectures, the so-called generative adversarial networks (GANs) applied to histological image
data. Besides improving performance, GANs also enable previously intractable application scenarios in
this field. However, GANs could exhibit a potential for introducing bias. Hereby, we summarize the recent
state-of-the-art developments in a generalizing notation, present the main applications of GANs, and give
an outlook of some chosen promising approaches and their possible future applications. In addition, we iden-
tify currently unavailable methods with potential for future applications.
MOTIVATION

Whole-slide scanners are capable of effectively digitizing histo-

logical or cytological slides without any significant manual effort.

These scanners are capable of generating vast amounts of dig-

ital data, since a single whole-slide image can show up to several

gigapixels in resolution. Digitization opens up the potential for

more effective storage, as well as optimized and standardized

visualization and transmission (telepathology). However, to

outweigh additional effort and thereby make digitization in pa-

thology attractive for routine use, tools for computer-aided anal-

ysis are indispensable. Automatedmethods can provide support

by facilitating basic routine tasks, such as counting objects or

segmenting regions. Moreover, state-of-the-art machine-
This is an open access article und
learning approaches exhibit a potential for recognizing patterns

that normally cannot be easily detected, even by the trained hu-

man eye.1 Therefore, especially for less experienced patholo-

gists, machine-learning approaches exhibit high potential not

only to decrease the time needed but also to improve the diag-

nostic accuracy. A further motivation is provided by consider-

able inter-rater variability in histological examinations.2,3

Microscopic evaluation of tissues or cytological preparations

is the gold standard in clinical diagnostics for a large range of pa-

thologies. Examples of these are smear tests, analysis of the bor-

ders of cancerous tissues during operations, and postmortem

histological testing. Due to an increasing prevalence and, thus,

workload in the field of cancer-related diseases in combination

with a decrease in the number of pathologists,4,5 automated
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assistance tools will be of major importance in the near future. By

facilitating effective automated computer-based processing, im-

age analysis approaches can be a powerful tool to aid clinical

practice. Apart from supporting the pathologists’ daily routine,

automated high-throughput processing techniques can be em-

ployed to boost the potential of histological research regarding

medical and biological data.

Image Analysis in Digital Pathology
Aparticularly relevantapplicationfieldofdigital pathology isexem-

plifiedby thedetection of tissues of interest combinedwith a pixel-

accurate segmentation. Tasks such asnucleus,6–8 cancer,9,10 and

gland11,12 segmentation have been considered in recent studies.

Segmentation approaches combined with the extraction of fea-

tures, such as quantity, area, and morphological characteristics,

allow for the access to image information in an efficient and

condensed manner. Classification approaches13,14 go one step

further and have the potential to provide an observer-independent

decision. While such approaches are completely automated and

observer independent, an open issue in practice is how to deal

with these black-box decisions when the estimated performance

measure (e.g., F-score) does not indicate a perfect categorization

(even if an algorithm is as accurate as a human expert). Stain

normalization15–17 also represents an important field, allowing for

the harmonization of data from a single or several different image

modalities showing stain variability. Stain normalization can be

used as pre-processing for computer-based analysis and to

enhance manual experts’ examination performance. For training

automated image analysis models, stain augmentation (by simu-

lating a wide variety of realistic stain variations) is an alternative

tostainnormalization.Recent researchhasshown thatacombina-

tion of both exhibits the best performance.18

From a technical point of view, a wide range of different ap-

proaches have been applied to histological image data. Before

the era of deep learning, pipelines especially based on thresh-

olding,19 watershed,20 active contours,21 and a combination of

these approaches were proposed for the purpose of segmenta-

tion. Stain-normalization approaches were mainly based on

pixel-level transformations15,17 such as color deconvolution.15

Pixel level in this context means that mappings are generated

without incorporating the pixel neighborhood. Classification ap-

proaches were based on separate feature extraction (e.g., local

binary patterns,22 Fisher vectors23) and classification models

such as support vector machines.24

Recently, deep-learning approaches and particularly convolu-

tional neural networks (CNNs) have been identified as highly

powerful and generic tools, being capable of performing a large

range of tasks.25,26 In many application scenarios, deep-learning

methods outperformed the existing approaches.25 Especially in

the field of segmentation, the so-called fully convolutional

networks using skip-connection,12,27,28 such as the prominent

U-Net,27 boosted segmentation accuracy and exhibited high ef-

ficiency. This allowed for rapid processing of huge images in

combination with relatively inexpensive consumer graphics pro-

cessing units.

Challenges
A disadvantage, however, of many deep-learning approaches

lies in the fact that these methods typically need large amounts
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of labeled training data. Data augmentation can be a powerful

tool to lessen this restriction.27,29,30 Nevertheless, a significant

amount of manually annotated data is mostly indispensable.

