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The analysis of fetal heart rate variability has served as a scientific and diagnostic

tool to quantify cardiac activity fluctuations, being good indicators of fetal well-being.

Many mathematical analyses were proposed to evaluate fetal heart rate variability. We

focused on non-linear analysis based on concepts of chaos, fractality, and complexity:

entropies, compression, fractal analysis, and wavelets. These methods have been

successfully applied in the signal processing phase and increase knowledge about

cardiovascular dynamics in healthy and pathological fetuses. This review summarizes

those methods and investigates how non-linear measures are related to each paper’s

research objectives. Of the 388 articles obtained in the PubMed/Medline database and

of the 421 articles in the Web of Science database, 270 articles were included in the

review after all exclusion criteria were applied. While approximate entropy is the most

used method in classification papers, in signal processing, the most used non-linear

method was Daubechies wavelets. The top five primary research objectives covered

by the selected papers were detection of signal processing, hypoxia, maturation or

gestational age, intrauterine growth restriction, and fetal distress. This review shows that

non-linear indices can be used to assess numerous prenatal conditions. However, they

are not yet applied in clinical practice due to some critical concerns. Some studies show

that the combination of several linear and non-linear indices would be ideal for improving

the analysis of the fetus’s well-being. Future studies should narrow the research question

so a meta-analysis could be performed, probing the indices’ performance.

Keywords: fetal heart rate, non-linear methods, entropy, data compression, fractal analysis, wavelet analysis,

systematic review

1. INTRODUCTION

Worldwide, it is estimated that the number of fetal deaths after week 20 of gestational age is around
2.6 million per year. Although the numbers have been decreasing in the past decades, the stillbirths’
rate still ranges from about 1 in 250 births in developed countries and 1 per 33 in South Asia and
Sub-Saharan Africa (data from 2009), according to Cousens et al. (1).
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Cardiotocography (CTG) combines fetal heart rate (fHR)
measurement, obtained through a uterine contraction
monitoring probe and a Doppler ultrasound probe for fHR,
recorded using an abdominal pressure transducer. In developed
countries, clinical decisions during labor are firmly based on fHR
monitoring (2, 3), being CTG the most used tool to assess fetal
well-being since the early ’60s according to Spencer (4). However,
the information provided by CTG is limited since a complete
electrocardiogram (ECG) signal of the fetus is not available.
Moreover, the CTG is highly sensitive to both fetal and maternal
movement. The use of an electrode placed on the fetus’s scalp is
more reliable as it retrieves fetal electrocardiogram, containing
not only fHR but also other crucial clinical parameters (5, 6).
On the other hand, this is an invasive method only possible
during labor, after the beginning of cervical dilatation and the
membranes’ rupture, carrying with it risks of infection (7, 8).
However, other methods for fetal monitoring are used such as
fetal phonocardiography (9–11), fetal echocardiography (12, 13),
and fetal magnetocardiography (14, 15). Each one of the methods
has its own advantages and disadvantages. For more detail on
this matter, see Jaros et al. (16) and Hoyer et al. (17).

Electronic fetal monitoring came with high expectations since
it offered continuous monitoring, compared to the intermittent
auscultation done until then. However, a meta-analysis of large
multicenter studies did not prove any significant improvement.
Also, electronic fetal monitoring became the main suspect for the
increased rate of cesarean sections (18). These procedures result
in a slight increase in poor outcomes in low-risk pregnancies.
The cesarean sections also require a longer time to heal than
a vaginal birth and present increased risks, including baby
breathing problems, amniotic fluid embolism, and postpartum
bleeding for the mother (19). Despite the importance of
the fetus and mother well-being assessment, low concordance
between physicians is still present, even among experienced
obstetricians, resulting in a high rate of false-positives (2, 20,
21). In daily practice, fHR is subject to the clinician visual
interpretation, even when following the guidelines provided
by the International Federation of Obstetrics and Gynaecology
(FIGO) (22, 23), which although being associated with high
sensitivity but low specificity (24), might leads to a chance
of more harmful than beneficial adherence to conventional
guidelines (25).

The autonomic nervous system (ANS) is involved in the
control of almost every organ system, and the beat-to-beat
variation of fHR reflects the influence of the fetus’ ANS
and its components (sympathetic and parasympathetic) and,
therefore, is an indicator of fetal well-being (8). A certain
level of unpredictable fetal heart rate variability (fHRV) reflects
sufficient capabilities of the organism in search of optimal
behavior. Reduced fHRV is linked with limited capabilities
and mental disorders (26). The linear modeling approaches
quantify sympathetic and parasympathetic control mechanisms
and their balance by measuring spectral low and high-frequency
components. However, it has been shown that not all information
carried by beat-to-beat variability can be explained by these
components (27). For this matter, in the past couple of decades,
and with the fast development of computation, new signal

processing, and pattern recognition methodologies have been
developed and applied to many different fields, including the
analysis of fHRV using non-linear parameters (28, 29). These
approaches can reveal relevant clinical information not exposed
by temporal or frequency analysis (30).

Variability and complexity are different terms. While a
complex system requires variability, the other way around is not
guaranteed. For example, a set of random notes in music can be
interpreted as having high complexity for its non-predictability,
whereas a set of consecutive notes is highly predictable, and
both have high variability. Thus, complexity signals, such as
those produced by self-regulatory physiological systems, present
temporal or spatial structures over a varied range of scales.
Because of their non-linearity and non-stationarity, conventional
indicators, such as the mean and the standard deviation, do not
fulfill their purpose (31). In the end, complexity is a property of
any system that quantifies the amount of structured information.

Chaffin et al. (32), in 1991, were the first to use non-linear
analyzes in fHR. The authors applied fractal analysis (correlation
dimension) to study 12 normal fetuses’ well-being in labor. Later,
in 1992, Pincus and Viscarello (33) found statistically significant
results using approximate entropy (ApEn) when comparing
a group of acidemic fetuses with non-acidemic ones. These
results supported the hypothesis that regular fHR patterns are
associated with acidemia. Datian and Xuemei (34), in 1996,
introduced a new wavelet analysis method used to detect fetal
electrocardiogram from the abdominal signal and compared to
other methods in practice. Signorini et al. (35), in 2005, applied
data compression (Lempel Ziv complexity) for the first time in
the fHR analysis to improve the early detection of fetal distress
conditions such as intrauterine growth restriction. The same
authors, also in 2007 (36), used the Lempel Ziv complexity
to successfully discriminate between severe intrauterine growth
restriction (IUGR) (premature birth) and non-severe IUGR
(term delivery) and normal fetuses. In the subsequent year,
using a compressor-based clustering algorithm called normalized
compression distance (NCD), Santos et al. (37) managed to
clustered abnormal and suspicious tracks, regardless of the
monitoring system used. Barquero-Pérez et al. (38) also used
NCD for automatic detection of perinatal hypoxia.

The main contribution of this article is to provide a systematic
review of articles that apply entropy, compression, fractal, and
wavelet analysis to study the dynamics of fHR and analyze the
research objectives of these articles. As far as we know, there is no
systematic review for this purpose in the literature.

