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Abstract: Mytilus edulis is a typical marine bivalve mollusk. Many kinds of bioactive components
with nutritional and pharmaceutical activities in Mytilus edulis were reported. In this study, eight
different parts of Mytilus edulis tissues, i.e., the foot, byssus, pedal retractor muscle, mantle, gill,
adductor muscle, viscera, and other parts, were separated and the proteins from these tissues
were prepared. A total of 277 unique peptides from the hydrolysates of different proteins were
identified by UPLC-Q-TOF-MS/MS, and the molecular weight distribution of the peptides in
different tissues was investigated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis
(SDS-PAGE). The bioactivity of the peptides was predicted through the Peptide Ranker database and
molecular docking. Moreover, the peptides from the adductor muscle were chosen to do the active
validation of anticoagulant activity. The active mechanism of three peptides from the adductor muscle,
VQQELEDAEERADSAEGSLQK, RMEADIAAMQSDLDDALNGQR, and AAFLLGVNSNDLLK,
were analyzed by Discovery Studio 2017, which also explained the anticoagulant activity of the
hydrolysates of proteins from adductor muscle. This study optimized a screening and identification
method of bioactive peptides from enzymatic hydrolysates of different tissues in Mytilus edulis.

Keywords: Mytilus edulis; enzymatic hydrolysis; UPLC-Q-TOF-MS/MS; molecular docking;
anticoagulant activity

1. Introduction

Bioactive peptides, as functional ingredients and pharmaceutical agents, have attracted much
more attention in recent years [1–3]. With the development of new isolation and identification
technologies, the study of the relationship of sequence and structure of bioactive peptides has rapidly
evolved [3,4].

Mytilus edulis is a typical marine bivalve mollusk. Many kinds of nutritional and pharmaceutical
benefits of Mytilus edulis have been reported, such as nourishing the liver and kidneys, adjusting
blood pressure, curing night sweats, dizziness and impotence, and so on [5]. More and more bioactive
peptides from the M. edulis whole body rather than different tissues, such as antimicrobial peptides [6,7],
anti-inflammatory peptides [5], antioxidant peptides [8,9] and anticoagulant peptides, have been
reported in recent years. Meanwhile, the bioactive peptides from different tissues of M. edulis are
identifiable [10].

Thrombosis may cause serious complications such as an increase in portal venous pressure
and an intestinal infarction. Previous surveys have indicated that the majority of serious diseases
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are thrombotic diseases, which may result in sudden death or long-term disability [11]. In recent
years, bioactive peptides have received increasing attention. Similarly, there is an increasing need
for anticoagulant and antithrombotic peptides to cure thrombosis. In these booming fields, those
natural peptides with thrombin-inhibitory activity have attracted much more attention and have
been evaluated extensively. Therefore, it is necessary to elaborate the preparation methods of target
peptides. Indeed, blood clotting is a complicated physiological process controlled by a series of
proteolytic reactions with comprehensive interactions [12,13]. The blood coagulation pathway involves
the interaction of many plasma serine proteases known as blood clotting factors [5]. Therefore,
the molecular mechanism of protein/peptide recognition has very important implications in the fields
of biology, medicine, and pharmaceutical sciences [14]. Molecular docking technology has been widely
used in this field in recent years [15–17].

The antithrombotic activity of M. edulis hydrolysate has been reported in several studies [6].
However, anticoagulant peptides were rarely isolated from M. edulis, and interactions between the
peptide and thrombin have not been reported. The aim of this work was to prepare bioactive peptides
from different tissues of M. edulis by trypsin digestion, and several possible anticoagulant peptides
were evaluated by molecular docking and Peptide Ranker.

2. Results and Discussion

2.1. Distribution of Proteins from Different Tissues

The protein content of the different samples was shown in Figure 1. The adductor muscle, foot,
pedal retractor muscle, byssus, gill, mantle, other parts, and viscera were sorted depending on the
protein content. The protein content of the powder of S0 was 68%. S1, S2, S3, S4, S6, S7, and S8 had
significant differences compared with S0. S6 was significantly higher than S0. S2, S4, and S8 were
significantly lower than S0. When the total tissue was considered to be 100%, the dry weight of the
different tissues will be 65.08 ± 0.71, 71.13 ± 1.62, 68.14 ± 0.48, 69.92 ± 1, 59.25 ± 0.83, 63.41 ± 0.23,
79.22 ± 0, 51.84 ± 0.25, 58.73 ± 0.72 percent, respectively.
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mean ± SD (n = 3–6). Different letters beside the bars represent a significant difference between the 
values. 