Due to the large image size of up to several gigapixels, manual

annotation of histological whole-slide images for the purpose

of segmentation can be extremely time consuming. As this

task often needs to be performed by medical experts, this fact

constitutes a burden for the application of deep-learning ap-

proaches in practice. A further difficulty arises due to the vari-

ability in the image domain,17 which is typically (unintentionally)

caused by differences in the cutting and staining process. Inten-

tional differences can also be due to other staining techniques,

applied to extract other or additional features from the image

data. Varying staining techniques showing similar morphologies,

but different texture and color characteristics, also require indi-

vidually trained image analysis models. A further source of vari-

ation is given by intra-subject variability, for example due to (a

wide range of) different pathologies. The use of a standard

deep-learning pipeline (without domain adaptation) advocates

for manually annotated training data. These training data have

to cover the whole range of image characteristics, which can

be extremely diverse if several degrees of variation occur.31

Approaches relying on generative adversarial networks

(GANs)32 exhibit the potential to reduce the requirement of large

amounts of manual annotations. This, in turn, reduces the barrier

to entry for automated image analysis methods in medical

imaging. Particularly in the field of digital pathology, recent de-

velopments not only improvedmeasures but even enabled novel

applications. Many tasks for which supervised learning ap-

proaches were indispensable can now be performed with unsu-

pervised techniques.

Contribution
In this review, we summarize the application scenarios and

recent developments of GAN-based approaches in the field of

digital pathology. Based on this research, we highlight applica-

tion scenarios that clearly profit from recent GAN approaches

using some of themost prominent architectures and adaptations

of these architectures. We also identify remaining issues and

challenges and determine relevant highly potential fields of

research for the future. Finally, we also provide uniform defini-

tions to facilitate an orientation in the ‘‘jungle of GANs.’’

First, a summary and classification (based on capabilities) of

architectures applied to digital pathology are provided. Next,

the histological application scenarios are outlined, followed by

a review of the individual approaches. We then discuss trends,

benefits, challenges, and additional potential of GANs before

concluding the review.

GAN ARCHITECTURES

The idea of training two neural networks in a zero-sum min-max

game is shown to enable stable training in image analysis for dig-

ital pathology with several important architectures such as GAN,

cGAN, cycleGAN, InfoGAN, BigGAN and GAN-based Siamese

Networks.8,33–40 In this section, we focus on the technical back-

ground of GAN approaches employed for image analysis in dig-

ital pathology. We analyze these architectures and cluster them

into similar groups (Figure 1) with respect to their applicability.
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Figure 1. Architecture Comparison of Several Latent-to-Image, Image-to-Image, and Image-to-Label Networks for Digital Pathology,
Trained Primarily through an Adversarial Loss
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Additionally, we summarize the capabilities of individual GAN

architectures, and analyze evaluation methods for GAN-based

augmented medical images.

The conventional GAN architecture, introduced by Goodfel-

low et al.,32 is shown in Figure 1A. It enables the generation

of image data by mapping an unstructured latent space into

an image Z / X, using an up-scaling CNN, called a generator

G. To generate images showing the desired characteristics, this
generator is trained with the aim of fooling a discriminator D.

The discriminator, typically also a CNN, is trained to distinguish

between real (x ˛ X) and generated samples (G(z), z ˛ Z). The

labeling y describes the data to be real if y = 1 and generated

if y = 0. Therefore, by describes the discriminator’s prediction,

which is used by the so-called adversarial loss ðlossðy; byÞÞ.32
This loss is incorporated in all of the following GAN archi-

tectures.
PATTER 1, September 11, 2020 3
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This basic architecture can be adjusted in multiple ways and

for a multitude of tasks. These adjustments are, for example,

the addition of a mapping layer before the generator

(Figure 1B38) or the replacement of the generator with an

encoder-decoder structure (Figure 1D41). By replacing the

generator with an encoder-decoder structure (Figure 1D), image

transformations from one domain to another are enabled.42 This

can be achieved by replacing the latent space Z with images of

the source domain X1 and training the generator to transform X1

into a realistic image of the domain X2 using an adversarial loss.

This enables applications such as segmentation (X1/ X2). Add-

ing a mapping network between Z and the generator (Figure 1B)

aims at mapping the unknown latent space Z to a structured

latent space W. This interpretable structure enables semantic

vector operations that translate into domain-specific feature

transformations.38

cGAN (Figure 1C), in comparison with the original GAN

approach (Figure 1A), adds class information (c). The discrimi-

nator distinguishes between real (x) and generated (G(z|c)) sam-

ples with the class as an additional condition. This is obtained by

adding a weighted classification loss ðlossðc; bcÞÞ to the adversa-

rial loss. This architecture is capable of constructing images from

different classes based on a single generator.43

Pix2Pix42 (Figure 1E) is a variation of cGAN40 that replaces the

up-scaling generator for an encoder-decoder structure and the

class information with the corresponding image from the second

domain. Therefore, the Pix2Pix generator learns to translate be-

tween two image domains (X1/ X2). For training, Pix2Pix needs

corresponding samples (pairs) showing images from the two

domains capturing the same underlying content. Therefore, the

requirements are the same as for (fully convolutional) segmenta-

tion networks, such as U-Net.27 To train Pix2Pix, a combination

of the adversarial loss ðlossðy; byÞÞ and the L2ðy; byÞ loss is opti-

mized. Since the input data are a pair, the adversarial loss ana-

lyzes if the conversion X1 / X2 (and not only the output) is

realistic.