We begin by describing the methodology used, specifying the
sources of information, the eligibility criteria, the study selection,
data extraction, and quality assessment in section 2. Based on
the systematic review results, we describe in detail the most
commonly used non-linear methods to assess the dynamics of
fetal heart rate and analyze how the study of the complexity
of fHR has evolved over the years (section 3). In section 4,
we describe the most frequent goals in research. We analyze
the evolution of the non-linear methods’ applications to these
objectives and probe how the research objectives are related
to non-linear methods. In section 5, we reflect on some open
questions regarding the application of non-linear measurements
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TABLE 1 | Online queries in Pubmed and Web of Science.

Pubmed (https://www.ncbi.nlm.nih.gov/pubmed)

(“Nonlinear Dynamics”[Mesh] OR “Nonlinear Dynamics”[Title/Abstract] OR

Nonlinear[Title/Abstract] OR “Entropy”[Mesh] OR Entropy[Title/Abstract]

OR “Data Compression”[Mesh] OR “Data Compression”[Title/Abstract]

OR Compression[Title/Abstract] OR complexity[Title/Abstract] OR

“fractals”[MeSH Terms] OR fractals[Title/Abstract] OR “Wavelet

Analysis”[Mesh] OR “Wavelet Analyses”[Title/Abstract] OR

wavelet[Title/Abstract])

AND

(“Heart Rate, Fetal”[Mesh] OR “Fetal Heart Rate”[Title/Abstract] OR “foetal

heart rate”[Title/Abstract])

Web of Science (https://www.webofknowledge.com)

(TS=(“Nonlinear Dynamics” OR nonlinear OR entropy OR Compression

OR complexity OR fractal OR wavelet) OR TI=(“Nonlinear Dynamics” OR

nonlinear OR entropy OR Compression OR complexity OR fractal OR

wavelet))

AND

(TI=(“Heart Rate, Fetal”) OR TI=(“Fetal Heart Rate”) OR TI=(“foetal heart

rate”) OR TS=(“fetal heart rate”) OR TS=(“foetal heart rate”))

to fHR dynamics. We finish this paper with the main conclusions
in section 6.

2. SYSTEMATIC REVIEW METHODS

This systematic review focused on original papers that include
non-linear analysis, such as complexity measures, fractal
approaches, and wavelets, of human fetal heart rate during
ante and intrapartum. The online search was performed on
Medline, through PubMed, and the Web of Science databases,
searching all the papers published until the 4th of October
2020. The following terms were used as descriptors/Mesh: “non-
linear dynamics,” “entropy,” “data compression,” “complexity,”
“fractals,” “wavelets,” “fetal heart rate,” “foetal heart rate.” The
queries used in each database can be found in Table 1. This study
was conducted according to the Preferred Reporting Items for
Systematic Reviews andMeta-analyses (PRISMA) statement (39).
The review protocol was not registered prospectively.

Inclusion criteria for selecting studies were the following:
observational or experimental papers presenting complexity
analysis of fetal heart rate; abstract found online; reported
original research in peer-reviewed journals; at least one
measure from the following was used in the analysis (entropy,
compression, fractal, or wavelet). Papers using non-human
fetal heart rate analysis, papers without an English version,
reviews, case studies, dissertations, and thesis were excluded (see
Figure 1).

All authors were involved in the selection of studies, data
extraction, and quality assessment. Two authors independently
assessed each title and abstract found in the databases. The
full texts of potentially relevant studies have been retrieved
and revised in depth. Disagreements between reviewers were
resolved by consensus or by the decision of a third independent
reviewer. For each article, the following data were collected: year
of publication, study design, objective, sample size, measure(s)

used to analyze fHR, and conclusions. Both reviewers made sure
that all included papers met the criteria defined in the first stage.

A total of 603 abstracts were assessed, 368 of which retained
for full-text screening. Two hundred and seventy papers were
then included in the review after meeting all the criteria.
Figure 1 contains the PRISMA flow diagram for study selection,
including reasons for exclusion. The most used non-linear
analysis measures to study the dynamics of fHR obtained in the
systematic review are also represented in Figure 1.

3. NON-LINEAR METHODS

Although linear indices have been extensively used in fetal
monitoring for the past decades, it is established that biological
systems are more complex than they appear. Non-linear
measures based on concepts of chaos, fractality, and complexity
have gained space and demonstrated promising results in the
analysis of fetal well-being and the prediction of pathologies. The
application of non-linear measures to study the dynamics of fHR
has increased over the years. The non-linear methods covered by
this review are entropy, compression, fractal analysis, and wavelet
analysis. The results show that entropy is the most applied
measure in fetal heart rate, followed by fractal analysis, wavelet
analysis, and the least applied is the compression (see Figures 1,
2). Although the application of entropy methods stands out, we
can see that compression and wavelet analysis methods have been
increasingly used in recent years (see Figure 2).

In the following sections, the most applied non-linear
methods are described. In our systematic review, other non-
linear methods were found, such as, Poincaré plot (in 18 papers),
symbolic dynamics (in 12 papers), phase rectified signal average
(in 10 papers), Lyapunov exponents (in 6 papers), and recurrence
plot analysis (in 6 papers). However, due to the reduced number
of uses, they were not described in detail. For this review, we
decided to describe only the measures most applied to fHR.

3.1. Entropy
According to Shannon (40), the information within a signal
can be quantified with absolute precision as the amount of
unexpected data in the message (defined as entropy). Entropy, a
probabilistic complexity measure used to quantify a time series’s
irregularity, has been widely used in physiological signal analysis.
The number of papers that applied each entropy measure per
year is shown in Figure 2. The entropy measures that were
applied to at least 15 articles were: Shannon entropy (SE),
approximate entropy (ApEn), sample entropy (SampEn), and
multiscale entropy (MSE).

From all 270 papers included in this review, 149 (55.2%)
papers applied entropy: 16 (5.9%) show results with Shannon
entropy (SE), 82 (30.4%) used SampEn, 101 (37.4%) used ApEn,
and 30 (11.1%) used MSE (see Figure 1). Figure 3 shows the
number of papers that applied measures of the entropy by year.
ApEn is the most applied measure. However, in recent years the
employment of SampEn and ApEn is similar.

In the literature, we found other entropy measures that
appeared in less than 15 articles, such as, permutation entropy
(41–45), Rnyi entropy (46–48), Kullback-Leibler entropy (41,
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FIGURE 1 | PRISMA flow diagram and non-linear methods most applied in fHR. DFA, detrended fluctuation analysis; FD, fractal dimension; HE, Hurst exponent.

FIGURE 2 | The number of papers, covered by the systematic review, that applied each method. The blue circle represents entropy, the green square represents

compression, the black triangle represents fractal analysis, and the red star represents wavelet.

42, 49, 50), Kolmogorov-Sinai entropy (30), cross-sample
entropy (51, 52), tone-entropy (53), bubble entropy (47), and
compression entropy (46).

3.1.1. Shannon Entropy (SE)
In 1948, Shannon (40) proposed the concept of entropy (Shannon
entropy - SE) to measure how the information within a signal
can be quantified with absolute precision as the amount of
unexpected data contained in the message. The Shannon entropy
is obtained by:

SE = −
∑

i

p(x(i)) · log
(

p(x(i))
)

(1)

where p(x(i)) represents the probability of the point x(i), of a time
series X = (x1, x2, ..., xN).

Though SE was introduced back in 1948, and many new
entropies appeared to overcome some of the SE limitations, some
authors still applied it in the analysis of fHRV (46, 54).