As shown in Figure 2, the proteins of byssus, viscera, and others about 40 kDa proteins were 
more noticeable than other samples. Dissolved protein concentrations were 7.45 ± 0.11, 4.53 ± 0.21, 
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Figure 1. Eight different parts of Mytilus edulis tissues, i.e., foot, byssus, pedal retractor muscle, mantle,
gill, adductor muscle, viscera, and other parts, from Mytilus edulis were separated and prepared.
The protein content of different tissues was measured by the Kjeldahl method. Values are mean ± SD
(n = 3–6). Different letters beside the bars represent a significant difference between the values.

As shown in Figure 2, the proteins of byssus, viscera, and others about 40 kDa proteins were
more noticeable than other samples. Dissolved protein concentrations were 7.45 ± 0.11, 4.53 ± 0.21,
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2.88 ± 0.28, 5.71 ± 0.05, 5.47 ± 0.08, 5.83 ± 0.09, 5.57 ± 0.07, 4.05 ± 0.18 and 5.57 ± 0.06 mg/mL,
respectively, as determined by the BCA method (R2 ≥ 0.998). It was noteworthy that the protein
concentration of byssus was too low to affect later enzymatic hydrolysis. As shown in Figure 2A,B,
there was different protein distribution, i.e., the protein band of 100 kDa in 25 ◦C water (pH 7.0) was
not soluble in 45 ◦C water (pH 8.5), which probably contributed to the different peptide identification.
The effect of enzymatic hydrolysis and the properties of peptides were affected by the solubility of
proteins. SDS-PAGE of the enzymatic hydrolysates is shown in Figure 2C, which indicates that the
hydrolysis degree of S3 and S6 is much higher than in the other samples.
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Figure 2. (A) Soluble proteins in 45 ◦C water at pH 8.5; (B) soluble proteins in 25 ◦C water at pH 7.0
(C) proteins and peptides in the enzymatic hydrolysates. S0—Whole tissue; S1—Foot; S2—Byssus;
S3—Pedal retractor muscle; S4—Mantle; S5—Gill; S6—Adductor muscle; S7—Viscera; S8—Other parts.
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2.2. Identification of the Peptides in Hydrolysates

A total of 277 peptides were identified from M. edulis by UPLC-Q-TOF-MS; 109, 14, 116, 67, 37,
144, 19, and 36 peptides were identified from S1 to S8, respectively. However, 47 peptides were derived
from the hydrolysate of S0. The number of peptides from S1, S3, S4, and S6 was significantly higher
than for S0. Over 70% of the peptides from S0 were also identified in all the other tissues separately.
All these results indicated that more peptides would be identified if the samples were pretreated
by separating the different tissues from M. edulis rather than that of the whole part. The number of
peptides identified from S6 was the highest among all the samples, and the studies on the adductor
muscle were also more extensive in recent years [18–20], which indicated that the adductor muscle
from M. edulis could be a potential source of anticoagulant peptides.

2.3. Activity Prediction and Molecular Docking of Peptides

There were 25 peptides that showed higher scores (>50), listed in Table 1. The number of peptides
derived from S0 to S8 was 5, 9, 6, 11, 7, 6, 12, 5, and 5, respectively. The results showed that the
adductor muscle may contain more bioactive peptides.

Table 1. Peptides released from Mytilus edulis proteins hydrolyzed by trypsin.