cycleGAN44 is an approach (Figure 1F) that enables unpaired

image translation through an adversarial loss in combination

with a cycle-consistency loss. The core idea is to train two gen-

erators to transfer images from domain X1 to domain X2 and vice

versa. Therefore, a loss can be calculated by combining the ad-

versarial loss ðlossðy1;cy1ÞÞ with a cycle-consistency loss

ðlossðx1; x1 00ÞÞ, with x1
00being GX1

+GX2
ðx1Þ for both image do-

mains. This cycle-consistency loss penalizes changes in struc-

tural information from the real to the reconstructed sample.44

Without further constraint, the generators typically also maintain

the structure in the virtual domain. This is probably because a

significant modification of the underlying structure followed by

the inverse modification would be more complex to learn.

Combining the idea of adversarial learning with a Siamese

network,45 as shown in Figure 1G, results in a feature-based

domain-transfer method.34 The far-left part of this network struc-

ture (M2) is a CNN that is trained in a supervised manner and en-

codes the data from domain X2 in a feature space fx2 . The CNN

M11 is trained adversarially in order to extract realistic features

of domain X2 from domain X1. To keep the domain information

of X1, the networks M11 and M12 are trained as a Siamese

network. As shown by Figure 1, the features from M11 and M12

are concatenated and evaluated by a CNN on how well the
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domain information is kept. This formulation leads to a loss

combining the adversarial loss and a mutual information

term (MI(M11 (x1i ),M12 (x1j ))).

The InfoGAN variant46 introduced in Figure 1H35 shows a vari-

ation on the idea of pathologyGAN that aims to add structure to

the latent space in order to havecontrol over the generator results

and thekindof features it produces. The InfoGAN35 variation aims

at finding a structured latent space (W) to decouple the color in-

formation from the underlying image information. This is accom-

plished by initially concatenating the noise matrix with the image

sample from the second domain and then applying the result into

an encoder-decoder structured generator. This generator is

trained adversarially as well as through the mutual information

of the auxiliary network ðMIðw; bwÞÞ that aims at separating the

reconstruction from its structured latent part.

GAN Capabilities in Image Analysis
For differentiation of the capabilities, we decided to use a

generic scheme (as indicated in Figure 1). We defined the ap-

plications as mappings from one input domain to another

output domain. Particularly, we differentiated between Latent-

to-Image (Z2I), Image-to-Image (I2I), and Image-to-Label (I2L)

translation. We further identified Image-to-Latent (I2Z) as an

extension of I2I.

Latent-to-Image

The application corresponds to the original GAN idea of gener-

ating images out of noise.32 This results in a network that can

produce a theoretically infinite number of images based on un-

structured latent samples (z ˛ Z). Such a mapping (Z2I: Z / X)

is typically performed by conventional GANs, cGANs, and their

various modifications such as the progressive-growing

GAN47,48 and Wasserstein GAN,49 partially displayed in Figures

1A, 1B, 1C, and 1H. Additionally, latent samples can be mapped

to a structured space before image generation to enable inter-

pretable modifications.35,38

Image-to-Image

Another typical application of GANs can be summarized as I2I,

i.e., a mapping from one image domain X1 to another image

domain X2 is learned (I2I: X1 / X2). For means of generalization,

we explicitly also categorized segmentation mask domains as

image domains. We decided on this generalization since the

same technical approaches are used for the purpose of I2I, Im-

age-to-Mask (known as segmentation), and Mask-to-Image

translation (known as image synthesis). For this purpose, Pix2Pix

and cycleGAN (Figures 1E and 1F) as well as further GANs such

as the encoder-decoder GAN (Figure 1D) and the adversarially

trained Siamese networks (Figure 1G), can be applied. Training

of I2I approaches can be categorized into two major classes,

namely paired (Pix2Pix and InfoGAN) and unpaired (cycleGAN,

encoder-decoder GAN, and the adversarial Siamese network).

