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Adaptive neural network control 
for uncertain dual switching 
nonlinear systems
Qianqian Mu1,2*, Fei Long3, Lipo Mo4 & Liang Liu1

Dual switching system is a special hybrid system that contains both deterministic and stochastic 
switching subsystems. Due to its complex switching mechanism, few studies have been conducted for 
dual switching systems, especially for systems with uncertainty. Usually, the stochastic subsystems 
are described as Markov jump systems. Based upon the upstanding identity of RBF neural network on 
approaching nonlinear data, the tracking models for uncertain subsystems are constructed and the 
neural network adaptive controller is designed. The global asymptotic stability almost surely (GAS 
a.s.) and almost surely exponential stability (ES a.s.) of dual switching nonlinear error systems are 
investigated by using the energy attenuation theory and Lyapunov function method. An uncertain 
dual switching system with two subsystems, each with two modes, is studied. The uncertain functions 
of the subsystems are approximated well, and the approximation error is controlled to be below 0.05. 
Under the control of the designed adaptive controller and switching rules, the error system can obtain 
a good convergence rate. The tracking error is quite small compared with the original uncertain dual 
switching system.

Switched system is a special class of hybrid dynamical system composed of several dynamical subsystems and a 
switching law that specifies the active subsystem at each instant of time. Switched systems can be divided mainly 
into two categories based on the switching driving mechanism: deterministic switched systems and stochastic 
switched systems. Deterministic switched system is a switched system with controllable switching rules, such as 
automobiles with automatic transmissions and aircraft with attitudinal  switching1–3. Stochastic switched system 
is usually described by a Markov jump system, which represents the randomness of the system structure or 
parameters.

With the growing complexity of modern engineering systems, it is difficult to describe such engineering 
systems using single switching systems. Dual switching system (DSS) was introduced as a framework for mod-
eling hybrid  systems4. It’s a new type of system with both deterministic and stochastic  signals5,6. The research of 
dual switching systems has mainly focused on the stability of the systems.  Song7 studied almost sure stability of 
switching Markov jump linear systems. Bolzern et al.8 proposed a model of dual switching discrete-time linear 
systems, and a stability strategy was determined. Yang et al.9 investigated the robust exponential almost sure 
stability of discrete-time two-level switched systems.

Some effective control schemes have been developed for uncertain nonlinear systems. Lopez-Sanchez3 stud-
ied an external control loop consisting of a robust online-learning generalized-regression neural network and 
presented trajectory analysis.  Cheng10 proposed an adaptive neural network control approach to achieve accurate 
and robust control of nonlinear systems with unknown dynamics.  Chen11 investigated the issue of developing an 
event-triggered adaptive tracking controller of a class of uncertain nonlinear systems.  Tang12 studied an adaptive 
prescribed-performance control problem for a class of switched uncertain nonlinear systems under arbitrary 
switching signals.  Lu13 investigated the resilient adaptive neural control for uncertain nonstrict-feedback systems 
with an infinite number of actuator failures.  Wang14–17 has conducted research on adaptive control for nonlinear 
systems in recent years using event-triggered prescribed settling time consensus compensation  control14, neu-
ral adaptive self-triggered  control15, fuzzy adaptive event-triggered finite-time constraint  control16 and adap-
tive neural sliding mode  control17 methods, respectively. In conclusion, approximating the uncertain function 
using neural network in single systems or single switching systems is effective. In conclusion, approximating 
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the uncertain function using neural network in single switching systems is effective. However, unlike the above 
literature, the switching mechanism of the research object in this paper is more complex. The difficulty in solv-
ing this problem is that the approximation system and the error system are also dual switching, which requires 
higher design requirements for the switching strategy and stricter conditions for stability.

Motivated by the above discussion, we propose an adaptive neural network control method for uncertain dual 
switching nonlinear systems. The main contributions of this paper are summarized as follows:

• A neural network adaptive control method based on radial basis functions is proposed. The radial basis func-
tion neural networks (RBFNNs) were trained based on historical data to estimate the unknown disturbances 
firstly. And then adaptive control law was designed to adjust the network weights by feedback error through 
the dynamic tracking process. This is different from previous approaches mentioned above.