Sequence Length of
Peptide

Molecular
Weight Tissues Peptide

Ranker

GPAGIIGLIGPK 12 857.4555 S1, S2, S3 0.83
GPIGPAGGKGPTGPK 15 1289.7138 S2 0.83

NDFDKDFFK 9 1174.5336 S6 0.78
AGLQFPVGR 9 569.3174 S0, S3, S4, S5, S6, S7, S8 0.76

GYSAELFR 8 792.3822 S1 0.71
SPNFTKPGK 9 801.4345 S1 0.7
GPTGPQGLR 9 881.4739 S1, S2 0.68

FPGQLNADLR 10 1129.5894 S3, S5 0.67
LAVNMVPFPR 10 1029.5439 S0, S3, S4, S5, S6, S7, S8 0.67

SYSAELFR 8 971.4715 S3, S4, S6 0.65
TATSPFFK 8 897.4602 S3, S4, S7, S8 0.65

KLAVNMVPFPR 11 1270.7253 S0 0.64
AVFPSIVGRPR 11 1197.7004 S0, S1, S2, S3, S4, S5, S6, S7, S8 0.62
LSHYAFSSLR 10 1180.4689 S5 0.62

AAFLLGVNSNDLLK 14 1473.8192 S3, S6 0.59
GIQGPEGELGPVGK 14 1337.7210 S2 0.58

TLYGFGG 7 713.3405 S5 0.58
WSYAPQSR 8 993.4698 S1, S3, S4, S6 0.58

VQQELEDAEERADSAEGSLQK 21 2331.0806 S6 0.57
AGFAGDDAPR 10 975.4435 S1, S2, S3, S4, S6, S7, S8 0.56

SFVNDIFER 9 824.5024 S0 0.56
NLNADVDSVRESLEEEQESKSDLQR 25 2889.364 S1 0.55

SPNFGRPGNASK 12 1230.6178 S3, S6 0.55
ALAADINLR 9 956.5409 S6 0.53

RMEADIAAMQSDLDDALNGQR 21 2319.064 S1, S6 0.5

Note: S0—Whole tissue; S1—Foot; S2—Byssus; S3—Pedal retractor muscle; S4—Mantle; S5—Gill; S6—Adductor
muscle; S7—Viscera; S8—Other parts. Peptides with a score greater than 0.5 were considered to be positive results
in the present study.

The CDCOCKER docking simulation was used to elucidate the molecular mechanisms of
interactions between human thrombin and peptides from M. edulis. Every peptide has 10 molecular
antagonists as docking poses for the docking simulation, as shown in Figure 3A. A peptide named TYS
(containing hirudin fragment 54–62) was combined with thrombin and played an important role in
inhibiting thrombin. The peptides derived from M. edulis proteins may show inhibitory activity against
thrombin with a similar mechanism if the peptide and hirudin showed a similar interaction domain
with thrombin (TYS). The yellow sphere was defined as the active site and binding site of peptides in
Figure 3B. The score of TYS was 170.13. The number of peptides with a higher score (>170) derived
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from S0 to S8 was 7, 45, 33, 34, 16, 3, 55, 1, and 3 (Table 2), respectively. The percentage of peptides
from the adductor muscle was much higher, so the antithrombotic activity of S6 was determined in the
following study.

Table 2. Molecular docking of predicted antithrombotic peptides.