While paired training requires corresponding samples from the

two domains for training, unpaired training only needs two indi-

vidual datasets from both domains. Paired approaches typically

exhibit better performance, whereas unpaired techniques

enable additional areas of application, since paired data are

not always available.44 An extension of I2I is to perform represen-

tation learning on the output of the generator. This enables the I2I

generators to translate between two domains while also main-

taining certain characteristics.50 Figure 1H, for example, shows



Table 1. Disambiguation of Pathological Application Scenarios
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of source domain);
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Stain and

domain

adaptation

I2I image data

acquired with
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imaging

setting

(staining,

scanner)

imaging setting
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with
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data
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weakly

supervised
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image
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to the image data
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label
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I2L image

data
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the InfoGAN variant, learning a pre-defined color representation

in an I2I setting.46

Image-to-Label

I2L translation is typically referred to as classification. A network

is trained to find a mapping I2L: X / {0,1, .,n} from an image

domain X to a label domain comprising n classes. For this pur-

pose, cGANs and cGAN variants can be employed (Figure 1C),

since the discriminator is also trained to determine the class

label.51

Evaluation
In the application of GANs being used to augment or balance

training datasets for subsequent classification34,37,41,50,52 or

segmentation,6,8,31,33,37,39,41,53–55 evaluation is straightforward,

since typical metrics like F-score or accuracy for classification

can be used. However, if there are no labels regarding a final

target, these full-referencemetrics are not applicable. Ameasure
circumventing the need for target labels is given by the Fréchet

inception distance,38,56 which is an objective metric that is able

to compare input image distributions with output image distribu-

tions by using the inception v3 model.57 Another common

method of evaluating augmented and generated images is

through Turing tests, whereby human experts are placed as

another discriminator of real and fake data.29,38,58,59

TASKS IN DIGITAL PATHOLOGY

I2I, I2L, and Z2I correspond to a multitude of applications in his-

tological image analysis. Here, we identified applications spe-

cific for digital pathology and assigned them to one of these

translation settings.

Specifically, we identify in the following subsections stain

normalization, stain adaptation, segmentation using supervised

models, the synthesis of image data for enabling weakly super-

vised and unsupervised learning, and data augmentation as I2I

translation settings. Data augmentation can be both I2I and Z2I

depending on the specific configuration. For disambiguation of

the application categories, we refer the reader to Table 1. In

the following subsections, publications in the field of digital pa-

thology are categorized into one of these settings corresponding

to the main contribution of the GAN approach.

We defined stain normalization as a mapping from an original

image domain to a normalized domain showing lower variability.

With stain adaptation, we refer to the setting whereby not (only)

the variability within one staining protocol, e.g., hematoxylin and

eosin (H&E), but between different protocols, need to be

compensated. In this subsection we also included domain adap-

tation, which is a generalization of stain adaptation but not a

typical I2I setting. Domain adaptation in general is not neces-

sarily performed on image level but on feature level. Regardless,

we decided upon this categorization due to the similarity from

the application’s point of view. According to our definition, stain

adaptation can be interpreted as a special type of domain adap-

tation. In this paper, data augmentation refers to the I2I setting

and data generation refers to the Z2I configuration.

Stain Normalization
Since stain normalization is a type of I2I translation, several GAN-

based approaches, as introduced in the subsection GAN Archi-

tectures, can be used to enable stain normalization. cycleGAN

(Figure 1F) can be optimized for themeans of stain normalization,

based on one training dataset from a general (Xo) and a normal-

ized domain (Xn). Pairs, which are difficult to collect for this sce-

nario, are therefore not needed. De Bel et al.37 investigated

various experimental settings with different generator architec-

tures combined with data-augmentation strategies for cycle-

GAN. They showed that stain normalization using the baseline

architecture performs well and eliminates the need for any

further stain augmentation. It is shown in general that cycleGAN

is highly flexible and powerful and exhibits a general-purpose ar-

chitecture that is capable of stain normalization. However,

compared with common pixel-based stain-normalization ap-

proaches,15,17 cycleGAN can do more than apply a non-linear

pixel-based mapping. The approach is theoretically also able

to generate changes in texture. Depending on the used datasets

for training, this capability corresponds to the potential of
PATTER 1, September 11, 2020 5
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introducing bias. This is especially the case if Xo and Xn show

systematic differences regarding the underlying tissue charac-

teristics (e.g., in the case of data showing variable degrees of pa-

thologies). Experiments have proved good performance in gen-

eral, also with respect to final segmentation or classification

tasks.37 However, an experimental investigation of the impact

of different distributions in the two datasets used for training

the model has not been performed so far. To eliminate bias in

these kinds of architectures, the stain-normalization stage can

be integrated into a classification approach.41

Other approaches performing unpaired I2I translation for stain

normalization replace the cycle-consistency loss with an alterna-

tive formulation. Bentaieb and Hamarneh41 used an encoder-

decoder GAN (Figure 1D) with an additional loss to keep

morphological consistency. This is achieved through a further

gradient loss. Additionally, this stain-normalization model is

combined with a classification model, which can be used to

add a classification loss in order to optimize the separability of

the classes. The potential of the additional loss here faces

reduced flexibility, since the model needs to be trained individu-

ally for each task. Nevertheless the limitation is modest, as clas-

sification models are necessarily trained or adapted for each

specific task.

