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Abstract
Most human populations exhibit an excess of high-frequency variants, leading to 
a U-shaped site-frequency spectrum (uSFS). This pattern has been generally inter-
preted as a signature of ongoing episodes of positive selection, or as evidence for a 
mis-assignment of ancestral/derived allelic states, but uSFS has also been observed in 
populations receiving gene flow from a ghost population, in structured populations, 
or after range expansions. In order to better explain the prevalence of high-frequency 
variants in humans and other populations, we describe here which patterns of gene 
flow and population demography can lead to uSFS by using extensive coalescent 
simulations. We find that uSFS can often be observed in a population if gene flow 
brings a few ancestral alleles from a well-differentiated population. Gene flow can 
either consist in single pulses of admixture or continuous immigration, but differ-
ent demographic conditions are necessary to observe uSFS in these two scenarios. 
Indeed, an extremely low and recent gene flow is required in the case of single admix-
ture events, while with continuous immigration, uSFS occurs only if gene flow started 
recently at a high rate or if it lasted for a long time at a low rate. Overall, we find that a 
neutral uSFS occurs under more restrictive conditions in populations having received 
single pulses of gene flow than in populations exposed to continuous gene flow. We 
also show that the uSFS observed in human populations from the 1000 Genomes 
Project can easily be explained by gene flow from surrounding populations without 
requiring past episodes of positive selection. These results imply that uSFS should be 
common in non-isolated populations, such as most wild or domesticated plants and 
animals.
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1  | INTRODUC TION

Allele frequency changes are driven by the combined action of differ-
ent evolutionary forces such as mutation, selection, genetic drift and 
migration (Wright, 1931), but most of the variant frequencies are ex-
pected to be rare (Ewens, 1972), leading to a L-shaped site-frequency 
spectrum (SFS) (Fu,  1995). However, an unexpectedly large propor-
tion of high-frequency-derived alleles, resulting in U-shaped SFS 
(uSFS), has been documented in multiple species, including wild and 
domesticated plants (Liu, Zhou, Morrell, Gaut, & Ge, 2017; Morton, 
Dar, & Wright, 2009; Price et al., 2018), animals (Cooper, Burrus, Ji, 
Hahn, & Montooth,  2015; de Manuel et  al.,  2016; Murray, Huerta-
Sanchez, Casey, & Bradley, 2010) and even human populations (Henn 
et al., 2015; Pouyet, Aeschbacher, Thiéry, & Excoffier, 2018).

Several explanations for these uSFS have been proposed. This phe-
nomenon has been notably interpreted as a signature of positive selec-
tion at several loci (Akashi & Schaeffer,  1997; Bustamante, Wakeley, 
Sawyer, & Hartl, 2001), as neutral variants hitchhiking with beneficial 
mutations during selective sweeps would also be observed at high 
frequencies (Andolfatto & Przeworski, 2001; Fay & Wu, 2000; Kim & 
Stephan,  2000, 2002; Lapierre, Blin, Lambert, Achaz, & Rocha,  2016; 
Pavlidis, Jensen, & Stephan,  2010; Stephan,  2016), thus leading to a 
uSFS (Hahn, 2018; Ronen, Udpa, Halperin, & Bafna, 2013). This phe-
nomenon could even be accentuated by selection fluctuating over time 
(Huerta-Sanchez, Durrett, & Bustamante,  2008; Przeworski,  2002). 
Alternatively, low-frequency-derived alleles mistakenly annotated as 
ancestral would lead to the emergence of high-frequency-derived 
variants and also create a uSFS (Baudry & Depaulis, 2003; Hernandez, 
Williamson, & Bustamante,  2007). uSFS can also emerge in multi-
ple-merger coalescent models that have been developed to account for 
strong selective sweeps or a very large variance in reproductive success 
among individuals of a population (Eldon, Birkner, Blath, & Freund, 2015; 
Rice, Novembre, & Desai, 2018; Sargsyan & Wakeley, 2008; Tellier & 
Lemaire, 2014), which is not well accounted for in the classical Kingman 
coalescent framework. Finally, uSFS has also been shown to arise in 
non-isolated populations, for example in range expanding populations 
(Sousa, Peischl, & Excoffier, 2014), in structured populations analysed as 
single populations (Cutter, 2019; Lapierre et al., 2016; Wakeley, 2000) 
or in structured population receiving low levels of gene flow from sur-
rounding demes (Garrigan & Hammer, 2006; Wakeley & Aliacar, 2001).