3.1.2. Approximate Entropy (ApEn)
In 1991, Pincus et al. (55) developed a regularity statistic tool
to quantify the amount of regularity and the unpredictability
of fluctuations over time-series data. The ApEn is based on
the assumption that healthy dynamic stability comes from
specific networks’ specific mechanisms and properties. When a
vulnerable connection arises between systems or within one, it is
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FIGURE 3 | Entropies by year. The colors and symbols represent the different measures of entropy. The blue circle, green square, black triangle, and star red

represented Shannon entropy, approximate entropy, sample entropy, and multiscale entropy, respectively.

the disease mechanism, which is characterized by an increase of
regularity of the series (56).

Considering a time series X = (x1, x2, ..., xN), in order to
calculate the ApEn the new series of a vector of length m
(embedding dimension), Xm(i) = (xi, xi+1, xi+2, . . . , xi+m−1) are
constructed for each i = 1, . . . ,N − m + 1. For each vector
Xm(i), the value Cr

m(i), where r is referred as a tolerance value,
is computed as:

Cr
m(i) =

number of d[Xi,Xj] ≤ r

N −m+ 1
, ∀j (2)

Here, the distance between the vector Xm(i) and its neighbor
Xm(j) is defined as:

d[Xm(i),Xm(j)] = maxk=1,...,m|x(i+ k− 1)− x(j+ k− 1)| (3)

Next, the average of the natural logarithm of Cr
m(i) is computed

for all i:

8r
m =

1

N −m+ 1

N−m+1
∑

i=1

ln(Cr
m(i)) (4)

Since in practice N is a finite number, the statistical estimate is
computed as:

ApEn(m, r) =
{

8r
m −8r

m+1 for m > 0
−8r

1 for m = 0

In the particular case of the ApEn, the most common value is
m = 2. However, many algorithms were proposed to estimate
the smallest sufficient embedding dimension, m. One of the
most used methods is the “false nearest-neighbors” algorithm
proposed by Kennel et al. (57). Though, the limitation of this
method relies on the subjective definition of false neighbor (58).
To overcome this limitation, Cao (58) proposed a new method.

For estimation of an appropriate time delay various
approaches have been proposed. The most used two are the
autocorrelation function and the average mutual information

function (59). Pincus (60) and Pincus and Goldberger (61)
recommends values between 10 and 25% of the standard
deviation of the data, hence obtaining a scale-invariant
measurement. The approach of choosing a fixed r value was
also used with success (62, 63). However, the values of entropy
in this case are usually highly correlated with the time series
standard deviation. Lu et al. (64) showed that ApEn values
varied significantly even within the defined range of r values
and presented a new method for automatic selection of r that
corresponds to the maximum ApEn value.

3.1.3. Sample Entropy (SampEn)
In 2000, Richman and Moorman (65) proposed the sample
entropy (SampEn), with the same purpose as ApEn, to evaluate
the randomness of biological time series, in particular, the HR
time series. The main limitation of the ApEn is the dependence
on the record length, i.e., the ApEn is lower for short records,
and if one time series is higher than another, it should not
remain higher for all conditions (65). In order to overcome
the limitations, the authors proposed a new family of statistics,
SampEn(m, r), which, with some differences, reducing bias
specially in short data sets:

1. self-matches are not counted;
2. only the first N-vectors of length are considered;
3. the conditional probabilities are not estimated in a template

manner.

To calculate the value of SampEn (65) the parameters m, and r
defined for ApEn are needed. Considering A as the number of
vector pairs of length m + 1 having d[Xm(i),Xm(j)] ≤ r, with
i 6= j and B as the total number of template matches of length m
also with i 6= j, the SampEn is defined by the equation:

SampEn = −ln
A

B
(5)

This probability measure is computed directly as the logarithm of
conditional probability and not from the logarithmic sums ratio,
showing relative consistency in cases where ApEn does not (65).

Frontiers in Medicine | www.frontiersin.org 5 November 2021 | Volume 8 | Article 661226

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Ribeiro et al. Non-linear Methods in fHR Analysis

3.1.4. Multiscale Entropy (MSE)
ApEn and SampEn have the disadvantage of outputting a
single index concerning the time series’s general behavior, thus
not revealing its underlying dynamics. MSE has been widely
employed in the biomedical signal analysis as it allows measuring
signal properties at different time scales (66, 67).

Considering a time series X = {xi} of N points, it constructs

consecutive coarse-grained time series y
(τ )
j , replacing τ non-

overlapping points by their average. The MSE curve is created
by computing the entropy for each of the scales and plotted vs.
the scale. The information of the different time scales is clustered
in the complexity index defined as the area under the MSE curve.

The estimation of the complexity methodology has to follow
the multiscale application requirements, and SampEn was
proposed using a tolerance r obtained from the original series
and keeping it constant for all scales (67). Other authors were
in favor of choosing an individual tolerance level r for each
scale (68, 69). For example, the quadratic sample entropy permits
a personalized estimation of r for each scale in short data (70).

The physiological interpretation of multiscale complexity is
not always clear once, in a complex dynamic system, all scales
might be affected by regulating influences (71). Low complexity
scales indicate regular patterns with periodicity, but isolated ones
would indicate one single frequency oscillation periodicity that
usually is not present in complex systems. However, it is typical
of the appearance of correlated neighboring scales (41, 67).

3.2. Compression
Dynamic systems theory was firstly linked with information
theory by Kolmogorov (72), in 1958. Years later, “algorithm
information theory” was then independently proposed by
three different authors, Solomonoff (73), Kolmogorov (74) and
Chaitin (75).

Let x be a finite length binary string, U be a universal
computer, l(x) denote the length of the string x and U(p) the
output of the computer U when presented with a program p.
The Kolmogorov (or algorithmic) complexity (KC) of a string x
with respect to a universal computer U , KU (x), is defined as the
shortest description length of x over all descriptions interpreted
by computer U . In different words, KC quantifies how “random”
an individual object is in terms of the number of bits necessary to
describe it. For a random string, the output of KU (x) function
will be the original string’s length as any compression effort
will end in information loss. The more reoccurring patterns, the
less complex the signal is. Although this concept is objective,
its applicability is limited to the fact that it is not computable.
Compressors are a close upper-bounded approximation of the
KU (x) function. For over 30 years, data compression software
has been developed for data storage and transmission efficiency
purposes, and more recently, compression has been utilized in
health research.

The innumerous compressors found in the literature can be
divided into two big groups: lossless or lossy. The former group
is composed of compressors in which, after being decompressed,
all original information is restored. For the lossy group, this is not

guaranteed, particularly for redundant information. The most
applied compressors in health research belong to the first group.

The Lempel–Ziv algorithm was introduced, in 1976, by
Lempel and Ziv (76) based on ’the concept of encoding future
segments of the source output via maximum-length copying
from a buffer containing the recent past output.’ It was the
starting point for different compressors such as the Lempel–Ziv–
Markov chain algorithm, LZ77, LZ78, and gzip. The bzip2 was
developed by Seward (77) and used the block sort algorithm
giving speedy results.

In order to estimate the complexity of a physiological signal
using compression, different approaches have been used, such as
an increase/decrease coding system using a binary (30, 78, 79) or
ternary alphabet (80, 81).