Zhou et al.52 adapt cycleGAN for stain normalization on a single

dataset consisting of multiple input characteristics. The first step

to achieve a stain-independent normalized color space is based

on cluster analysis, which partitions the dataset into a tight Xn

and a loose subset Xo. Furthermore, the color information, ex-

tracted from Xo, is used as an auxiliary input for the generator to

restore the original color information. This is supposed to stabilize

the GAN cycle in potential one-to-many60,61 mapping situations.

A different stain-normalization approach is based on the idea

of InfoGAN (Figure 1H). Zanjani et al.35 replaced the latent space

Z with the lightness channel of the source image. Additionally, a

mutual information loss was used to train the generator to repre-

sent the structured space W as the color transformation of the

source image. This allowed for the normalization into a pre-

defined structured space or in the case of Zanjani et al.,35 a

pre-defined color space.

Due to the enormous size of whole-slide images, processing is

mostly performed patchwise. This, in combination with instance

normalization, can lead to tiling artifacts. It was shown that these

artifacts can be clearly reduced by adding an additional percep-

tual loss.62

Even though stain normalization is specific for digital pathol-

ogy, similar approaches are used for harmonization in related ap-

plications such as the normalization of magnetic resonance

images.63

Stain and Domain Adaptation
One approach to performing domain as well as stain adaptation

is to employ cycleGAN (Figure 1F) as introduced by Huang

et al.64 These authors performed segmentation based on previ-

ously adapted image data. While the adaptation method is

based on cycleGAN and is very similar to stain normaliza-

tion,36,37 the focus is on translating one histological stain into

another. For the purpose of domain adaptation, the images are

virtually restained before processing. This approach is based

on the assumption that annotated training data are only available
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for one particular stain that is approached by translating each

stain to the target stain.

Similarly, Xu et al.58 adapted cycleGAN to translate between

different stains (H&E and immunohistochemistry [IHC]) through

the addition of a structured loss, aimed at suppressing bias

(here referred to as ‘‘imaginary’’ features). Contrary to Gader-

mayr et al.,64 the authors did not apply further image analysis,

such as classification or segmentation, but instead evaluated

the realism of the data through Turing tests. They identified a

large set of application fields including a fast and low-cost gen-

eration of IHC stainings, virtual multiplexing, co-localization,

augmentation, and color deconvolution.

In a similar manner, an approach was proposed to translate

between H&E and immunofluorescent stains.40 Unlike the ap-

proaches mentioned before,58,64 based on unpaired training (cy-

cleGAN), here Pix2Pix (Figure 1E) was employed. Typically,

paired samples showing exactly the same tissue in two different

stains are difficult to collect. The authors, however, used multi-

plexed imaging, which allows for the generation of perfectly cor-

responding image pairs. Even though multiplexing could also be

applied clinically, it is costly and can degrade both tissue quality

and antigenicity. This kind of I2I translation might omit the need

for clinical multiplexing.

Another Pix2Pix approach by Rana et al.65 similarly utilized I2I

translation based on paired training to convert H&E to unstained

image data (and vice versa). Pairs are available, since the un-

stained sample is captured before applying the H&E staining.

Only additional registration is needed to obtain the pixel corre-

spondences. Both approaches40,65 were qualitatively shown to

successfully use Pix2Pix as an I2I translation model but, since

they lack an evaluation in the form of subsequent classification

or segmentation, a quantitative conclusion cannot be drawn.

Additionally, the Siamese GAN architecture introduced in 34

(Figure 1G) can be used for domain adaptation. This domain

adaptation pipeline maps the source domain to the target

domain in an unsupervised, feature-based (not image-based)

manner. By combining adversarial and Siamese training proced-

ures, features from the source domain are mapped to the target

domain while still being kept structurally similar to the source

domain.

Further potential of GANs in a segmentation scenario is shown

in Gupta et al.,54 where GANswere applied to ‘‘enrich’’ the image

domain. Instead of increasing the number of samples, as per-

formed in case of data augmentation, the information per image

was enlarged. By performing image translation between a

source and several target stains for each image, additional virtu-

ally restained images were created. This data were used to train

and test a segmentation network, which outperformed the base-

line setting of a network trained and tested on the source domain

only. However, a positive effect of this application was only

shown in one very specific setting in the field of kidney pa-

thology.