• A deterministic switching strategy for dual switching system was designed. To address the randomness caused 
by the stochastic subsystem, the switching strategy was designed to determine the current active subsystem 
by using the tracking error expectation. This ensured that the deterministic switched subsystem that had the 
minimum error expectation was activated.

• Sufficient conditions for GAS a.s. and ES a.s. of the error tracking system are provided to guarantee stable 
tracking of the uncertain dual switching nonlinear system.

The rest of the article is structured as follows. In “Problem formulation”, the formulation of the problem and the 
preliminary results are given. The adaptive neural network controller design and the GAS a.s. and ES a.s. analysis 
is presented in “Results”. Finally, a simulation example is presented to prove the effectiveness of the proposed 
control scheme in “Simulation”.

Problem formulation
The system description and some useful definitions are provided in this section.

System description. Consider the following nth-order nonlinear differential equation:

where the system state y(t) ∈ R , the nonlinear funcitions f [γ (t)]σ(t,γ (t)) = f
γ
σ ∈ R and g [γ (t)]σ(t,γ (t)) = g

γ
σ ∈ R are 

unknown. The deterministic switching signal γ (t) = γk ∈ M = {1, 2, . . . ,m} for t ∈ [tk , tk+1

)

 is a right con-
tinuous piece-wise constant function and represents the k-th deterministic subsystem is active . {t0, t1, . . . , tk} 
denotes the sequence of switching instants, and tk is the k-th switching time. The stochastic switching signal 
σ(t, γ (t)) = σ(τv , γk) ∈ N = {1, 2, . . . , n} for t ∈ [τv , τv+1) ⊂ [tk , tk+1

)

 is a piece-wise constant function, which 
is right-continuous and governed by an N-mode Markov process and represents the v-th stochastic subsystem 
is active. {τ0, τ1, . . . , τl} is the sequence of jump times within t ∈ [tk , tk+1

)

 , and u[γ (t)]σ(t,γ (t)) = u
γ
σ ∈ R is the control 

input. The structure of a DSS is illustrated by Fig. 1.
Radial basis function neural networks. RBF neural networks are capable of approximating any continuous 

function arbitrarily  well18. The smooth functions f γσ (x) and gγσ (x) in (1) can be represented as

(1)y(n) = f
[γ (t)]
σ(t,γ (t))

(

y, y(1), . . . , y(n−1)
)

+ g
[γ (t)]
σ(t,γ (t))

(

y, y(1), . . . , y(n−1)
)

u
[γ (t)]
σ(t,γ (t)),

(2)f̂ γσ (x) = ωf
γ
σ

Tϕf γσ (x),

Figure 1.  Structure of a DSS.
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where ωf
γ
σ

 and ωg
γ
σ
 are corresponding weight vectors. ϕf γσ i

(x) and ϕgγσ i
(x) are Gaussian radial basis functions with 

the form of ϕi(x) = exp
(

−�x − ci�
2/2σi

2
)

 . For an arbitrary constant ̟  , 
∣

∣

∣
f
γ
σ (x)− f̂

γ
σ (x)

∣

∣

∣
< ̟  and 

∣

∣g
γ
σ (x)− ĝ

γ
σ (x)

∣

∣ < ̟ . The approximation error is usually assumed to be upper bounded by ̟ 19. In the reachable 
workspace of x, the weight optimization combination is computed by

Next, we define the RBF network approximation errors as

Combined with (2)–(3), the minimum network approximation error is computed by

Remark 1 Unknown functions f γσ (x) and gγσ (x) can be represented by RBFNN functions with different numbers 
of nodes which depends on the approximation error. The numbers of nodes will be increased if the approxima-
tion error requirement for the system’s stability is not satisfied. The upper limit for the approximation error will 
be given in next section.