Even though most animal and plant populations are not com-
pletely isolated and receive migrants from surrounding populations, 
gene flow has been rarely proposed as an explanation for uSFS, and 
hypotheses of selection or ancestral allele mis-assignment have been 
preferred (Li et al., 2012; Liu et al., 2017; Qanbari & Simianer, 2014; 
Sabeti, 2006). However, Pouyet et al.  (2018) recently showed that 
the uSFS observed in human populations could not be recovered 
under a complex demographic scenario involving an isolated pop-
ulation, but could be perfectly modelled under a scenario involving 
gene flow from an unspecified source (i.e. a ghost population), and 
this, in absence of any positive selection or mis-assignment of an-
cestral alleles. In order to better investigate the conditions leading 
to uSFS in non-isolated populations, we have used simulations to 

explore the impact of gene flow duration, onset and intensity, as 
well as of population size and divergence time, on the probability 
of observing a uSFS. Even though more complex scenarios could 
certainly lead to uSFS, we have simulated here two simple demo-
graphic models of isolation with admixture and of isolation with im-
migration, which are often used as basic population genetic models 
(Geneva & Garrigan, 2010; Hahn, 2018; Patterson et al., 2012; Sousa 
& Hey, 2013) and represent the two ends of the gene flow spectrum. 
We have then compared the likelihoods of these models for ten pop-
ulations from the 1,000 Genomes panel where uSFS is observed.

2  | MATERIAL AND METHODS

2.1 | Simulated scenarios

We modelled a population of n haploid individuals and effective 
size N that receives gene flow from an unsampled and often re-
ferred to as a “ghost” population (Beerli, 2004; Slatkin, 2005), after 
their divergence TDIV generations ago (or expressed in 2N units as 
�DIV=TDIV∕

(

2N
)

 the parameters and their ranges are described in 
Table 1). However, rather than being simply a non-sampled popula-
tion, this ghost population is introduced here as a convenient way 
to partition sampled lineages into two structured components be-
tween which coalescent events will not immediately occur. This type 
of partitioning is for instance found in metapopulation models with 
migration, where coalescent events occur rapidly during a scattering 
phase and more slowly during the collecting phase (Wakeley, 1999; 
Wakeley & Aliacar, 2001). For sake of simplicity, we tested two mod-
els at the ends of the gene flow spectrum (Figure 1): one of isolation 
with admixture (IA) and one of isolation with immigration (II). In the 
IA model, a single admixture event (i.e. a single pulse of gene flow) 
occurred TADM generations ago (�ADM in 2N units), with an admixture 
rate a. In the II model, continuous gene flow occurring at rate m per 
generation started TGF generations ago.

2.2 | Simulated genetic data

We used the software fastsimcoal2 (Excoffier, Dupanloup, Huerta-
Sánchez, Sousa, & Foll, 2013) to simulate the genomic diversity in 
100 Mb of DNA (which roughly corresponds to the neutral portion 
of the human genome found in Pouyet et al. (2018)) under the sce-
narios defined in the previous section. The simulated 100 Mb was 
modelled as 10,000 blocks of 1,000 independent non-recombining 
regions of 100 bp. Note that the SNPs simulated in this way are es-
sentially independent (unlinked) SNPs, and that it would have been 
possible to simulate partially linked SNPs but more simulations 
would have been necessary to get the same expected SFS (Pouyet 
et al., 2018). However, we have performed a limited set of simulation 
using partially linked SNPs, to verify that our conclusions would not 
change if we were explicitly simulating linkage and recombination 
(Supporting Information 2).
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We then computed the site-frequency spectrum (SFS) for each 
block independently using the fastsimcoal2 command./fsc2 –i File.
par -n 10,000 -q -c0 -d -s0 -x -I (Supporting Information 3). The mu-
tation rate was set to 1.20 × 10–8 per bp per generation (de Manuel 
et  al.,  2016; Venn et  al.,  2014), and we assumed an infinite-site 
model. We then sampled with replacement 10,000 blocks from 
the original simulated set to generate a given block-bootstrap data 
set, and we repeated this procedure 1,000 times to generate 1,000 
block-bootstrap SFS.