Segmentation with Supervised Models
The Pix2Pix network is an established powerful segmentation

approach exhibiting an alternative to conventional, fully convolu-

tional segmentation networks.27 Wang et al.59 adapted the

Pix2Pix model (Figure 1E) for the field of histology and showed

improved performance compared with a stand-alone fully
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convolutional network.66 For many tasks, stand-alone fully con-

volutional networks11,12,27,28 (without an adversarial loss)

perform reasonably well in histopathological image analysis.

However, a difficulty here is the fine structure of the basal mem-

brane. The GAN’s advantage over these basic (non-adversarial)

CNN approaches is given by the ability to maintain fine details

through the adversarial loss.42

Synthesis Enabling Weakly Supervised and
Unsupervised Learning
One way to synthesize histological samples starts with the gen-

eration of label masks. Realistic shapes are obtained by sam-

pling the parameters of the objects randomly from distributions

corresponding to natural occurrences. Mahmood et al.6 directly

used binary masks and added realism by deploying a generator

of a cycle-GAN model. This model was trained on an unpaired

dataset consisting of a label-domain and an image-domain data-

set. Bug et al.8 proposed a similar approach. Instead of convert-

ing binary masks and images, the authors already added a

certain kind of realism before GAN-based image translation.

Specifically, they added typical colors as well as spot-noise

combined with blur in the background as well as the foreground.

Hou et al.33,55 placed even more focus on hand-crafted synthe-

sis. Nucleus shapes were obtained by simulating roundish poly-

gons. Background texture was obtained from original images by

making use of unsupervised segmentation techniques. In a

similar way, object texture was obtained from real objects.

Background and foreground were then combined and an

encoder-decoder GAN (Figure 1D) was trained to translate

from the pre-computed synthetic domain to the real domain.

Instead of the cycleGAN architecture, this encoder-decoder

GANwith one generator and one discriminator was utilized, con-

taining a regularization loss (L1 and L2 norm between the input

and output image), a discriminator loss, and a task-specific

loss,67,68 to focus on the generation of challenging samples.

Senaras et al.69 utilized a similar architecture (based on

Pix2Pix) to generate realistic histopathological images from

ground-truth label-mask images. The method is similar to that

of Hou et al.,33,55 using an L1 and a discriminator loss. Compared

with the other approaches,6,8,33,55 the goal here was not the (un-

supervised) segmentation but the generation of a dataset to be

used for the analysis of computer-based algorithms aswell as in-

ter- and intra-observer variability. Instead of artificially generated

label masks, the authors translated ground-truth annotations

into realistic images. The obtained pairs were intended to

show perfect correspondence, which is not the case if data are

annotated manually in the traditional sense.

A vice versa approach (in comparison with other

methods6,8,33,55) was proposed by Gadermayr et al.31,53 Instead

of generating virtual images out of label masks for means of ob-

taining labeled training samples, the authors performed transla-

tion directly from the image to the label-mask domain. Similar to

Mahmood et al.,6 a cycleGAN model was trained to translate

from the label-mask to the image domain and vice versa. The

label masks were obtained by randomly sampling non-overlap-

ping ellipses by varying rotation, aspect ratio, and size. Ulti-

mately, the authors used the generator translating images to la-

bel and thereby immediately obtain segmentation output,

circumventing the need for an additional segmentation model.
This translation between the image and the segmentation la-

bel-mask domain (and vice versa) exhibits a highly interesting

field with the potential for unsupervised segmentation. The un-

paired and, thereby, unsupervised approach can be combined

with manually labeled data to improve performance even further

(depending on the amount of labeling resources). Based on the

publications so far, it is difficult to make a general statement as

towhether a translation from the label-mask to the image domain

or vice versa is more effective when compared with unsuper-

vised segmentation. Performing a translation from the image to

the label-mask domain is probably a task that is easier to learn.

Gadermayr et al.31,53 were unable to generate realistic images,

whereas the translation from the image to the label-mask domain

showed a reasonable outcome.