Controller design. A dual switching tracking system is constructed to track reference signal yd and its deriva-
tives yd (1), . . . , yd (n) which were generated by uncertain dual switching system (1). RBFNN functions are applied 
to approximate the unknown functions f γσ (x) and gγσ (x) . The adaptive controller is constructed as

where τγσ = yd
(n) + α

γ
σn

(

yd
(n−1) − y(n−1)

)

+ · · · + α
γ
σ1

(

yd − y
)

 . Define y = x1, y
(1) = x2, . . . , y

(n−1) = xn , 
x = (x1, . . . , xn)

T and xd =
(

yd , y
(1)
d , . . . , y

(n−1)
d

)T
 . The tracking error e = xd − x =

(

yd − y, . . . , y
(n−1)

d − y(n−1)
)T

 
is computed as follows:

where A =

[

0 In−1

0 0

]

 , B = (0, . . . , 1)T . Combining Eqs. (6)–(8), the error system can be transformed as

where Āγ
σ =

[

0 A
−α

γ
σ 1 · · · − α

γ
σ n

]

 , B̄ =

[

0
B

]

 . By defining ω̃f
γ
σ
= ωf

γ
σ
− ω∗

f
γ
σ

 and ω̃g
γ
σ
= ωg

γ
σ
− ω∗

g
γ
σ
 . The tracking 

error in (10) can be rewritten as follows:

Our main goal is to investigate the GAS a.s. and ES a.s. properties of the dual switching nonlinear continuous 
time system (11). When the tracking error is stable, the uncertain DSS (1) approximated by using RBF neural 
network can track the original uncertainty system. The definitions of GAS a. s. and ES a. s.20 are given.

(3)ĝγσ (x) = ωg
γ
σ

Tϕgγσ (x),

(4)ω∗
f
γ
σ
= arg min

ω
f
γ
σ
∈�wf

[

sup
x∈�

∣

∣

∣
f γσ − ωf

γ
σ

Tϕf γσ (x)
∣

∣

∣

]

,

(5)ω∗
g
γ
σ
= arg min

ω
g
γ
σ
∈�wg

[

sup
x∈�

∣

∣

∣
gγσ − ωg

γ
σ

Tϕgγσ (x)
∣

∣

∣

]

.

(6)Wγ
σ = f̂ γσ (x)− f γσ (x)+

(

ĝγσ (x)− gγσ (x)
)

uγσ

(7)(εmin)
γ
σ =

(

ω∗
f
γ
σ

)T
ϕf γσ (x)− f γσ +

(

(

ω∗
g
γ
σ

)T
ϕgγσ (x)− gγσ

)

uγσ .

(8)uγσ =
(

ĝγσ (x)
)−1

(

−f̂ γσ (x)+ τγσ

)

(9)ė = Ae + B
(

y
(n)
d − y(n)

)

= Ae + B
(

y
(n)
d −

(

f γσ (x)+ gγσ (x)u
γ
σ

)

)

.

(10)

ė = Ae + B
(

y
(n)
d −

(

f̂ γσ (x)+ ĝγσ (x)u
γ
σ −Wγ

σ

))

= Ae + B
(

y
(n)
d − yd

(n) − αγ
σ n

(

yd
(n−1) − y(n−1)

)

− · · · − αγ
σ 1

(

yd − y
)

+Wγ
σ

)

= Āγ
σ e + BWγ

σ

= Āγ
σ e + B

(

(

ωf
γ
σ
− ω∗

f
γ
σ

)T
ϕf γσ (x)+

(

ωg
γ
σ
− ω∗

g
γ
σ

)T
ϕgγσ (x)u

γ
σ

)

+ B(εmin)
γ
σ

(11)ė = Āγ
σ e + B

[

ω̃T
f
γ
σ
ϕf γσ (x)+ ω̃T

g
γ
σ
ϕgγσ (x)u

γ
σ

]

+ B(εmin)
γ
σ
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Definition 1 The dual switching nonlinear continuous-time system is said to be 

1. globally asymptotically stable almost surely, if the following two properties are verified simultaneously:

SP1) for arbitrary ε > 0 , there exists a δ(ε) > 0 such that when the system initial status x0 satisfies 
‖x0‖ < δ(ε) , P

{

supt≥0�x(t)� < ε
}

= 1;
SP2) for arbitrary r > 0 and ε̂ > 0 , there exists a T

(

r, ε̂
)

≥ 0 such that when ‖x0‖ < r  , 
P
{

supt≥T(r,ε̂)�x(t)� < ε̂

}

= 1.