Compression also has been used for research purposes in
a wide variety of fields such as literature (82), music (83),
computer virus and internet (84) traffic, but only in 2004, it
was first applied in HRV time series by Ferrario et al. (85).
Here, compression demonstrated to differentiate healthy
fetuses from unhealthy ones. In fact, the former group
complexity calculated with LZ achieved similar results to
random noise (meaning high complexity), while in the
latter group, its complexity was lower, showing sinusoidal
patterns. The applications of compression in health research
range from event detection [such as epileptic seizure (86),
the onset of ventricular tachycardia or fibrillation (87) and
changes from sleep to waking state in-depth anesthesia (88)],
characterizing neural spike trains (89), fHR biometric
identification (90) or in DNA sequences studies (91). A
distinct approach to applying compression on a time series
uses the normalized compression distance (NCD) measure,
a dissimilarity learning approach first used in fHR by Santos
et al. (37).

From all 270 papers included in this review, 46 (17%) show
results with compression. Its usage throughout recent years can
be seen in Figure 4.

3.3. Fractal Analysis
Fractality indices quantify self-similarity and fractal- or
multifractal-like behaviors. The heart rate fluctuates on different
timescales and is similar to itself, which is a good premise for a
fractal analysis approach (30).

Of all 270 papers included in this review, 28.1% applied fractal
analysis. More specifically, 35 (13.0%) used detrended fluctuation
analysis (DFA), 34 (12.6%) show results with fractal dimension
(FD), 14 (5.2%) used Hurst exponent and 14 (5.2%) multifractal
analysis (see Figure 1). Figure 5 shows the number of papers that
applied measures of fractal analysis by year.

Fractal dimension, Hurst exponent, and DFA are described
in sections 3.3.1–3.3.3, respectively. The multifractal analysis
describes more complex signals than those fully characterized by
a monofractal model but requires many local and theoretically
infinite exponents to characterize their scaling properties
completely. The multifractal detrended fluctuation analysis (MF-
DFA), the most applied multifractal method in the papers
covered by the systematic review, is described in section 3.3.4.

Frontiers in Medicine | www.frontiersin.org 6 November 2021 | Volume 8 | Article 661226

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Ribeiro et al. Non-linear Methods in fHR Analysis

FIGURE 4 | Papers using compression in fetal heart rate, by year. The red circle represents the Lempel-Ziv compressor and the blue square represents the other

compressors.

FIGURE 5 | Papers using fractal analysis in fetal heart rate, by year. The blue circle represents the fractal dimension measure, the green square represents the

detrended fluctuation analysis, the black triangle represents the Hurst exponent, the red star represents the multifractal analysis.

3.3.1. Fractal Dimension (FD)
A fractal dimension (FD) is a statistical index of how the detail
in a pattern changes with the scale at which it is measured.
The FD appears to provide a measure of how much space an
object occupies between Euclidean dimensions. The higher the
FD value, the more irregular the signal is and, therefore, the more
self-similar the signal will be.

Of the various algorithms available to calculate the FD of
a time series, the four most used are the algorithms proposed
by Katz (92) and Higuchi (93, 94), the correlation dimension,
and the box-counting dimension (95). More details on the FD
calculation algorithms of a time series can found at Henriques
et al. (96).

3.3.2. Hurst Exponent
Hurst exponent (HE) or Hurst coefficient is a dimensionless
estimator used to evaluate the self-similarity and the long-
range correlation properties of time series (97). There are many
algorithms to estimate the HE parameter in the literature. The
oldest is the so-called rescaled range analysis (R/S) popularized
by Mandelbrot and Wallis (98, 99) and it is defined in terms

of the asymptotic behavior of the rescaled range (a statistical
measure of the variability of a time series). Alternative methods
to estimate HE include detrended fluctuation analysis (100, 101),
periodogram regression (102), aggregated variances (103), local
Whittle’s estimator (104), first return method (105), wavelet
analysis (106), both in the time domain and frequency domain.
Furthermore, there is a relation between HE and the FD, given by
FD = E+1−HE, where E is the Euclidean dimension, which for
time series is 1 obtaining their relationship FD = 2 − HE (107).
The HEmay range between 0 and 1 and can indicate:

• 0 < HE < 0.5: time series has long-range anti-correlations;
• HE = 0.5: there is no correlation in the time series;
• 0.5 < HE < 1: there are long-range correlations in the time

series;
• HE = 1: the time series is defined self-similar, i.e., it has a

perfect correlation between increments.

3.3.3. Detrended Fluctuation Analysis (DFA)
Detrended fluctuation analysis (DFA) quantifies intrinsic fractal-
like (short and long-range) correlation properties of dynamic
systems (101). Two advantages of DFA over conventional

Frontiers in Medicine | www.frontiersin.org 7 November 2021 | Volume 8 | Article 661226

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Ribeiro et al. Non-linear Methods in fHR Analysis

methods (such as the HE method) are that this method allows
the detection of intrinsic self-similarity embedded in a non-
stationary time series and also avoids the detection of apparent
self-similarity (108).

To execute the DFA algorithm the first step is to integrate the
time series (of length N). The next step is to split the integrated
time series into Nn windows of equal length n. Then, a least-
squares line is fitted to the data, in each window of length n. The
y-coordinate of the straight-line segments is given the name of
yn(k). Then, the integrated time series is detrended, yn(k), in each
window. The root mean square fluctuation of this integrated and
detrended series is calculated by the following equation:

F(n) =

√

√

√

√

1

N

N
∑

k=1

[y(k)− yn(k)]2. (6)

This algorithm is repeated for all time scales (box sizes)
to characterize the relationship between F(n), the average
fluctuation, and the box size, n. Normally, F(n) increases with the
size of the window, according to F(n) ∝ nα . The α exponent can
be viewed as an indicator of the “roughness” of the original time
series: the higher the value of α, the smoother the time series:

• if α ≃ 0.5, the time series represents uncorrelated randomness
(white noise);

• if α ≃ 1 (1/f-noise), the time series has long-range correlations
and exhibits scale-invariant properties;

• if α ≃ 1.5, the time series represents a randomwalk (Brownian
motion).

Usually, the DFAmethod involves estimating a short-term fractal
scaling exponent, α1, and a long-term scaling exponent, α2.

3.3.4. Multifractal Detrended Fluctuation Analysis

(MF-DFA)
The multifractal DFA (MF-DFA) calculation (109, 110) is
similar to the DFA since only two additional steps are taking
into consideration. The fitting procedure in the MF-DFA can
be linear, quadratic, cubic, or higher-order polynomials (MF-
DFAm - the mth order of the MF-DFA) (101, 111, 112). By
comparing the results obtained for different MF-DFA orders,
it is possible to estimate the order of the polynomial segment
trends in the time series (109, 112). The procedure must be
repeated for various n time scales, as we are interested in
how this q-dependent fluctuation function depends on the n
time scale for different q values. The other additional step
is a q dependent averaging procedure obtaining a generalized
(multifractal) scaling exponent h(q). For q = 2, the standard DFA
procedure is retrieved.