2.3 | Summary statistics

We computed the global unfolded SFS for each simulated and 
block-bootstrapped data set of 100  Mb, by summing the 10,000 
(respectively, observed or randomly sampled) block-SFS. The 95% 
confidence intervals of the simulated SFS were computed from the 
2.5% and 97.5% quantiles of the SFS entries (all SFS is shown in 
Supporting Information 4).

We classified simulated SFS into three categories according to 
their shapes: a monotonously decreasing SFS with a mode at single-
tons corresponding to a L-shape SFS; a U-shape SFS with a second 
mode at high derived allele frequencies; a W-shape SFS with a sec-
ond mode at intermediate derived allele frequencies (Figure 2).

We also used a summary statistic called D-tail defined as.

D−tail=
SFSn−1−SFSn−2

SFSn−2

, where n is the haploid sample size and SFSi is 

the number of sites with a derived frequency i. D-tail is positive when 
SFSn−1> SFSn−2 (i.e. for uSFS) and negative for L-shaped and W-shaped 
SFS.

2.4 | Human data sets and likelihood estimations

We computed the SFS and D-tail statistic for ten 1,000 Genomes 
(1000G) populations: Yoruba in Ibadan, Nigeria (YRI); Luhya in 
Webuye, Kenya (LWK); Iberian Population in Spain (IBS); British 
in England and Scotland (GBR); Punjabi from Lahore, Pakistan 
(PJL); Bengali from Bangladesh (BEB); Kinh in Ho Chi Minh City, 
Vietnam (KHV); Japanese in Tokyo, Japan (JPT); Colombians from 
Medellin, Colombia (CLM); and Peruvians from Lima, Peru (PEL). 
We included the 10 individuals with the highest coverage per 
population (see Supporting table from Pouyet et al. (2018)). In this 
data set, we focused on the 493,369 sites formerly identified as 
evolving neutrally in Pouyet et al.  (2018) (i.e. biallelic sites, non-
CpG sites, mutations neither affected by biased gene conversion 
nor by background selection). The ancestral state was defined 
based on the chimpanzee reference genome (panTro4) to prevent 
mis-assignment of the ancestral/derived states. We used a block-
bootstrap approach based on sets of 100 adjacent SNPs along 
the genome, to generate 1,000 block-bootstrap SFS and D-tail 
statistics.

We estimated with fastsimcoal2 the likelihood of four demo-
graphic scenarios (Supporting Information 5) inspired from Pouyet 

TA B L E  1   Parameters description and ranges used for the 
simulation of different scenarios

Parameter description IA model II model

Effective size (haploid 
number, Ns)

{4,000; 40,000} {4,000; 40,000}

Divergence time 
�DIV =TDIV∕

(

2N
)

{0.005; 0.05; 
0.25; 0.5; 2.5}

2.5

Time of single 
admixture event 
�ADM =TADM∕

(

2N
)

{0; 0.025; 0.05; 
0.125; 0.25}

Onset of gene flow 
(TGF)

TDIV/ {10,000; 
1,000; 100; 10; 1}

Haploid sample size (n) {10; 50} 10

Admixture rate (a) [0:0.5]

Immigration rate (Nm) [0.01:10]

F I G U R E  1   Scenarios used to elucidate conditions under which 
gene flow leads to a uSFS. The populations have diverged TDIV 
generations ago from an ancestral population; their population 
sizes (N) are identical and constant over time. The results shown in 
the main text were obtained for a sampling size of 10 individuals 
and population sizes N = 4,000, but similar results were seen for 
a ten-time larger size (N = 40,000) after appropriate rescaling of 
divergence time and migration rate (Supporting Information 1)

Ancestral population

TDIV

TADM a

Isolation with admixture (IA) 