2. almost surely exponentially stable, if for all x0 ∈ Rn , P
{

limt→∞ sup 1
t log �x(t, x0)� < 0

}

= 1.

Lemma 1 21 If α1 ∈ K and 
∫∞
0 α1(�x(t)�)dt < ∞ a.s., limt→∞x(t) = 0 a.s.

Results
Sufficient conditions for the dual switching system (11) are given by the energy attenuation theory and the 
Lyapunov function method.

Theorem 1 Consider the dual switching nonlinear continuous-time system (11). Suppose that there exist continu-
ously differentiable functions V[j]

i (·) : Rn → R+ , i ∈ N , j ∈ M , functions α1,α2 ∈ K∞ , and constants c1, c2, c3 
as defined in the proof, such that the following conditions hold: 

 (H1) α1(�e�) ≤ V
[j]
i (e) ≤ α2(�e�), ∀e ∈ Rn

 (H2) 
(

Ā
[j]
i

)T

P
[j]
i + P

[j]
i Ā

[j]
i = −Q

[j]
i < 0

 (H3) (εmin)
[j]
i < c3c2/c1

Then, the system (11) is GAS a.s. under the switching strategy (H4): 

 (H4) 







































t0 = 0

γ0 = argmin j∈M E
��

�

�
(εmin)

[j]
σ(t0,j)

�

�

�

�

...

tk = inf
�

t > tk−1|E
�
�

�

�
(εmin)

γk−1

σ(tk−1,γk−1)

�

�

�

�

> E
�
�

�

�
(εmin)

[j]
σ(t,j)

�

�

�

��

γk = argmin j∈M E
�
�

�

�
(εmin)

[j]
σ(t,j)

�

�

�

�

Proof Define the Lyapunov function V[j]
i (e(t)) = eT (t)P

[j]
i e(t)+ 1/2ω̃T

f
[j]
i

(t)(Ŵ
f
[j]
i

)−1ω̃
f
[j]
i

(t)+ 1/2ω̃T

g
[j]
i

(t)

(Ŵ
g
[j]
i

)−1ω̃
g
[j]
i

(t) . Suppose that γ (t) = γk ∈ M for t ∈ [tk , tk+1

)

 . And there is no deterministic switching over this 
interval. {τ0, τ1, . . . , τl} is the stochastic switching time sequence of the Markov switching signal σ(t, γk) over 
the interval [tk , tk+1

)

 , shown in Fig. 2. The stochastic switching signal σ(t, γk) is denoted by σγk
v ∈ N  for 

t ∈ [τv , τv+1) , v ∈ {0, 1, 2, . . . , l}, l < ∞ .

The derivative of V[j]
i (e(t)) over the interval [tk , tk+1

)

 is

By combining this with (7), the Lyapunov function differential form is computed, as follows:

(12)
V̇

γk

i (e(t)) = ėT (t)P
γk

i e(t)+ eT (t)P
γk

i ė(t)+
1

2

˙̃ω
f
γk
i

T
(t)(Ŵ

f
γk
i
)−1ω̃

f
γk
i
(t)+

1

2
ω̃T

f
γk
i

(t)(Ŵ
f
γk
i
)−1 ˙̃ω

f
γk
i
(t)

+
1

2

˙̃ω
g
γk
i

T
(t)(Ŵ

g
γk
i
)−1ω̃

g
γk
i
(t)+

1

2
ω̃T

g
γk
i

(t)(Ŵ
g
γk
i
)−1 ˙̃ω

g
γk
i
(t).