Peptide Length of Peptide Tissue(s) -CDOCKERENERGY

LTQENFDLQHQVQELDGANAGLAK 24 S1 311.73
VQQELEDAEERADSAEGSLQK 21 S6 303.38

TLADLQKEEDKVNHLNK 17 S1 282.78
MEKENALDRAEQLEQK 16 S1 272.87

KKLEQDINELEMALDTSNR 19 S1 270.74
SIQTENDLDNTQTQLQDVQAK 21 S6 264.94

AKLESTLDEMEDNLER 16 S1 255.701
ITIQQELEDARSLLEHAER 19 S1, S2, S3, S6 254.26

LADELRQEQDNYKNAESLR 19 S6 251.11
KLEQDINELEMALDTSNR 18 S1 249.98
HQEALNDLTDQLEHMGK 17 S1, S2, S3, S4, S6 241.79

RRHQEALNDLTDQLEHMGK 20 S1, S6 238.67
NRLQGELDDLLIEVER 16 S1 237.02
VKELQTEIDTAHTEAR 16 S1 236.54

DLEETTLQHEAQVSSLR 17 S6 236.102
MIEEAEDVASITMNKYR 17 S1, S6 235.72

RHQEALNDLTDQLEHMGK 18 S1, S2, S3, S4 S6 232.22
WIAEEADKKYEEAAR 15 S1, S2, S3, S6 231.80

AAVLEYLAAEVLELAGNAAR 20 S0 231.28
LLDEEDAASELEGLKK 16 S1 230.16

NQLIIEIDSLQAMNDGLQK 19 S2, S3, S6 228.63
LADELRQEQDNYK 13 S2, S3, S6 227.66

QNLQVQLAAIQSDYDNLNAR 20 S6 227.36
VIDLEEQLTVVGANIK 16 S1, S6 226.86

NLAEEIHELTEQLSEGGR 18 S6 226.02
AAEERADRLQAEVNR 15 S2, S3, S6 225.98

IRELEDSLDSEREMR 15 S1, S4 225.89
IRDLENELEADQRR 14 S2, S3, S4, S6 225.40

MIEEAEDVASITMNK 15 S6 223.61
ELEDSLDSEREMR 13 S2, S3, S6 222.18

RMEADIAAMQSDLDDALNGQR 21 S1, S6 220.49
ENALDRAEQLEQK 13 S1, S6 220.44
EVDRLEDELLTEK 13 S6 219.35

EITVRLEEAEAFAQR 15 S6 217.95
TFDREGQGYISGAEMR 16 S1 217.67
KLAITEVDLERAEAR 15 S1 214.16
ATQEVVEELEGVKR 14 S1, S2, S3 213.487

LTEVQLQVTALTNDKR 16 S2, S3, S6 213.42
LQGELDDLLIEVER 14 S1 213.06

AVFVDLEPTVVDEVR 15 S5 212.988
VQFNLKDYQSSANVKHAVDK 20 S4 212.98

IRDLENELEADQR 13 S1, S2, S3, S4, S6 212.26
HQGVMVGMGQKDSYVGDEAQSKR 23 S1 212.01

ELQTEIDTAHTEAR 14 S1 211.61
LEDAMGTSTTVSEVSR 16 S6 211.59
TLQGEMAQQDEQISK 15 S1 211.51
IAIIITDGKPTDINATQR 18 S2, S3, S4 211.34

SGVLVRPK 8 S0, S8 210.81
MSADSKIDALEGSNSR 16 S1, S2, S3, S6 209.52

DLENELEADQRR 12 S2, S3, S6 209.289
AQYEETSDTIEALRR 15 S1 209.038

DLYANTVLSGGTTMFPGIADR 21 S6 207.485
QLDDTRNQLSVSER 14 S6 206.48
LTGELEDLGIDVER 14 S6 206.25
QIAEHEQEIQSLTR 14 S6 205.14

ELDDVQSQLSHSMK 14 S1 204.91
QLEDAEHTIGSLTK 14 S1 204.72

ELEGELDSEQRR 12 S6 203.33
LAEAEQAAEAANAK 14 S1 202.27
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Table 2. Cont.