Sampled
population

TGF m

TDIV

Isolation with immigration (II)
Ancestral population

Sampled
population

F I G U R E  2   Schematic SFS shapes, for a 
sample of haploid size 10 where SFSi is the 
number of sites with a derived frequency i
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et al. (2018): (a) a first simple scenario, where a fully isolated popu-
lation can go through four different epochs with four different sizes 
separated by three bottlenecks of arbitrary size and times, (b) same 
as the first scenario but allowing for potential ancestral-state mis-as-
signment (option -ASM in fastsimcoal), (c) same as the first scenario 
but allowing for continuous gene flow from a ghost population and 
(d) same as the first scenario but allowing for a single pulse of ad-
mixture from a ghost population. Parameters were estimated for 
each model with the fastsimcoal2 command line options: -t POP.tpl 
-e POP.est -n200000 -d -M -L40 -q -0 -C1 -c1 -B1, where POP is the 
acronym of each of the ten 1000G populations (generic input files 
made available in Supporting Information 6). In order to scale pa-
rameters, we assumed an ancestral human population size of 20,000 
diploids, and a constant and uniform mutation rate of 1.25 × 10–8 
per bp per generation (Scally & Durbin, 2012), which is widely used 
in demographic inference in humans (Malaspinas et al., 2016; Pagani 
et al., 2015; Raghavan et al., 2015; Schiffels & Durbin, 2014; Sikora 
et al., 2017, 2019; Spence & Song, 2019; Steinrücken, Kamm, Spence, 
& Song, 2019).

3  | RESULTS

3.1 | Isolation with admixture

To evaluate the impact of the divergence time, we have first sim-
ulated an isolation with admixture (IA) model where the admixture 
event occurred at sampling time (0 generations ago) for varying di-
vergence times (TDIV) and admixture rates (a).

As expected, without admixture (a  =  0), the SFS is L-shaped 
(Figure 3a and Supporting Information 7) and the D-tail statistics 
are negative (Figure 3b). This is also the case when a > 0 for recent 
divergence times (�DIV=TDIV∕

(

2N
)

 = 0.005 or �DIV= 0.05). However, 
for older divergence times, when 𝜏DIV>0.05, the pattern is more 

complex: positive D-tail statistics and consistent uSFS are only ob-
served for relatively low admixture rates (between 5% and 20%). 
Importantly, the admixture rates leading to uSFS depend on the 
sample size n: for a larger sample size (n = 50), we observe uSFS 
for reduced admixture rates (0 < a ≤ 0.03), while larger admixture 
rates lead to W-shaped SFS with not only one but two internal 
maxima (Supporting Information 8). In any case, independently of 
sample sizes, D-tail values increase for older divergence times, in-
dicating that SFS is more strongly U-shaped with larger divergence 
times.

These results are best explained by the immigration of a few 
ancestral alleles into the sampled population at sites where the de-
rived allele is fixed in the sample before admixture, thus causing a 
decrease in the frequency of derived alleles from n to n-1. For the 
same amount of admixture, this phenomenon is more likely if two 
populations have fixed different alleles, the probability of which 
increases with divergence times, and becomes substantial when 
�DIV≥0.5 (Hudson & Coyne,  2002). To substantiate this explana-
tion, we have performed simulations for �DIV=2.5, where we com-
puted derived allele frequencies after the admixture event at sites 
that were fixed-derived before admixture (Figure 3c). For relatively 
low admixture rates (a = 0.05), almost 80% of the previously fixed 
derived sites are transformed into nearly fixed sites and SFS be-
comes U-shaped. This proportion drops to 60% when a = 0.1. For 
larger admixture rates (a ≥ 0.2), SFS becomes W-shaped (Supporting 
Information 7), as admixture events will often introduce more than 
one ancestral allele at previously fixed sites.

Note that under the IA model, large admixture rates correspond-
ing to partial genetic replacement (0.5 < a < 1) can also lead to uSFS. 
Indeed, uSFS is also obtained for admixture rates between 0.8 and 
0.95, in a way symmetrical to low a values (0.05 < a < 0.2, Supporting 
Information 9A). In this case, the excess of high derived frequencies 
is caused by the immigration of a large number of derived alleles at 
sites where the ancestral allele was fixed in the sampled population 

F I G U R E  3   Effect of the admixture rate and time of divergence on SFS properties, under an IA scenario for �ADM=0. (a) SFS, i.e. the 
number of sites with a derived frequency i, from n = 10 haploid individuals for �DIV=2.5 and various admixture rates a; (b) D-tail statistic for 
various divergence times �DIV; (c) proportion of loci in the sampled population that were fixed for the derived allele before the admixture 
event and which show i derived alleles afterwards, when �DIV=2.5. In panes a and b, dots and solid lines were obtained from simulated data 
sets, and semi-transparent colours define 95% block-bootstrap confidence intervals. Note that these confidence intervals are so small that 
they are barely visible on these figures. In pane c, dashed lines stand for uSFS and solid lines stand for W-shaped SFS
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(Supporting Information 9B), mimicking the action of positive selec-
tion (Hahn, 2018).