Figure 2.  Stochastic switching timing diagram.
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We define ω[j]
i = (ω

f
[j]
i
,ω

g
[j]
i
) , �

f
[j]
i

= eTP
[j]
i BϕT

f
[j]
i

(x) , �
g
[j]
i

= eTP
[j]
i Bϕ

g
[j]
i
(x)u

[j]
i (x) , ω̃[j]

i = (ω̃
f
[j]
i
, ω̃

g
[j]
i
) , 

�
[j]
i =

(

�
f
[j]
i
,�

g
[j]
i

)

 , Ŵ[j]
i = diag{Ŵ

f
[j]
i
,Ŵ

g
[j]
i
} . The adaptive law is designed as

Thus, combining (8), (H2), and c1 = 2maxe∈E �e� ×
∥

∥

∥
P
[j]
i B

∥

∥

∥
 yields the following Lyapunov function dif-

ferential simplified form

By Dynkin’s formula, computing the expected value of both sides of inequality (15) yields the following:

At the switching moment tk , with the switching rules in (H4), this becomes the following:

Applying the above inequality over [0, t) yields

The expression (18) can be simplified with the definition c2 = maxi∈N ,j∈M eT (t)P
[j]
i e(t) ,

 c3 = mini∈N ,j∈M �min(Q
[j]
i )/�max(P

[j]
i ) , �̄ = mini∈N ,j∈M �min

(

Q
[j]
i

)

 , η̄ = maxi∈N ,j∈M �min

(

P
[j]
i

)

 , and thus the 

upper limit of the optimal approximation error

is given here. Equation (18) can be rewritten as

(13)

V̇
γk

i (e(t)) = eT (t)
(

Ā
γk

i

)T
P
γk

i e(t)+ eT (t)P
γk

i Ā
γk

i e(t)+

(

ω̃T

f
γk
i

(t)ϕ
f
γk
i
(x)+ ω̃T

g
γk
i

(t)ϕ
g
γk
i
(x)u

γk

i (x)

)

BTP
γk

i e(t)

+ (εmin)
γk

i BTP
γk

i e(t)+ eT (t)P
γk

i B

(

ω̃T

f
γk
i

(t)ϕ
f
γk
i
(x)+ ω̃T

g
γk
i

(t)ϕ
g
γk
i
(x)u

γk

i (x)

)

+ eT (t)P
γk

i B(εmin)
γk

i

+
1

2
ω̇T

f
γk
i

(t)(Ŵ
f
γk
i
)−1ω̃

f
γk
i
(t)+

1

2
ω̃T

f
γk
i

(t)(Ŵ
f
γk
i
)−1ω̇

f
γk
i
(t)

+
1

2
ω̇T

g
γk
i

(t)(Ŵ
g
γk
i
)−1ω̃

g
γk
i
(t)+

1

2
ω̃T

g
γk
i

(t)(Ŵ
g
γk
i
)−1ω̇

g
γk
i
(t).

(14)











ω̇
[j]
i = −2Ŵ

[j]
i

�

�
[j]
i

�T

�

ω̃
[j]
i

�T�

Ŵ
[j]
i

�−1
(ω̇

[j]
i + Ŵ

[j]
i

�

�
[j]
i

�T
) ≤ 0

(15)V̇
γk

i (e(t)) ≤ −eT (t)Q
γk

i e(t)+ c1(εmin)
γk

i ≤ −eT (t)Q
γk

i e(t)+ c1

∣

∣

∣
(εmin)

γk

i

∣

∣

∣

(16)

E
[

V
γk
l (e(t))− V

γk
0 (e(tk))

]

= E

[

∫ t

τl

V̇
γk

l (e(s))ds +

∫ τl

τl−1

V̇
γk

l−1(e(s))ds + · · ·

∫ τ1

τ0

V̇
γk

0 (e(s))ds

]

≤ −
(

�min

(

Q
γk

i

))

E

[
∫ t

tk

eT (s)e(s)ds

]