The main problem with the MF-DFA method is that all the
steps are deeply dependent on the user’s decisions. TheMultiscale
multifractal analysis (MMA) (71, 113) is a generalization of the
MF-DFA method. The method creates a Hurst surface h(q,s),
allowing a broader analysis of the fluctuation properties andmore
stable results. Also, all multifractal methods, including MMA,
require a relatively long time series to analyze.

3.4. Wavelets Analysis
The first appearance of the term wavelet was in an annex to Haar
thesis’ (114). However, it is considered that the wavelet theory
was developed in the late 1980s by Mallat (115), Daubechies
and Bates (116, 117) to meet the needs for adaptive time-
frequency analysis applied to signal processing, mathematics,
physics, and engineering. Wavelets are functions that satisfy
a series of mathematical parameters and are used in the
representation of data or other functions. The term wavelet
comes from the fluctuation around the axis, integrating to
zero (the areas above the axis and below are the same).
Wavelet algorithms process information at different scales (or
resolutions). The decomposition of a function using wavelets
is known as a transformed wavelet, and it has continuous and
discrete variations. Due to the ability to decompose functions
in frequency and time domains, wavelet functions are powerful
tools for signal processing, widely used in data compression,
noise elimination, separation of components in the signal,
identification of singularities, and auto-similarity detection.

Let ψs,u(t), s, u ∈ ℜ, s > 0 be a family of functions
defined as translations and re-scales of a single function ψ(t) ∈
L2(ℜ), L2(ℜ) denotes the space of square-integrable functions on
ℜ (118),

ψs,u(t) =
1
√
s
ψ

(

t − u

s

)

(7)

where s is the scaling parameter and u the position parameter.
The parameter u indicates that the function ψ(t) was translated
on the t axis (translation parameter) by a distance equivalent to
u. The parameter s causes a scale change, increasing (if s > 1)
or decreasing (if s < 1) the wavelet formed by the function.
The wavelet is defined as a mother wavelet ψ(t) [equivalent
to ψ1,0(t)], with a family of scale and time daughter wavelets
ψ

(

t−u
s

)

. Therefore, daughter wavelets constitute a family of
curves with a shape identical to that of the mother wavelet,
displaced in time and scaled in amplitude. In the time domain,
the wavelet transform measures the correlation between the f (t)
signal and the daughter wavelets.

The wavelet ψs,u(t) has the following basic properties:

∫ ∞

−∞
ψ(t)dt = 0 and

∫ ∞

−∞
|ψ(t)|2dt = 1. (8)

The waveletψs,u(t) has to meet the admissibility condition for the
transformation to be invertible (116).

The term 1√
s
is a normalization factor that ensures that the

energy of ψs,u(t) is independent of s and u, such that:

∫ ∞

−∞
|ψs,u(t)|2dt =

∫ ∞

−∞
|ψ(t)|2dt (9)

The continuous wavelet transform (CWT) of signal f (t) is defined
as:

Wψ f (s, u) =
〈

f (t),ψs,u(t)
〉

=
1
√
s

∫ ∞

−∞
f (t)ψ

(

t − u

s

)

dt. (10)
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The CWT coefficientsWψ f (s, u) can be obtained by continuously
varying the scale parameter s and the position parameter u.
For real discrete signals f (n), as is the case for the fHR signal,
Wψ f (s, u) can be calculated according to

Wψ f (s, u) =
1
√
s

N
∑

n=1

f (n)ψ

(

t − u

s

)

. (11)

If s is a continuous variable then Wψ f (s, u) is called the
continuous wavelet transform. However, if s = aj and u =
n ∗u0 ∗ aj where the integers j and n control the wavelet dilation
and translation respectively; a is a specified fixed dilation step
parameter set at a value greater than 1, and u0 is the location
parameter which must be greater than zero then Wψ f (s, u) =
Wψ f (j, u) is called the discrete wavelet transform (119). A useful
property of the wavelet transform is that it can be viewed
as the application of a filter bank (each filter corresponds to
one scale) (120). Some authors, such as, Zhao et al. (121) and
Papadimitriou et al. (122) apply different scale values, but, in
practice, s = 2j and u0 = 1 are the most popular scale in fHR
analysis (123–125).

There are a vast number of different mother wavelets, each
suitable for different applications. In particular, several wavelet
families have been proposed for fHR analysis. From all 270 papers
included in this review, 26.3% applied wavelet analysis. The
Daubechies (36 papers), spline (11 papers), symlets (11 papers),
and coiflet (8 papers) wavelet families were the most applied in
fHR analysis (see Figure 1). The application of wavelet analysis
in fHR has intensified in the last 10 years, Figure 6.

4. RESULTS

There is no doubt of the importance of non-linear measures
in fetal monitoring, as they enrich the signal description
by providing new indicators for classification and diagnostic
purposes. Numerous studies have documented the changes in
fHRV during gestation, and fetal growth is associated with
a drop in fetal heart rate and increased variability. As non-
linear measures started being used, authors started to link their
association with different physiological regulatory systems.

The history of non-linear methods reported to fHR
summarizes 30 years. However, in the last 15 years, there
has been a notable increase in their application to study fHR
dynamics (see Figure 7). The main research objectives covered
by this systematic review were signal processing (60 papers),
hypoxia (56 papers), maturation or gestational age (53 papers),
IUGR (44 papers), and fetal well-being or fetal distress (26) (see
Figure 7 and Table 2). Also, in Figure 7, the evolution of papers’
of the five most cited research objectives is presented per year.

Hypoxia can be caused by prolonged or profound asphyxia, an
oxygen deficiency due to a pathological change in either fetal or
maternal components of the placenta, when there is an exchange
of carbon dioxide and oxygen by the fetus during labor. This
state leads to an accumulation of carbon dioxide leading to fetal
acidemia, resulting in a lower pH in the fetal blood vessels. Early
detection of which babies are at risk of acidemia is crucial, as

it decreases the chance of a post-diagnosis of cerebral palsy,
neonatal encephalopathy, or even death (126). To relate fHR
with umbilical artery pH is, therefore, of extreme importance.
However, the proper definition of fetal acidemia is still not
established as different authors consider different pH cutoffs.
Moreover, some authors also include in the definition the value
of the base excess or base deficit (127). Some authors defined
as “at risk of acidemia” when pH < 7.20 (33, 47, 128–136) or
pH < 7.15 (30, 121, 137–143); others define when pH < 7.1 (43,
126, 144–146) or even when pH < 7.05 (38, 44, 48, 78, 147–165).
Some studies used clinical experts to identify episodes of hypoxia
and asphyxia, such as, (54, 166, 167). Another challenge relate
to this pathology is to collect enough data for a proper acidemia
analysis since prevalence of an acidemic fetus ranges from 0.6
to 3.5% (168, 169). From the 56 papers that aim to analyze of
perinatal hypoxia or asphyxia 40 papers applied entropies, 19
applied compression measures, 23 applied fractal measures, and
23 papers applied wavelets analysis.

The development of non-invasive ultrasound techniques
allowed a better estimation of gestational age and, therefore,
the definition of a crucial fetal outcome: small for gestational
age (SGA), which corresponds to fetuses having a weight lower
than the 10th percentile adjusted to gestational age. Nevertheless,
healthy babies can also be considered SGA, so it is still a challenge
to decide whether the small dimensions are due to physiological
or pathological conditions (170). Related to SGA fetus, one of
the most common pathologies is IUGR. IUGR is a metabolic
dysfunction inhibiting the fetus from achieving its average size.
With a prevalence of 5 − 8% in the general population, it can
complicate 10–15% of all pregnancies (171). IUGR is the second
cause of perinatal mortality, after prematurity (172), and is still
an important challenge for diagnosis and management (173).
From the 44 papers that aim to study IUGR, 32 papers applied
entropies, 15 applied compression measures, 11 fractal and only
2 papers used wavelets.