Peptide Length of Peptide Tissue(s) -CDOCKERENERGY

IRELEDSLDSER 12 S2, S3, S4 202.17
ALDSMQASLEAEAK 14 S2, S3, S6 202.096
QVAELTSITDQLTMK 15 S6 201.63

INELAAQVSSAQAQKR 16 S1 201.27
DKSALTSQLEEAKR 14 S1 201.151
KNAENELGEVTVR 13 S0, S2, S3, S4, S6 200.88

LLSGVTIAQGGVLPNIQAVLLPK 23 S0 200.55
AKIEDDYNSLQK 12 S1, S6 198.5

SYYDTSREENDIRR 14 S6 197.19
SYELPDGQVITIGNER 16 S0,S1, S2, S3, S4, S6, S7, S8 196.76

VTDLQSELENAQK 13 S2, S3, S6 196.65
DLENELEADQR 11 S6 196.13

LDLAGRDLTDYLMK 14 S1, S2, S3, S4, S6 191.19
KVGINYQPPTVVPGGDLAK 19 S0 190.22

DIEDLETTLAK 11 S1 189.759
SALYEDTFIPEVIRPR 16 S2, S3, S6 188.36
LEDDQSLIAQLQR 13 S6 188.31

YEEESENASSLR 12 S2, S3, S4, S6 188.24
MSATFIGNSTAIQELFKR 18 S5 184.40

NAENELGEVTVR 12 S6 183.23
AMSIMNSFVNDIFER 15 S0, S2, S3, S4, S5, S8 178.809

DSYVGDEAQSKR 12 S1, S2, S3, S4 177.848
SALTSQLEEAKR 12 S1 177.63
DSYVGDEAQSK 11 S1, S2, S3 177.572

KRITIQQELEDAR 13 S2, S3, S6 177.35
KAQSLIDEAEQR 12 S2, S3, S4 177.22
AQSLIDEAEQR 11 S4 176.453
ETVQASDEDRR 11 S6 176.32
QLENENAALQK 11 S2, S3 175.83
KMEGENSEMKR 11 S1 174.67
QEYDESGPSIVHR 13 S6 174.00

LTDEQVDDIIR 11 S6 173.52
ATQEAVEDLER 11 S2, S3 173.43
KLAITEVDLER 11 S6 173.15

SKLQSEVTEINR 12 S1 172.71
ELEDSLDSER 12 S3, S6 172.60

ITIQQELEDAR 11 S2, S3, S6 171.94
LTDMIDKLQSK 11 S1 171.79

AAFLLGVNSNDLLK 14 S2, S3, S6 171.476
SLENTIAELQHK 12 S2, S3, S6 170.94

ENKNLADEIR 12 S1 170.32

Note: S0—Whole tissue; S1—Foot; S2—Byssus; S3—Pedal retractor muscle; S4—Mantle; S5—Gill; S6—Adductor
muscle; S7—Viscera; S8—Other parts. Peptides with scores greater than 170 were considered to be anticoagulant
peptides in the present study.

Three peptides, VQQELEDAEERADSAEGSLQK (P1), RMEADIAAMQSDLDDALNGQR (P2),
and AAFLLGVNSNDLLK (P3), might be more active due to the higher evaluation levels of activity
by both Peptide Ranker and molecular docking. The interaction of antithrombotic peptides with
thrombin was shown in Figure 3C. Amino acids combined from the thrombin of P1, P2, and P3
were Lys36-Gln38-Thr74-Arg75-Tyr76-Ile82-Met84, Gln38-Arg67-Thr74-Arg75-Tyr76-Ile82-Met84,
and Lys36-Arg67-Thr74, respectively. As is well known, Phe34-Leu65-Arg73-Thr74-Arg75-Tyr76-Glu80-
Lys81-Ile82 is the active site 2 in the thrombin molecule [21], and Lys36-Arg73-Arg77-Lys149E in
the thrombin molecule works as the binding motif to recognize fibrinogen [22]. The number of
combined amino acids from P1–P3 was 5, 4, and 2; their scores were 303.38, 220.49, and 171.47.
These results indicated that the more essential amino acids were combined, the higher the score and
the stronger the activity [23]. The score of LTQENFDLQHQVQELDGANAGLAK was the highest.
However, there were only 5 interactive amino acids involved in the active center of thrombin include,
Gln38-Arg73-Thr74-Tyr76-Ile82, which was less than that of P1. Moreover, P1 was derived from
the adductor muscle, P2 was derived from the foot and adductor muscle, and P3 was derived from
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the byssus, pedal retractor muscle, and adductor muscle. Therefore, the adductor muscle may be a
potential source for producing peptides with anticoagulant activity.
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Figure 3. Molecular docking for the interactions of peptide against Thrombin. Molecular structure
of thrombin from PDB database (A), the yellow sphere showed the docking position;
VQQELEDAEERADSAEGSLQK (B), RMEADIAAMQSDLDDALNGQR (C), AAFLLGVNSNDLLK
(D), and LTQENFDLQHQVQELDGANAGLAK (E). The peptides were marked with yellow sticks;
the other sticks are the interactive amino acids of thrombin.