+ c1E

[

∫ t

τl

∣

∣

∣
(εmin)

γk

l

∣

∣

∣
ds +

∫ τl

τl−1

∣

∣

∣
(εmin)

γk

l−1

∣

∣

∣
ds + · · ·

∫ τ1

τ0

∣

∣

∣
(εmin)

γk

0

∣

∣

∣
ds

]

≤ −
(

�min

(

Q
γk

i

))

E

[
∫ t

tk

eT (s)e(s)ds

]

+ c1

∫ t

tk

E
[∣

∣

∣
(εmin)

γk
σ(s,γk)

∣

∣

∣

]

ds

(17)

E
[

V
γk
σ(t,γk)

(e(t))− V
γk−1

σ(tk−1,γk−1)
(e(tk−1))

]

≤ E
[

V
γk
σ(t,γk)

(e(t))− V
γk
σ(tk ,γk)

(e(tk))
]

+ E
[

V
γk−1

σ(tk ,γk−1)
(e(tk))− V

γk−1

σ(tk−1,γk−1)
(e(tk−1))

]

≤ −
(

�min

(

Q
γk

i

))

E

[
∫ t

tk

eT (s)e(s)ds

]

+ c1

∫ t

tk

E
[∣

∣

∣
(εmin)

γk
σ(s,γk)

∣

∣

∣

]

ds

−
(

�min

(

Q
γk−1

i

))

E

[

∫ tk

tk−1

eT (s)e(s)ds

]

+ c1

∫ tk

tk−1

E
[∣

∣

∣
(εmin)

γk−1

σ(s,γk−1)

∣

∣

∣

]

ds

(18)

E
[

V
γk
σ(t,γk)

(e(t))− V
γ0
σ(t0,γ0)

γ0
(e(t0))

]

≤ −
(

�min

(

Q
γk

i

))

E

[
∫ t

tk

eT (s)e(s)ds

]

−
(

�min

(

Q
γk−1

i

))

E

[

∫ tk

tk−1

eT (s)e(s)ds

]

+ c1

∫ t

tk

E
[
∣

∣

∣
(εmin)

γk
σ(s,γk)

∣

∣

∣

]

ds + · · ·+c1

∫ t1

0
E
[∣

∣

∣
(εmin)

γ0
σ(s,γ0)

∣

∣

∣

]

ds

(19)(εmin)
[j]
i <

(

�min(Q
[j]
i )/�max(P

[j]
i )

)

eT (t)e(t)/c1 < c3c2/c1
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After rewriting the previous equation again, the proof-friendly form (21) is obtained.

Obviously, E
[

∫ t
0 e

T (s)e(s)ds
]

 is bounded. Then, by Lemma 1, limt→∞ �e(t)� = 0 can be obtained, which 
satisfies SP1) in Definition 1.

We now verify SP2) of Definition 1. We select δ
(

ε̂
)

= min
{

α−1
2

(

α1
(

ε̂
))

}

 . By transforming (21) with (H1), 
α1(�e(t)�) ≤ E

[

V
γk
σ(t,γk)

(e(t))
]

≤ E
[

V
γ0
σ(t0,γ0)

(e(t0))
]

≤ α2(�e0�) can be obtained. Then, �e0� < δ
(

ε̂
)

 implies that 

for any t ∈
[

0,T
(

1, ε̂
)]

 , �e(t)� ≤ α−1
1 [α2(�e0�)] ≤ ε̂ . Furthermore, the SP2) property guarantees that with the 

previous choice of δ
(

ε̂
)

 and e0 , we have supt≥T(1,ε̂)�e(t)� < ε̂ on a set of full measure. Therefore, �e0� < δ
(

ε̂
)

 
implies supt≥0�e(t)� < ε̂ a.s. Because of the arbitrariness of ε̂ , the SP2) property of Definition 1 follows. We 
conclude that the dual switching nonlinear continuous-time system (11) is GAS a.s.