A limitation is apparent because the mapping from the image

to the label mask is more or less defined while the reversedmap-

ping is ambiguous (also referred to as ill-posed or one-to-many

mapping). This means that for one label mask there exist several

corresponding images. This is quite obvious, since high-level la-

bel masks (e.g., stroma versus tumor) do not provide information

on the placement of low-level features such as nuclei. In case of

cycleGAN, both mappings (i.e., both generators) need to be

trained independent of the finally needed generator. The

‘‘ambiguous’’ mapping, however, can affect training based on

the cycle-consistency loss, as the loss ||x1�GX1
+GX2

(x1)||2 is

not necessarily small, even if the generators show attendant

behavior. If the mapping represented by the generator GX1
is

ambiguous, a variety of realistic images can be generated out

of GX2
. For a detailed discussion, we refer the reader to Gader-

mayr et al.70 Besides an explanation and discussion of the

problem, this paper contains a simple yet effective method of

resolution for one-to-many mappings. The problem is bypassed

by removing half of the cycle-consistency loss. Other

approaches are based on auxiliary latent spaces to control the

variations of the one-to-many (or even many-to-many) map-

pings.60,61 The idea of these approaches is to decompose an im-

age into a content code that is domain invariant and a domain

code that captures domain-specific properties. The problem of

ambiguous mapping is not limited to pathology but is a common

problem in generic I2I settings. Another typical example exhibit-

ing ambiguous mappings in medicine is magnetic resonance im-

aging-to-computed tomography synthesis.71–73

Another approach to unsupervised or weakly supervised

learning is given by representation learning. Hu et al.50 adapted

the GAN architecture for learning cell-level image representa-

tions in an unsupervised manner. For that purpose an auxiliary

network was employed, which shares weights with the discrim-

inator. In addition to the discriminator loss, the authors intro-

duced a further mutual information loss. The trained auxiliary

network can be employed to extract features on the cell level,

which are used to perform cluster analysis. The authors utilized

the aggregated cluster information to train an image-level classi-

fication model. However, these extracted features could also be

applied for high-level image segmentation.

Data Generation and Augmentation
Similar to work on domain adaptation,64 Wei et al.29 adapted the

cycleGAN architecture to perform data augmentation. Instead of

performing what we typically refer to as domain adaptation
PATTER 1, September 11, 2020 7
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(i.e., the adjustment between slightly dissimilar distributions

while the class labels remain similar), they trained the GAN archi-

tecture to translate from one tissue category to another (here

from normal to abnormal). Thereby, they obtained a generation

model for the means of data augmentation which creates, based

on existing samples, additional samples of the other class. The

difficulty of this task is that not only low-level image details,

such as color, need to be changed. In contrast, a translation

from one class to another typically requires a major change of

the image morphology. The authors showed that this is effective

in the considered application scenario,29 as the achieved classi-

fication performance could be increased. However, the cycle-

GAN architecture in general is not optimized for performing

morphological changes. Similarly, as discussed in the previous

subsection, the problem of ambiguous mapping emerges. The

problem in the case of synthesis is that one mapping (from the

label to the image domain) is ambiguous. Here, both mappings

are potentially ambiguous, because there is typically not a

one-to-many, and definitely not a one-to-one, mapping corre-

sponding to pathological changes. Another approach for data

generation was proposed in Quiros et al.,38 which focuses on

generating artificial cancer tissue from a structured latent space

using pathologyGAN (Figure 1B). The robustness of these data-

augmentation methods was shown for many medical image

analysis applications such as the generation of X-ray bone lesion

images74 and images showing optical skin lesions.56

DISCUSSION: POTENTIAL OF GANs

We identified three fields in digital pathology with a particularly

high potential of GANs. These fields have been identified based

on the related work summarized in the previous section.

Certainly we do not claim the exclusive truth. On the contrary,

we invite the reader to take a critical look at this review and

expand on it in future research.

Synthesis instead of Labeling
Firstly, we assessed the capability of cycleGAN and derivatives

to translate from an image to a label domain (and vice versa)

as an extremely powerful approach. The ability to learn from

unpaired data in this setting translates a potentially time-

consuming and cumbersome labeling problem into a synthesiz-

ing problem. For many applications in the field of digital

pathology, synthesis of realistic ground-truth label maps is a

feasible task. This is particularly the case as far as roundish-

shaped objects that require a basic simulation model relying

on only a handful of parameters are concerned.6,8,53

A difficulty (as discussed earlier) is that the mapping from the

label to the image domain is mostly ambiguous, as a label mask

can be mapped to more than one corresponding image. This

potentially complicates training of the GAN architecture with

diverse methods of resolution.

One approach to tackle this challenge is to change the cycle-

GAN architecture,60,61,70 as discussed in the subsection Synthe-

sis Enabling Weakly Supervised and Unsupervised Learning.

Another method of resolution is outlined in Gadermayr et al.31

The authors showed that cycleGAN training is clearly more effec-

tive when the label-mask domain contains additional information

on the corresponding image context. A synthesis of low-level in-
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formation (nuclei) in addition to the high-level objects (which

need to be segmented) clearly improved overall performance

and robustness. The additional information was stored in a sepa-

rate image channel. An improvement is obtained because the

generator networks now receive information on where to place

the low-level objects in order to obtain a low cycle-consistency

loss. The difficulty here is that the simulation model thereby be-

comes more complex. However, especially in case of high-level

objects with complex shapes, we are confident that this is the

most powerful solution when unpaired approaches, such as cy-

cleGAN, should be trained to perform translations from a label

mask to an image domain or vice versa.

For practical reasons, an adjustable simulation tool would be

very helpful to easily and quickly generate simulated label-

mask data according to the characteristics of an individual

task. As segmentation tasks in digital pathology often corre-

spond to rather uniform roundish objects, basic functionality

would be sufficient for many purposes.