3.2 | Effects of the onset time of instantaneous and 
continuous gene flow

When gene flow occurred more than one generation ago, its onset 
time, intensity and duration might also have a drastic effect on the 
allele frequency distribution, and thus on the shape of the SFS. To in-
vestigate the effect of past gene flow, we have run simulations under 
both an isolation with admixture (IA) and an isolation with immigration 
(II) models, where the populations have diverged for �DIV=2.5 (i.e. 
20,000 generations for effective populations size N = 4,000), when 
𝜏ADM>0 and when TGF > 0 for the IA and II models, respectively.

Under the IA model, uSFS and positive D-tail values are observed 
for admixture 𝜏ADM<0.25. SFS becomes less U-shaped, and D-tail 
values are smaller for older admixture times (Figure 4a). However, 
even though D-tail statistics are lower when admixture is old (i.e. 
�ADM=0.125), uSFS is observed for larger admixture rates than when 
it is very recent (i.e. when �ADM=0). As expected, the SFS can be-
come multimodal for recent divergence times and large admixture 
rates (�ADM≤0.025 and a  ≥  0.2), and the internal mode moves to-
wards more central values for larger admixture rates (Figure 4c).

Under the II model, we observe uSFS and positive D-tail statistics 
for a large range of onset times for gene flow (from TGF =  TDIV to 
TGF = TDIV/10,000; Figure 4b and d), but the amount of gene flow 

required to produce uSFS is inversely correlated with the age of 
the onset of gene flow; that is, small immigration rates (Nm < 0.5) 
are necessary when gene flow is ancient (TGF = TDIV) and large im-
migration rates (Nm> 1) are necessary when gene flow is very re-
cent (TGF  =  TDIV/10,000) (Figure  4d). We found an exception for 
TGF = TDIV/10, where both low and high rates lead to uSFS, likely due 
to the introduction of both ancestral and derived alleles in the pop-
ulation, depending on which allele was fixed ancestral or fixed de-
rived in the sampled population. Interestingly, multimodal SFS only 
occurs for very specific conditions, that is large immigration rates 
and intermediate duration of gene flow (TGF = TDIV/100, Figure 4d), 
and in those cases, the internal mode is only seen at high derived 
frequencies.

3.3 | Application to human data

All ten 1000G populations show clear uSFS at neutral sites (Figure 5). 
Among the four demographic scenarios tested on these human data 
(Supporting Information 5), only the scenario of genetic isolation 
fails to produce uSFS (Supporting Information 10), shows less good 
fit especially when looking at normalized SFS (Lapierre, Lambert, & 
Achaz,  2017), and a significantly lower likelihood than that of the 
three other scenarios (Supporting Information 11). Expected SFS is 
found very similar to the observed ones, and the estimated maxi-
mum likelihood values are found close to the maximum possible 
value (computed by assuming that the expected SFS entries would 

F I G U R E  4   Effect of rate and age 
of gene flow on SFS properties, for 
�DIV=2.5 and n = 10 under an IA model 
with different admixture times (�ADM) and 
rates (a) (left panes) or under an II model 
with different gene flow onset (TGF) and 
number of migrants per generation (Nm) 
(right panes). D-tail statistic (panes a 
and b) with dots and solid lines obtained 
from simulated data sets, and semi-
transparent colours defining the 95% 
confidence intervals calculated from the 
block-bootstrap data sets (note that these 
confidence intervals are so small that they 
are barely visible on these figures); SFS 
shapes (panes c and d) with black numbers 
indicating the derived frequency i of the 
internal mode of W-shaped SFS
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be equal to the observed SFS entries) for the three other scenarios: 
isolation with ASM, admixture and immigration. Therefore, we can-
not distinguish which of these three scenarios is best on the sole 
basis of their likelihoods. However, we find that an average of 4.38% 
(2.75% – 7.59%) of ancestral state mis-assignment is necessary for 
the isolation with ASM model to fit the data. This value is one order 
of magnitude higher than that previously estimated in Yoruba (0.1%–
0.3% in Lapierre, 2017) by using sites for which the nucleotide of 
an out-group species is different from the two nucleotides defining 
a SNP in a focal population (Baudry & Depaulis, 2003). It suggests 
that ASM in a context of genetic isolation is not the cause of the 
uSFS observed from the human neutral data, and that one of the two 
models involving gene flow is a more plausible explanation. Overall, 
the best parameters inferred from gene flow scenarios generally 
point to mild and recent gene flow (mean admixture rate a = 0.06 and 
time TADM = 171 generations ago for admixture scenario; on average, 
72 migrants per generation for 540 generations for the immigration 
scenario, i.e. postlast glacial maximum for non-African populations).