2.4. Anticoagulant Activity Determination

Anticoagulant activity IC50 values of hydrolysate from adductor muscle (0.5~4 mg/mL) were
determined as shown in Figure 4. Results showed that IC50 was 1.49 mg/mL according to the fitted
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equation (y = 2.52 + 39.27x − 4.99x2). Moreover, the anticoagulant activity of the samples, foot, byssus,
pedal retractor muscle, mantle, gill, and other parts at the same concentration were determined,
and the inhibition rate was 43.14 ± 1.29(%), 48.50 ± 0.5(%), 27 ± 2.6(%), 22.55 ± 3.7(%), 19.71 ± 2.8(%),
and 24.58 ± 0.81(%), respectively. These results indicated that the hydrolysate from the adductor
muscle showed a higher anticoagulant activity than other tissues.
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Figure 4. Anticoagulant activity IC50 of enzymatic hydrolysate from adductor muscle. Five different
concentrations (0.5~4 mg/mL) were investigated, as measured by a microplate reader.

3. Materials and Methods

3.1. Materials and Chemicals

Bicinchonininc acid (BCA) and Cleanert S C18-N solid phase extraction (SPE) column were
purchased from Beyotime (Beijing Baoxidi Science & Technology Co., Ltd., Beijing, China); Thrombin
(EC 3.4.21.5), formic acid (FA), and acetonitrile (ACN) were purchased from Sigma-Aldrich Co.
(St. Louis, MO, USA); Trypsin (EC3.4.21.4, 2.5 × 105 U/g) was purchased from Solarbio (Beijing,
China). All other chemicals used in this study were of analytical grade.

3.2. Split of Mytilus edulis Organisms

M. edulis was manually split into eight parts, i.e., the foot, byssus, pedal retractor muscle, mantle,
gill, adductor muscle, viscera, and other parts; these were numbered S1, S2, S3, S4, S5, S6, S7, and S8,
respectively, and the Whole M. edulis was named S0. The samples were freeze-dried with a vacuum
freeze dryer (Ningbo Scientz Biotechnology Co. Ltd., Ningbo, China). The consequent powders were
also treated with a ball-milled machine (RETSCH Verder Shanghai Instruments and Equipment Co.,
Ltd., Shanghai, China), and stored in a dry dish at 4 ◦C.

3.3. SDS-PAGE

The protein content of the samples was determined by the Kjeldahl method [24,25].
SDS-PAGE was carried out using AE-8135 (ATTO CORPORATION, Taito-ku, Japan). SDS-PAGE was
performed using 10% polyacrylamide resolved gel (pH = 8.8) and 5% stacking gel (pH = 6.8).
The protein bands were stained with Coomassie brilliant blue R-250. Premixed Protein Standard
(44.3–200 kDa) of Takara Co. Ltd. (Dalian, China) was used for finding the relative molecular weight.
The samples were mixed with 10 µL of electrophoretic loading buffer and heated for 5 min in a boiling
water bath [26,27]. Different samples were separated by centrifugation at 8000 rpm for 15 min.
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3.4. Enzymatic Hydrolysis by Trypsin

The enzymatic hydrolysis was conducted at 45 ◦C and pH 8.5. The pH was kept constant
at 8.5 using 0.1 M NaOH as a regulator [1]. Once the optimum pH and temperature conditions
were achieved, the enzyme trypsin (activity ≥ 5 U/mg) was added [28,29]. After 3 h, trypsin was
heated–deactivated at 100 ◦C for 10 min in a water bath. The leaching effect of the protein from S0 to
S8 is demonstrated by SDS-PAGE. The protein concentration was determined by BCA method [30].

3.5. Peptide Identification by UPLC-Q-TOF-MS/MS

The samples were processed with Cleanert S C18-N Solid phase extraction column [31].
Freeze-dried peptides were dissolved in 0.1% FA (soluble in water) and filtered through a 0.22-µM
microporous filter membrane (Millipore, Billerica, MA, USA) before detection by mass spectrometry.
Chromatographic separation was carried out at a flow rate of 0.4 mL/min with an injection volume
of 15 µL on a C18 column (150 × 3 mm, 3 µm particle size). Peptides were separated using 0.1% FA
in ultrapure water (solvent A) and 0.1% FA in ACN (solvent B) at a constant temperature of 25 ◦C.
The gradient elution program was as follows: (i) 0 min 90% A; (ii) 0–2 min 75% A; (iii) 2–10 min 50% A;
(iv) 10–20 min 40% A; (v) 20–35 min 60% A; (vi) 35–40 min 90% A [32,33].