So far, these unpaired approaches have not been applied and

adapted to applications without strong shape constraints, as, for

example, in tumor segmentation.13 Apart from the very diverse

morphology of the individual regions, a difficulty here arises in

the scale of the regions of interest. Regions can show up to

several hundreds or even thousands of pixels in diameter. As

the segmentation networks are applied patchwise, this can

constitute a challenge. A method of resolution might be a

multi-level (or multi-resolution) approach. Small, morphologically

regular structures (such as nuclei) could be extracted in a first

step. Afterward, a segmentation of high-level objects (such as

stroma, tumor) can be performed at a lower resolution, based

on the segmentation information extracted at the lower level.

Potential of Stain-to-Stain Translation
We further identified stain-to-stain translation as an application

with high potential. In previous work, stain-to-stain translation

was performedmostly for the compensation of domain shifts be-

tween training and test data. However, previous work also

showed that a GAN is capable of facilitating a segmentation

task by either changing the appearance or by adding information

to the image domain.54,64 This is remarkable, as all additional in-

formation is extracted from the original images. This raises the

question as to why processing in two steps (translation followed

by segmentation) can be more effective than direct segmenta-

tion.We assume that there are stains which are easier to process

(segment) than others, and that a separation of a problem into

two easier tasks can be beneficial. In this way, the individual net-

works can fully focus on the individual tasks that are quite

different. While stain translation requires rather little context, a

segmentation task (of high-level objects) surely requires a large

context. To further exploit this effect, special stains could be

applied or developed that would particularly highlight the

respective objects of interest to increase the performance.

Another option is the translation from bright-field to fluorescence

microscopy,40 which has the potential of trivializing the subse-

quent segmentation task.

A question that has not been addressed so far is whether a

translation from a stain to another (e.g., a general-purpose stain,

such as H&E, to an IHC stain) is capable of showing features

similar to those of the real target stain. Modanwal et al.64
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performed such a translation but only for segmenting higher-

level objects, which are independent of the histological stain.

The requirement here was only that the morphology of the

(high-level) objects of interest is maintained. To show whether

or not GANs are able to generate virtual stains that are not only

realistic but also exhibit features on a low level (i.e., the stain

response on pixel level) similar to those of a real stain, a special

dataset is needed. This requires a large dataset containing cor-

responding slide pairs stained with two different approaches.

Apart from the capabilities of the neural networks, the principal

question here is whether the information is available in the image

data or not, which might differ from problem to problem. In any

event, due to the immense impact we are confident that this is

worth studying.

Morphology Translation
I2I translation typically covers mappings from one domain to

another, where the domain gap is caused by (intentional

or unintentional) variability in the data-generation

protocol.35,36,40,58,64,65 In each of these settings, color and

potentially also texture varies between the domains. However,

as the underlying tissue is unchanged, there are mostly no

clear morphological changes.

A setting with morphological changes has been investigated

by Wei et al.29 The authors of this paper explored a translation

between data from different classes for the means of data

augmentation. They used a derivation of the cycleGAN architec-

ture and achieved improvements regarding the final classifica-

tion task, but also figured out that there is a clear difference

between the generated and the real image data. This statement

was reinforced by the finally obtained classification rates, which

were clearly higher for the real than for virtual data.

Even though cycleGAN generally shows high versatility, we

are confident that it does not exhibit the optimum architecture

for settings with changedmorphology. In the case of morpholog-

ical changes, there occur typically ambiguous mappings that

can be highly problematic (as already discussed in Synthesis

Enabling Weakly Supervised and Unsupervised Learning).

Furthermore, conventional CNNs, used as generator models,

are not optimally suited to perform spatial translation.75 Conse-

quently, we are confident that this field exhibits potential for

further improvements with specifically optimized architectures.

Methods including a spatial transformer module75 might be

beneficial for this purpose. A powerful tool could facilitate a

translation between healthy and pathological data, for example,

for themeans of data augmentation. In addition, a translation be-

tween different imaging settings (such as frozen-to-paraffin

translation)might be considered, potentially improving the image

quality and also, therefore, the final classification accuracy.

Conclusion
In this paper, we have summarized existing GAN architectures in

the field of histological image analysis. We have provided an

overview of addressed application scenarios and the methods

employed and have identified the major fields of research. Apart

from current trends and benefits of GANs, we have also identi-

fied the remaining potential and the appeal for novel technical

approaches to improve image analysis even further. In general,

it can be stated that GANs exhibit the potential for relaxation or
even elimination of the constraint upon the large amounts of an-

notated training data required to train deep neural network archi-

tectures. Despite the remaining challenges, we consider that this

technology will play a key role in the practical application of flex-

ible image analysis methods in digital pathology.
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