4  | DISCUSSION

Gene flow is often overlooked as an explanation for the observation 
of an excess of high-frequency-derived alleles. Natural populations 
showing uSFS are usually considered as isolated but under selection 
(Li et  al.,  2012; Liu et  al.,  2017; Qanbari & Simianer,  2014; Sabeti 
et al., 2006). However, this strong assumption of genetic isolation is 
far from being warranted, as gene flow between populations seems 
to be the standard in non-human species (Sexton, Hangartner, & 
Hoffmann, 2014), sometimes even extending over species bounda-
ries (Shurtliff, 2013; Wang et al., 2019) and persisting despite habitat 
fragmentation due to human activity (Corlatti, Hacklaänder, Frey-
Roos, HacklÄnder, & Frey-Roos, 2009). For humans, numerous oc-
currences of gene flow between populations have been documented 
at every epochs and on every continent (Hellenthal et  al.,  2014). 
Human isolates rather seem to be an exception (Heutink,  2002) 
and seem to have emerged recently due to geographical and/or 
cultural barriers, for example populations living on islands or re-
mote places (Roberts,  1976; Serre, Jakobi, & Babron,  1985), or 

being cultural minorities (Bideau, Brunet, Heyer, & Plauchu,  1994; 
Capocasa et al., 2013; Mourali-Chebil & Heyer, 2006), and usually 
present health and fitness issues (Charlesworth & Willis,  2009; 
Keller & Waller, 2002; Spielman, Brook, Briscoe, & Frankham, 2004). 
In this paper, the ten 1000G populations we study all show uSFS 
in their neutral fraction of genomes, where selection is supposed 
to have almost no effect (Pouyet et al., 2018), suggesting that they 
are not genetically isolated populations. More generally, we show 
with simulations that gene flow alone (i.e. in the absence of any se-
lection, for two very contrasting models of gene flow) can actually 
easily produce an excess of high-frequency-derived alleles and uSFS. 
Interestingly, we find that uSFS can emerge from gene flow both by 
(a) the introduction of a few ancestral alleles (II and other IA models) 
and (b) by a massive input of derived alleles (during a partial genetic 
replacement, i.e. IA model with admixture rates larger than 0.5). This 
latter result extends previous ones (Wakeley & Aliacar, 2001), as not 
only mild gene flow can lead to an excess of high-frequency-derived 
alleles after a single admixture event. Furthermore, for higher rates 
of gene flow between deeply divergent populations, we manage to 
simulate W-shaped SFS, a signal that can also be produced by bal-
ancing selection (Bitarello et al., 2018; Croze, Živković, Stephan, & 
Hutter, 2016), associative overdominance (Gilbert, Pouyet, Excoffier, 
& Peischl, 2020) or in a heterogeneous structure resulting from di-
vergent sources sampled as a single population (González-Martínez, 
Ridout, & Pannell, 2017).

Our results are in line with the fact that human populations are 
not genetically isolated, even though our study did not formally 
identify the source of recently incoming lineages. In our models, 
we used an unsampled or “ghost” population as the source of gene 
flow (Excoffier et al., 2013), which simply models a reservoir for 
some divergent lineages now found in the sampled population 
(Beerli,  2004; Slatkin,  2005). It can represent a population that 
separated a long time ago from the sampled population, as in 
the case of a secondary contact after a period of isolation, like 
in hybrid zones at the population or species level (Alcala, Jensen, 
Telenti, & Vuilleumier, 2016; Alcala & Vuilleumier, 2014; Hvala & 
Wood,  2012; Tine et  al.,  2014). Such hybridization events have 
occurred repeatedly in human evolution (e.g. between anatomi-
cally modern and archaic humans (Dannemann & Racimo,  2018) 