The effect of an antepartum vs. intrapartum analysis on the
complexity indices and the differences in the signal acquisition
methods are important to correctly evaluate and assess fetus well-
being (174, 175). Throughout pregnancy, the fetus interacts with
its environment, as the mother sets the framework for the state
and development of the fetus (176). In a study where the mother’s
breathing was controlled, Van Leeuwen et al. (176) found that
the presence or absence of interaction between mother and fetus
cardiac activity might be due to maternal respiration. Also, the
fetal cardiac system seems to have the capability to adjust its
activation rate when responding to external stimuli. Spyridou
et al. (177) studied the effect of smoking in fHR and found
differences with several linear and non-linear parameters (such
as, mutual information, MSE, and compression). In particular,
it was shown less complexity for fetus exposed, enhancing its
danger. From the 26 papers that aim to study fetal well-being or
fetal distress 17 papers applied entropies, 4 applied compression
measures, 7 fractal, and only 3 papers used wavelets.

When assessing fHRV, it is essential to control any factor
which might confound its interpretation. Some of the most
studied factors are the baby’s maturation reflected in gestational
age, behavioral state, and maternal condition (178). From the
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FIGURE 6 | The wavelet families most used in fHR analysis, by year. The colors and symbols represent the wavelet families. The black circle, blue triangle, purple

diamond plus, green square, and star red represented Daubechies family, spline family, symlet family, coiflet family, and other families, respectively.

FIGURE 7 | The five most cited research objectives of the papers that applied non-linear methods in fHR, by year of publishing. The colors and symbols represent the

different research objectives. The blue circle, cyan square, star red, green triangle, and black diamond plus represent maturation, hypoxia, intrauterine growth

restriction, fetal distress, and signal processing, respectively.

53 papers that aim to study maturation or gestational age
38 papers applied entropies, 7 applied compression measures,
18 fractal and only 3 papers used wavelets. First trimester
observations during pregnancy have shown a low intraindividual
variation of the fHR, compared to variation between different
fetuses (179). Later in pregnancy, Arduini also found this high
intraindividual consistency concerning fetal behavioral states’
characteristics, particularly fHR, in 2 consecutive days (180). In
fact, an association between individual differences in prenatal
heart rate and HRV and postnatal neural development has been
reported (181). Besides these factors, Gonçalves et al. (131)
and Spyridou et al. (182) noted that gender also has an effect
on fHR analysis and should be considered, while Tagliaferri
et al. (183) found differences on both linear and non-linear
indices between different ethnic groups. Gender was also shown
to influence maternal heart rate (MHR) (52). Even when twins
are considered, sex differences were found both by linear and
non-linear indices (184). Fetal presentation at birth has also been
studied (185, 186). Reports are stating that breech fetuses have

worse neurological outcomes compared to cephalic presentation
ones (187, 188). Furthermore, in a study by Choi and Hoh (189),
non-linear dynamic indices were able to differentiate normal
pregnancies from ones with partial placental abruption with high
accuracy, while linear indices were not.

The evaluation of neonatal behavior has shown more
success in predicting neurodevelopment disability than
neurological examination (190). Therefore, the same
approach was adopted for fetal well-being assessment.
These fetal behavioral states were introduced back in 1982
in studies combining the assessment of fetal body and eye
movements (191). They include calm or non-eye movement
sleep state (1F), active or rapid eye movement sleep state (2F),
calm wakefulness state (3F), and active wakefulness state (4F).
The importance of these definitions in understanding fetal
physiology, interpretation of fHR monitoring, and diagnosis
of pathological conditions is described with more detail
elsewhere (192). There are associations between fetal behavioral
states and fHR patterns. 1F is related to a stable baseline
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TABLE 2 | Research objectives and non-linear methods of the papers selected.

Non-linear analysis

Entropy Comp Fractal Wavelet O T

Objectives ApEn SampEn SE MSE O LZ O FD HE DFA O

Healthy

Maturation 19 12 4 13 11 7 1 3 12 4 3 14 53

Activity/behavior 10 5 1 2 3 1 3 1 1 3 14

Gender 10 8 2 2 1 1 1 2 11

Presentation 3 2 1 1 3

RM 1 1

Labor 3 2 1 1 1 1 1 1 3 6

Cesarean 1 1 1 1 1 3 4

Preterm 2 2 1 1 1 1 1 1 3

Twins 1 1 1 1 2

Nuchal cord 1 1

FCTE 1 1

Self-organization 1 1 1

Ethnic origins 1 1

Pathologies

Hypoxia 29 28 7 6 11 14 5 11 6 6 7 23 27 56

IUGR 26 13 2 6 3 15 2 1 7 1 2 16 44

Fetal distress 13 7 2 3 4 3 1 4 3 1 2 3 12 26

SIDS 1 1 1

Intrauterine demise 1 1

PPA 1 1 1 1 1

Anencephalus 1 1 1

Maternal

MP 5 1 1 1 1 2 1 2 9

Hypnosis 1 1 1 1

Steroid treatment 1 1

Uterine contraction 2 2 1 1 4 4

Signals

MFCC 1 3 4 1 1 4 7

BI 1 1 1 1

FCEC 1 1 1

Signal Processing 3 7 1 4 2 2 45 28 60

Signal acquisition 1 1 1

fHR baseline 1 4 4

Others

Expert annotation 3 4 1 1 3 4 2 3 4 6

Patterns 5 3 1 1 1 3 9

Fractal value 1 1 1

Total 101 82 16 30 38 38 8 34 14 15 15 71 112

ApEn, approximate entropy; BI, biometric identification; CD, correlation dimension; Comp, Compressor; DFA, detrended fluctuation analysis; FCEC, fetal cardio-electrohysterographic
coupling; FCTE, fetal cardiac timing events; FD, fractal dimension; HE, Hurst exponent; IUGR, intrauterine growth restriction; LZ, Lempel-ziv; MFCC, maternal-fetal cardiac coupling;
MSE, multiscale entropy; MP, maternal pathologies; O, others; RM, Respiratory movement; PPA, partial placental abruption; SampEn, sample entropy; SE, Shannon entropy; SIDS,
sudden infant death syndrome; T, total.

with absent or sporadic and short-lasting accelerations; 2F is
associated with a stable baseline and frequent accelerations,
and it is the most frequent state. 3F is rare and is usually
very short in time. It also has a stable baseline but with
wide variability and no accelerations. 4F shows repetitive

and long-lasting accelerations with eventual returns to the
baseline (193).

This field’s interest is not only focused on fHR tracings
classification. Features like frequency and amplitude traditionally
characterize physiological signals. However, these parameters do
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not provide us with an insight into the regulatory processes
underlying the signal dynamics, thus requiring a further
extraction of more appropriate features, which has become
a difficult task. These difficulties lie in the lack of a priori
information on which process belongs to each component (i.e.,
fetal, maternal, or environmental) and the lack of knowledge on
how each component behave (194). Much effort has been put
into the signal acquisition and processing models because the
extracted features’ usability highly relies on the preprocessing
steps’ quality, such as artifacts removal, interpolation method,
segmentation, and detrending signal (30).