Peptides were analyzed using an ESI-MS/MS (Bruker Co. Ltd., Bremen, Germany) with an
ion source of ESI coupled with LC system (Thermo Fisher Scientific Co. Ltd., Waltham, MA, USA).
The molecular mass and amino acid sequence of the peptides were determined by Mascot searching
as follows: (i) The protein database was from the National Center for Biotechnology Information
(https://www.ncbi.nlm.nih.gov/); (ii) the enzyme was set as trypsin; and (iii) the significance threshold
was p < 0.05. The peptides were identified by database matching as well as the manual interpretation
of its MS/MS spectrum, and the ion score of 35 was regarded as the identifying threshold [34].

3.6. Activity Prediction by Peptide Ranker

The activity of the peptides in samples 0–8 was predicted by the software of Peptide Ranker
(http://bioware.ucd.ie/~compass/biowareweb/Serverpages/peptideranker.php). Peptide Ranker is
a kind of database that provides certain classes of bioactive peptides with specific structural features
that endow their particular functions by different classes of peptides. It concluded that there are general
shared features of bioactive peptides across different functional classes, indicating that computational
prediction may accelerate across many functional classes. The implementation of the predictive method
was used to identify among a set of peptides [35]. The peptides with a score of more than 0.5 were
considered to be positive results in the present study.

3.7. Molecular Docking

Molecular docking of the estimated anticoagulant peptides with thrombin were carried out using
Discovery Studio 2017 software (Neotrident Technology Ltd., Beijing, China) according to the method
described with some modifications [18]. The structure of peptide was processed and the energy
minimized using the steepest descent and conjugate gradient techniques [36]. The corresponding
receptor protein was downloaded from the PDB database (http://www.rcsb.org/pdb/home/home.do)
and also treated by completing the missing amino acids, removing water molecules, and so on [37].
Docking was performed using the CDOCKER docking tool of Discovery Studio software. The best
ranked docking pose of peptides in the active site of thrombin was obtained according to the score and
binding-energy value [36].

3.8. Determination of Antithrombotic Peptides

A microplate reader was set to a wavelength of 405 nm at 37 ◦C. The fibrinogen, thrombin, and the
samples were all dissolved in 0.05 M Tris-HCl (pH 7.2) containing 0.154 mM sodium chloride. Then,
140 µL of 0.1% fibrinogen solution and 40 µL of samples with different concentrations were added into

https://www.ncbi.nlm.nih.gov/
http://bioware.ucd.ie/~compass/biowareweb/Serverpages/peptideranker.php
http://www.rcsb.org/pdb/home/home.do
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the plate wells, mixed, and the absorbance of the sample blank was measured. Furthermore, 10 µL
of thrombin (12 U/mL) were added and incubated at 37 ◦C. Finally, the absorbance was measured
after 10 min [36,38–40]. The control group contained 40 µL of Tris-HCl buffer instead of the sample.
The inhibition rate was calculated according to the following Equation (1), where C, Cb, S, and Sb
represent the absorbance of control, control blank, sample, and sample blank, respectively.

Inhibitory Rate (%) =
(C − Cb)− (S − Sb)

C − Cb
× 100% (1)

3.9. Statistical Analysis

Values were expressed as the mean ± SD (n ≥ 3). Following the assessment of significant
differences between samples by one-way analysis of variance (ANOVA), the level of significance
was set at p < 0.05. All statistical tests were conducted using SPSS software 19.0 (SPSS Inc., Chicago,
IL, USA).

4. Conclusions

Different peptides components would be produced in the protein hydrolysates of the different
tissues from M. edulis, which was digested by trypsin. Compared with the sample of blue
mussels as a whole, many more peptides can be identified by UPLC-Q-TOF-MS if the tissues
are identified separately. The IC50 of the hydrolysate from the adductor muscle of M. edulis
was 1.49 mg/mL. The antithrombotic activity of different hydrolysates of M. edulis proteins can
probably be attributed to the bioactive peptides in them, such as VQQELEDAEERADSAEGSLQK,
RMEADIAAMQSDLDDALNGQR, and AAFLLGVNSNDLLK and so on; these peptides have a relative
stronger affinity with thrombin (PDB: 2BVR). The present study may provide new ideas and technology
on the screening or identification of peptides with anticoagulant activity on a large scale.
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