F I G U R E  5   Neutral SFS (a) and 
associated D-tail statistics (b) observed 
in ten 1000G human samples. In pane a, 
SFSi is the number of sites with a derived 
frequency i. In pane b, the whiskers 
indicate limits of 95% block-bootstrap 
confidence intervals
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or after long-distance dispersals between population of distinct 
ancestries (Fortes-Lima et al., 2018; Sedghifar, Brandvain, Ralph, & 
Coop, 2015; Verdu et al., 2014). Interestingly, if the source popula-
tion is actually sampled, the joint SFS for the source and the target 
populations will reveal in the target population an excess of rare or 
event quite frequent derived alleles, for small and large immigra-
tion rates, respectively (Supporting Information 12), as previously 
reported in population or species having recently reconnected 
(Alcala et al., 2016; Alcala & Vuilleumier, 2014; Fraïsse et al., 2018; 
Tellier et al., 2011; Tine et al., 2014). Alternatively, as already men-
tioned above, the “ghost” population does not need to correspond 
to a real or an existing population, but can rather simply represent 
a set of populations surrounding the sampled population, as in 
large spatially structured populations, which can be described as a 
continent-island model (Excoffier, 2004; Hahn, 2018), for example 
like after a spatial expansion.

This last type of ghost (continent) population can be particularly 
relevant to model the history of human populations, as we were not 
able to identify the source of gene flow within the available 1,000 
Genomes populations (Supporting Information 13). A consensus sce-
nario for the worldwide expansion of humans is a serial founder ef-
fect out of Africa with limited archaic hybridization (Ramachandran 
et al., 2005; Stringer, 2014). As uSFS has actually been observed in 
simulations of range expansions, one could think that gene surfing 
having occurred during past human range expansions could explain 
the observed uSFS (Sousa et al., 2014). However, during human ex-
pansions, both recurrent founder effects at the front and migration 
between neighbouring demes in the wake of the front certainly oc-
curred, such that gene surfing at the front could have promoted the 
fixation of different alleles in different sectors and a mixing of these 
sectors in the wake of the expansion could have led to uSFS (Peischl, 
Dupanloup, Bosshard, & Excoffier,  2016). We have run additional 
simulations to investigate the impact of gene flow during range ex-
pansions on the SFS (Supporting Information 14). We find that uSFS 
is only observed when gene flow between adjacent populations on 
the front is associated with the expansion, showing that gene surfing 
alone cannot lead to an excess of high-frequency-derived alleles. In 
addition, we find that uSFS can also stem from a Wahlund effect, 
that is when the SFS is computed from a population with hidden sub-
divisions (Supporting Information 15). Therefore, uSFS can emerge 
from naturally occurring gene flow or from artefactual structure re-
sulting from the sampling of divergent lineages, as both will result in 
the potential mixing of differentially fixed alleles.

Whereas uSFS is never observed in completely isolated popu-
lations under a classical Kingman coalescent model, they can cer-
tainly exist under multiple-merger coalescent (MMC) models (Eldon 
et al., 2015; Pitman, 1999; Sagitov, 1999; Sargsyan & Wakeley, 2008; 
Schweinsberg, 2000; Tellier & Lemaire, 2014), which occur under re-
current episodes of selective sweeps or for extremely skewed distri-
butions of offspring numbers (e.g. oyster, cod, bacteria and viruses 
(Árnason & Halldoŕsdóttir, 2015; Sargsyan & Wakeley, 2008; Tellier & 
Lemaire, 2014)). Since different parts of the genome can be differen-
tially affected by selection, a mixture of classical and multiple-merger 

coalescent models could be used to model whole genomes (Rice 
et al., 2018). Contrastingly, gene flow into a population should affect 
the whole genome, even though effective migration rates may be 
affected by intragenomic selective processes as well (Petry, 1983; 
Sousa & Hey, 2013). It would therefore be interesting to include the 
effect of gene flow in the context of multiple-merger models as well. 
Along the same lines, procedure contrasting the SFS at different po-
sitions of the genome to evidence selection (Fay & Wu, 2000; Kim 
& Stephan,  2002; Nielsen et  al.,  2005; Pavlidis et  al.,  2010; Zeng, 
Fu, Shi, & Wu, 2006) or methods using the SFS to infer the distribu-
tion of fitness effects (Eyre-Walker & Keightley, 2007; Kim, Huber, 
& Lohmueller, 2017; Tataru, Mollion, Glémin, & Bataillon, 2017) do 
not take gene flow into account and could thus lead to biased infer-
ences. We therefore hope that our study would promote the inclu-
sion of gene flow when studying the effect of selection on genomic 
diversity.
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