In 2013, an open challenge was created, the Physionet
Challenge (195), in order to promote the development
of advanced signal processing techniques. Many different
approaches were suggested, such as wavelet de-denoising,
subspace decomposition and reconstruction, adaptive filtering
and averaging, matched filtering, and entropy. Most of them
followed these four steps: signal processing, maternal heartbeat
detection, maternal heartbeat cancelation, fetal heartbeat
detection. More information can be found in Di Maria
et al. (196). These non-linear methodologies have been studied
and applied to retrieve signal with the best quality possible,
dismissing as much noise as possible. The preprocessing is even
more important when adopting low-cost systems for signal
extraction, as is the case of the fetal phonocardiography, which
has a poor signal-to-noise ratio (11). From the 60 papers that aim
to study signal processing 7 papers applied entropies, 1 applied
compression measures, 7 fractal, and 45 papers used wavelets.

Table 2 presents the number of articles that applied each non-
linear method for each research objective. Entropy, compression,
and fractal measures are most used in classification papers,
mainly when applied to analyze the variability of fHR in
hypoxia, IUGR, and fetal distress. However, these measures are
still underused in studies whose research objective is signal
processing. On the other hand, wavelet analysis is most used
when the research objective is signal processing (43 papers) or
hypoxia (25 papers).

5. DISCUSSION

The number of articles probing the use of non-linear measures
to assess the fHR signals analysis has been growing in the past
decade. Non-linear analysis has been successfully applied in the
study of fetal heart rate with several research objectives, such as
fetal maturation or gestational age (197–199), fetal gender (182,
200), labor stages (201, 202), cesarean section (51, 203), preterm
birth (80, 204), impact of nuchal cord on antenatal (205), fHR
baseline (206), behavioral state (207, 208), IUGR (209–213),
hypoxia (128, 137, 214, 215), fetal distress (216–218), maternal
pathologies (219, 220), and signal processing (198, 221–224).
Therefore, it is important that the scientific community is aware
of the non-linear methods used depending on the research
objective. Additionally, they are not yet used in clinical practice
due to some critical concerns that need to be further discussed.

Systems, such as, Omniview SisPorto (225), OxSys (226), NST-
Expert, which later became CAFE (227) already automatically

deal with CTG assessment. All the fHR processing and analysis
in these systems are based on morphological features defined by
FIGO guidelines. In some, the CTG is complemented with the
ST-analysis method. It has been shown that it slightly improves
labor outcomes, but its use is not always possible since it
requires an invasive measurement (228). However, none of these
systems still integrates non-linear indices, so they can and should
be optimized.

When analyzing fHR time series automated, there are
two main aspects to contemplate: the signal properties and
quality and the clinical characteristics that might influence the
measures used. Accordingly, we found that the most studied
research objectives in fHR are signal processing, hypoxia, and
maturation. Furthermore, the results show that entropy is the
most applied measure in fetal heart rate, followed by fractal
analysis, wavelet analysis, and the least applied is compression.
Although the application of entropy methods stands out, we
can see that compression and wavelet analysis methods have
been increasingly used in recent years. Also, highlighting the
fact that entropy is the oldest method, and that is it has been
extensively studied and refined when applied to much different
time series (229). On the other hand, wavelets are widely used
in signal processing (124, 222) dealing with the signal itself,
handling problems such as noise (230) and frequency.

Routinely, the fetal heart rate monitors acquire the beat-
to-beat intervals in milliseconds either from Doppler or
electrocardiographic signals and then convert them to provide a
sequence of instantaneous heart rates in beats per minute (bpm).
However, when data is exported, it is sampled, implying an
interpolation of signals (132). The sampling rate does not seem to
affect many linear parameters, but differences were found when
non-linear indices were considered (175). Caution must be taken
when defining reference values for irregularity indices, such as
entropy, as they depend on the sampling frequency, as shown
in (175), where 2 vs. 4 Hz sampling was compared. It is most
important not to compare computerized systems for heart rate
frequency analysis that use different sampling rates (225, 231).

Several linear methods have been studied as a forecaster of
fetal well-being by measuring the interaction between the fetal
sympathetic and parasympathetic nervous systems and its effects
on fetal cardiovascular activity (232). As the parasympathetic
nervous system is more responsible for variations in short-
term variability (STV), which usually assesses the beat-to-beat
differences, it might be reduced in central nervous system
hypoxia/ acidosis. If hypoxia is sustained and increases in
severity, it leads to the loss of long-term variability (LTV) (233),
resulting in a global decrease of sympathetic and parasympathetic
activity. On the other hand, it has been shown that fetal hypoxia’s
early effects increased short and long-term variability (234).
Notwithstanding, many studies verify the weakness of STV and
LTV indices in identifying fetal pathologies (235). Furthermore,
with fetus maturity throughout pregnancy, an increase in fetal
autonomic nervous system activity and the sympathovagal
balance is expected. Moreover, motor and neurological delay,
as well as damage in specific brain areas with cognitive effects,
also affect the STV (236). The IUGR showed a reduction in both
components of the autonomic nervous system activity, which
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modulates heartbeat intervals receiving inputs from the heart, the
lungs, and the blood vessels (204, 209, 237).

The indices presented in this review are closely related to
fetal heart variability. For instance, in (199) the authors showed
that the complexity indices correlate highly with abnormal
STV. In (143) the authors also report correlations between
the complexity indices ranging from 0.53 to 0.78. Therefore,
many studies found a reduction of complexity in the fHR
signal associated with hypoxia/ acidosis. However, these indices
were not always able to identify fHR from IUGR fetuses (237).
Contrastingly, the fractal indices are measures of long-range
correlations and long-term memory of time series, therefore,
applied mainly in maturation studies.

Furthermore, many of the fetal heart rate analysis methods
rely upon stationarity properties like mean, variance, and
correlation structure. However, it is known that these fHR
properties vary in time through events like uterine contractions.
One way to counter this is to select small temporal windows
where this property holds. Usually, an interval of 10–20 min
is considered the minimum time window to perform the
analysis for tracing classification and clinical decision (231, 238).
In addition, many of the described measures are parametric
measures. The choice of the ideal parameter is far from
established in most cases. This heterogeneity limits the possible
comparison between the results of different studies. In fact, in
various papers, the choice of parameters is neither discussed nor
even fully described.

Factors like fetus maturation, behavioral states, and maternal
conditions are critical for a good assessment of the fetus and
fully understanding their influence in the fHRV is no easy
task. Incorporating such variables in predictive models for fetal
evaluation will elucidate the importance of individual fHRV and
increase its accuracy (178). Maternal psychological conditions
such as stress and anxiety influence fHR and maternal hormones
transferred via placenta or changes in the oxygen and nutrition
supply for the fetus (239, 240). As seen in some results, gender
is also a factor that should be taken into consideration. Even
when twins are considered, sex differences were found both by
linear and non-linear indices (184). Although Park et al. (185)
found no significant differences between fetuses with different
fetal presentation using spectral and complexity measures such
as Lempel-Ziv complexity, ApEn, SampEn, and CD. Gonçalves
et al. (186) found differences not only using linear indices
but also with non-linear and spectral ones. This example of
contrasting results reflects the difficulty and complexity of the
fetal assessment. In this case, and according to the authors,
the discrepancy might have resulted from different inclusion
criteria, conditions for fHR recording, the occurrence ofmaternal
fasting, time interval between acquisition and delivery, and
equipment used. Moreover, an interesting study comparing
uterine contraction influence on fHRV features between acidemic
and non-acidemic fetuses suggested that separating contractions
from rest periods improves fHRV analysis in detecting asphyxia
during labor (151).