Remark 2 Many scholars have proposed different analysis methods for the stability analysis of dual switching 
systems, such as  Bolzern8 and  Yang4,7,9. Unlike the above researches, the research object of this paper is a dual 
switching nonlinear system with uncertain functions. The control mechanism is more complex, the switching rule 
design for the switching rules are higher, and the stability sufficient conditions for the system are more stringent.

Remark 3 V[j]
i (e(t)) denotes the Lyapunov function of the i-th mode of the j-th deterministic subsystem of the 

error tracking system (11). If the dual switching system has M deterministic subsystems, each with N stochastic 
subsystems, then M × N Lyapunov functions need to be defined.

Remark 4 Importantly, despite the switching between subsystems, transient stability can be guaranteed at the 
switching instant. The transient performance can be guaranteed because of the boundary of the tracking error.

Remark 5 Dual switching system (11) is composed of multiple Markovian jump subsystems and a deterministic 
switching strategy. To determine the influence of randomness, we introduce E(|(εmin)

[j]
σ(t,j)|) to design switching 

rules. Combined with the Lyapunov function method, an adaptive control law is designed to adjust the weights 
of the RBFNN online to obtain a better tracking effect.

When (H1) in Theorem 1 is further restricted, GAS a.s. is upgraded to ES a.s. The conclusion and proof are 
described in the following corollary.

Corollary 1 Consider the dual switching nonlinear continuous-time system (11). There exist constants and such 
that the following holds: 

 (H1’) c�e�p < V
[j]
i ,∀e ∈ Rn

If (H2) and (H3) in Theorem  1 hold, then system (11) is ES a.s. under the control of switching strategy in (H4).
Proof It can be verified with (18) and (H1’) that for ∀t > 0 , c‖e(t)‖p < E

[

V
[γ (t)]
σ(t,γ (t))(e(t))

]

< E
[

V
[γ0]
σ(0,γ0)

(e0)
]

 . 
That is, 1t log �e(t)� < 1

tp

(

log E
[

V
[γ0]
σ(0,γ0)

(e0)
]

− log c
)

 . Thus, limt→∞ sup 1
t log �e(t)� < 0 . According to  Defini-

tion 1, the dual switching nonlinear continuous-time system (11) of the tracking error is ES a.s. This completes 
the proof.   �

Remark 6 If the dual switching system is ES a.s., the system state distribution is exponentially attenuated. The ES 
a.s. condition is stricter than the GAS a.s. condition, which is known from (H1’) in Corollary 1. In other words, 
if the dual switching nonlinear system is ES a.s., it must be GAS a.s., but not vice versa.

Simulation
In this example, we show how the RBF neural networks approximate the unknown system and synthesize an 
adaptive controller to stabilize the tracking system. We consider a dual switching system with two subsystems, 
and each of them has two modes.

(20)E
[

V
γk
σ(t,γk)

(e(t))− V
γ0
σ(t0,γ0)

(e(t0))
]

≤ −�̄E

[
∫ t

0
eT (s)e(s)ds

]

+ c3η̄E

[
∫ t

0
eT (s)e(s)ds

]

.

(21)
(

�̄− c3η̄
)

E

[
∫ t

0
eT (t)e(t)ds

]

≤ E
[

V
γ0
σ(t0,γ0)

(e(t0))
]

− E
[

V
γk
σ(t,γk)

(e(t))
]

≤ E
[

V
γ0
σ(t0,γ0)

(e(t0))
]

(22)E

[
∫ t

0
eT (s)e(s)ds

]

≤
E
[

V
γ0
σ(t0,γ0)

(e(t0))
]

(

�̄− c3η̄
) = Z(e0, γ0).
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• Subsystem 1 has two modes that are defined as

  mode 1: 

{

ẋ = Ax + B
(

f
[1]
1 (x)+ g

[1]
1 (x)u

[1]
1

)

y = Cx

  mode 2: 

{

ẋ = Ax + B
(

f
[1]
2 (x)+ g

[1]
2 (x)u

[1]
2

)

y = Cx

  The transition probability matrix of subsystem 1 is defined as tr1 =

[

0.4 0.6
0.5 0.5

]