Having as a premise that humans are a result of self-
organization and adaptation process and that ontogenetic
development reflects phylogenetic development and indices

of developmental biology may be helpful in fetal maturation
assessment. Many studies addressed here found HRV changes,
such as variability increase and pattern formation (204). These
universal developmental features deliver appropriate measures
of fetal maturation. Therefore, it seems only natural that
these self-organization and adaptation features might better
understand and identify developmental disorders (241). In
fact, attention-deficit hyperactivity disorders in teenage boys
were associated with antenatal maternal anxiety (242), which
might influence fetal humoral development and autonomic
control reproduced in heart rate patterns. This phenomenon,
resulting from adverse influences on the fetus explained by
epigenetic mechanisms, is called “fetal programming.” Therefore,
early identification of fetal developmental disorders is essential
as they may not be wholly compensated for later postnatal
therapies (243). Many different approaches to fHR processing
and analysis have been studied. They range from simple feature
extractionmethods to more sophisticated classification programs
and joining research centers from different countries for joint
projects, as the Digi-Newb project (244). Usage of continuous
non-invasive evaluation, such as the usage of wearables, have
been discussed (27, 245) and will contribute to the patient’s
care improvement since it will improve data gathering, reducing
costs of fetal monitoring. Insurgent approaches are opening new
windows on the continuous monitoring of fetal development.
A single index cannot retrieve all the information from
pathophysiological processes in the fetus’s development, so
approaches considering both linear and non-linear measures,
through multivariate analysis, can improve the assessment of
both fetal and maternal well-being.

In (35, 246), time, spectral and complexity indices were used as
parameters to discriminate fetuses whowere or not in a distressed
state. Ferrario et al. (247) conclude that compression quantifies
the rate of new patterns arising as the signal evolves, whereas
entropy quantifies the recurrence of repetitive patterns. This idea
of complementary of different indices is also supported in other
papers (130, 145, 167, 247). It seems only logical for such a
complex/chaotic system to be evaluated using a multiparameteric
approach through advanced classification techniques capable of
discriminating fetuses in distress in non-linear regions of a
multidimensional space (30). With this approach, Signorini (248)
was able to classify IUGR fetuses with accuracy, sensitivity, and
specificity above 90%.

Mapping from feature space captured from the fHR
signal to the space of decision or diagnosis, many machine
learning, and deep learning techniques has been applied. Some
examples are: support vector machines (38, 150, 152, 249,
250), conventional methods like k-nearest neighbors (250, 251),
a hybrid approach using grammatical evolution (146, 252),
artificial neural networks (134), and random forests (49, 253,
254). Cömert and Kocamaz (166) introduced a novel software
for comprehensive CTG signals analysis, named CTG Open
Access Software (CTG-OAS). This software embeds machine
learning tools, such as preprocessing, feature extraction, feature
selection, and classification. Fergus et al. (51) demonstrated,
using deep learning tools, that machine learning significantly
improves the efficiency of detecting cesarean section and vaginal
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deliveries, compared with the usual visual assessment. In this
paper, impressive results were achieved, with both sensitivity
and specificity over 90%. One problem of comparing these
classification approaches is the apriori definition of the classes.
For example, as said before, the definition of acidemia based
on the umbilical cord artery’s pH varies greatly between studies.
Karvelis et al. (255) proposed a classification approach based
on weighted voting of clinical annotations. These weights are
estimated by using a latent class model with three or four latent
classes. Moreover, as these learning techniques depend on the
signal and the linear and non-linear measures computed, all the
previously referred concernsmust be contemplatedmeticulously.
Therefore, the machine and deep learning techniques are
particularly resourceful when the measures are thoroughly
probed and understood. In this systematic review were found
several other articles with machine learning and deep learning
techniques. However, the description of these techniques is not
the focus of this paper. Future work that analyzes in detail
the machine learning and deep learning techniques that apply
measures based on fHR dynamics should be considered.

The non-linear methods described in this review are entropy
(Shannon, approximate, sample, and multiscale), compression,
fractal analysis (fractal dimension, Hurst exponent, detrended
fluctuation analysis, and multifractal detrended fluctuation
analysis), and wavelet analysis. Other non-linear methods were
found in our review, such as Poincaré plot (217), symbolic
dynamics (256), phase rectified signal average (210, 211,
257, 258), Lyapunov exponents (259), and recurrence plot
analysis (137). In the recent years, Phase Rectified Signal
Averaging and derived parameters have been largely applied in
fHR analysis to face the problem of accelerations and deceleration
which are characteristic of the fHR signal.

Due to the high heterogeneity of study designs, data
acquisition methods, aims of the studies, signal processing
techniques, and measures (and parameters) used, no meta-
analysis was possible to be performed.

This systematic review confirmed the importance of non-
linear fetal monitoring measures to analyze the fetus’ well-being
and pathologies’ prediction. The methods probed successfully
diagnose pathologies, and new techniques are being proposed
and explored to improve that prediction. However, the
contradictory results of some of the findings due to the
characteristic of the signal, or the sensibility of the measures
to some clinical factors, such as fetus sex and gestational age,
revealed that the use of these findings in clinical practice is far
from reality. These results inhibit the reach for a gold standard or
the creation of a decision support system. This review determined
the significance of creating several small meta-analyses that
might focus on a specific research aim. Additionally, a sizeable
multicentric study that can assess the multitude of perspectives
involved in the fHR signal analysis is imperative.

6. CONCLUSIONS

Non-linear measures based on the concepts of chaos, fractality,
and complexity gained space in the analysis of fetal heart rate.

Good results were achieved in signal processing, in the analysis
of fetal well-being, and in diagnosing and predicting pathologies.
This systematic review of the non-linear methods (entropy, data
compression, fractal analysis, and wavelet analysis) applied to
fetal heart rate dynamics includes 270 papers. The application
of non-linear methods in the fHR analysis is around 30 years
old. However, its application has significantly increased in the
last 15 years. This review’s main contributions are a detailed
description of the non-linear methods most applied in the
fHR papers and a discussion of the research objectives. Signal
processing, hypoxia, and maturation lead the research objectives
of papers that use non-linear analysis in fHR. We found
that entropy has been the most used method in classification
analysis. Despite, in signal processing, the most used method is
wavelet analysis. Machine learning and deep learning techniques
should also be analyzed with results in the study of fHR
dynamics using linear and non-linear measures. The multitude
of conditioning involved in the analysis and classification of
the fHR, from the signal characteristics to the effect of some
clinical factors in the measures, limits the use of the non-
linear measures in clinical practice and difficult the creation
of a decision support system. Future studies should focus on
a research question and perform a meta-analysis, probing the
indices’ performance.
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