.
• Subsystem 2 has two modes that are defined as

  mode 1: 

{

ẋ = Ax + B
(

f
[2]
1 (x)+ g

[2]
1 (x)u

[2]
1

)

y = Cx

  mode 2: 

{

ẋ = Ax + B
(

f
[2]
2 (x)+ g

[2]
2 (x)u

[2]
2

)

y = Cx

  The transition probability matrix of this subsystem is defined as tr2 =

[

0.7 0.3
0.2 0.8

]

.

For uncertain dual switching nonlinear system (1), the functions f γσ  and gγσ  are unknown, but their historical 
data can be observed. Similarly, the reference signal yd and its derivatives yd (1) are also observable , and they 
are shown in Fig. 3.

RBFNN approximation. To fit the curves f γσ  and gγσ  , Gaussian basis functions were selected. The upper limit 
of approximation error was set to 0.05. The RBFNN approximation result of the uncertain functions are shown 
in Figs. 4  and  5.

Tracking trajectory produced by switching strategies. We define α[1]
11 = α

[2]
11 = α

[1]
21 = α

[2]
21 = −1 , 

α
[1]
12 = α

[2]
12 = α

[1]
22 = α

[2]
22 = −2 , and Q[j]i =

[

1 0
0 1

]

 , and then we can solve for P[j]i  . P[j]i =

[

1.5 0.5
0.5 0.5

]

  

satisfies condition (H2) of the  Theorem  1. The controller response can be calculated as 
u
[j]
i =

(

ĝ
[j]
i (x)

)−1(

−f̂
[j]
i (x)+ yd

(2) − 2
(

yd
(1) − y(1)

)

−
(

yd − y
)

)

 . Constants c1, c2, c3 can be obtained as 

c1 = 2 ∗maxe∈E,i∈N ,j∈M �e� ×
∥

∥

∥
P
[j]
i B

∥

∥

∥
= 2 ∗ 2.1349 = 4.2657 , c2 = maxi∈N ,j∈M

(

eT (t)P
[j]
i e(t)

)

= 13.0045 and 

c3 = mini∈N ,j∈M

(

�min(Q
[j]
i )/�max(P

[j]
i )

)

= 0.5858 by computation. Then, it can be concluded that the minimum 
network error (εmin)

[j]
i  of each mode in both subsystems satisfies (H3) in Theorem 1. The deterministic subsystem always 

switches to the one with minimum expected error under the control of the switching rule in (H4) to achieve a better 
tracking effect. The switching path is shown in Fig. 6.

Based on the above analysis, the dual switching system could track the original reference signal well under 
the switching strategy using the adaptive controller based on the neural network. The result is shown in Fig. 7.
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Figure 3.  the reference signal yd and its derivatives yd (1).
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Multiple tracking effects of stochastic processes. Constants c = 1 and p = 1 were selected, which satisfy 
(H1’) in Corollary 1.  When the simulation was run several times with stochastic uncertainty of the subsystem, 
the dual switching system approximated by RBFNN could still track the reference trajectory well. The simulation 
results are shown in Fig. 8.

These simulation results indicate that the presented controller can effectively guarantee that the tracking 
error is GAS a.s. and ES a.s..
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Figure 4.  Uncertain functions and its RBFNN approximation values of subsystem 1.
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Conclusion
In this article, an adaptiveneural network control issues for uncertain dual switching nonlinear systems has been 
investigated. Utilizing the properties of RBFNNs and the Lyapunov theorem, an adaptive controller is constructed 
under the pre-designed switching strategy. With the given controller, the GAS a.s. and the ES a.s. for the tracking 
error system is studied. Finally, the simulation results showed that the proposed method could track the state of 
an uncertain dual switching system accurately, and the feasibility and effectiveness were verified.
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Figure 6.  Switching path γ of deterministic subsystems.
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Figure 7.  Tracking effect of reference trajectory.
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