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Abstract
Vehicle drivers driving cars under the situation of drowsiness can cause serious traffic accidents. In this paper, a vehicle

driver drowsiness detection method using wearable electroencephalographic (EEG) based on convolution neural network

(CNN) is proposed. The presented method consists of three parts: data collection using wearable EEG, vehicle driver

drowsiness detection and the early warning strategy. Firstly, a wearable brain computer interface (BCI) is used to monitor

and collect the EEG signals in the simulation environment of drowsy driving and awake driving. Secondly, the neural

networks with Inception module and modified AlexNet module are trained to classify the EEG signals. Finally, the early

warning strategy module will function and it will sound an alarm if the vehicle driver is judged as drowsy. The method was

tested on driving EEG data from simulated drowsy driving. The results show that using neural network with Inception

module reached 95.59% classification accuracy based on one second time window samples and using modified AlexNet

module reached 94.68%. The simulation and test results demonstrate the feasibility of the proposed drowsiness detection

method for vehicle driving safety.
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1 Introduction

With the improvement of people’s living standards, more

and more families have bought vehicles. Vehicles play an

influential role in transportation because of their flexible

transportation capabilities and also promoted the develop-

ment of many industries and accelerated the economic

improvement. According to the public statistics, China had

261.5 million vehicles by the end of 2019 [1]. The increase

in the number of vehicles will also increase the number of

traffic accidents, especially those caused by the drowsy

driving of vehicle drivers. In long-distance driving, vehicle

drivers will drive for a long time in order to improve

driving efficiency. Prolonged driving of vehicle will make

the driver feel tired and distracted, which may lead to

mortal traffic accidents. On the other hand, vehicle drivers

who obtain insufficient sleep on most nights can also cause

drowsy driving. The American Automobile Association

(AAA) estimates that one-sixth (16.5%) of fatal traffic

accidents and one-eighth (12.5%) of accidents requiring

driver or passengers hospitalized are caused by drowsy

driving [2]. According to the US National Highway Traffic

Safety Administration (NHTSA) statistical analysis, 91,000

police-reported crashes involved drowsy drivers in 2017.

These crashes led to an estimated 50,000 people injured

and nearly 800 deaths [3]. The German Road Safety

Council claims that 25% of the highway traffic fatalities are

caused by driver drowsiness [4]. A report has shown that

vehicle driver drowsy driving can happen any time, but

most frequently occur between midnight and 6 a.m., or in

the late afternoon [3]. The above statistics show that the

harmfulness of drowsy driving is very huge, which is one

of the causes of major traffic accidents.

The successful detection of drowsiness is a crucial step

to reduce the cost to society of traffic accident. Until now,

there are many published researches have tried to solve the

problem of driver drowsiness detection [5–7]. Among
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many researches, driver drowsiness detection methods

based on computer vision occupies the vast majority.

Computer vision based measurements mainly detect the

driver’s eye motion, eye blinking, head motion and head

position [8, 9]. However, with the spread of COVID-19, it

has become normal for drivers to wear masks, which is a

challenge for drowsiness detection. On the other hand, in

the case of drowsy driving, the light is generally not very

good, which also has a great influence on the detection

accuracy rate. Many studies have shown that among the

many indicators of drowsiness detection, electroen-

cephalographic (EEG) signals are known as the gold

standard for drowsiness detection. Gharagozlou et al. [10]

analyzed the EEG signals of sleep-deprived drivers while

performing simulated driving tasks, and found that a wave

(8–13 Hz) can be used as an indicator to detect driver

drowsiness. Lin et al. [11] use the offset distance of the

correct lane line in the simulation device as the evaluation

index and found that the correlation coefficient between a
wave and drowsiness is the largest. In summary, EEG

signals are closely related to human drowsiness, especially

the a wave. So in this paper, we mainly detect and analyze

the a band of EEG signals under drowsy driving. Rea-

sonable analysis and processing of EEG signals can

effectively predict the drowsiness of drivers.

In order to detect the driver drowsiness state in time and

accurately and reduce traffic accidents caused by drowsy

driving, in this paper, we propose a vehicle driver

drowsiness detection method using wearable electroen-

cephalographic based on convolution neural network

(CNN). The system architecture of the vehicle driver

drowsiness detection method is shown in Fig. 1, which

consists of three portions, namely the data collection using

wearable EEG, vehicle driver drowsiness detection module

and the early warning strategy. Firstly, a wearable brain

computer interface (BCI) is used to monitor and collect the

EEG signals. We collect the EEG signals in two different

conditions: one is sleep deprivation and the test time is

between 3 a.m. and 5 a.m., and the other is having a normal

night’s sleep and the test time is between 10 a.m. and 12

a.m. Secondly, the collected EEG signals need to be pre-

processed. We use linear filter, fast independent compo-

nents analysis (FastICA) and wavelet threshold denoising

to get high-quality EEG signals. Then, the convolution

neural networks with Inception module and modified

AlexNet module are trained to classify the EEG signals.

Finally, the early warning strategy module will function

and it will sound an alarm if the vehicle driver is judged as

drowsy. The feasibility of the proposed drowsiness

detecting method for vehicle driving safety is demonstrated

by the simulation and test results.

The contributions can be summarized as follows: (1) a

vehicle driver drowsiness detection method using wearable

EEG is proposed to alert and warn vehicle drivers under

drowsiness conditions. (2) The method uses the neural

networks with Inception module and modified AlexNet

module to extract the feature of the EEG signals and then

train and classify the EEG signals. (3) The early warning

device is used to warn the status of vehicle drivers. If the

vehicle driver is normal, the early warning device will

show a white light. If the vehicle driver is judged as

drowsy, the early warning will show a red light and sound

an alarm.

The rest of this paper organized as follows. Section 2

provides a review of the related work. Then, the proposed

methodology is described in Sect. 3. Section 4 analyzes the

simulation and test results. Finally, some conclusions are

provided in Sect. 5.

2 Related work

The driver plays an important role in the driving of the

vehicle, so the driver drowsiness detection and early

warning can effectively reduce traffic accidents. According

to the different equipment and method used, drowsiness

detection can be divided into three different measures.

The first method is based on measuring vehicle behav-

iors to evaluate the driver state. This measure mainly

detects the analysis of vehicle movement, like steering

wheel movement, acceleration pedal movement, lane

keeping and braking, etc., to determine the state of driver

alertness [12, 13]. Mortazavi et al. [14] found that when the

driver is in a state of drowsiness, the reaction speed is

reduced because the brain is not awake, which is mani-

fested by a weakened steering wheel control ability.

Forsman et al. [15] developed a driver drowsiness detection

method at moderate levels of fatigue; this method could

provide the driver with sufficient time to reach a rest stop.

The second method is based on the visual features,

which mainly analyzes the driver’s eyes state, mouth state,

expression, head position and head motion through the

camera [16, 17]. The driver’s eye blinking frequency and

eye-closing time in the drowsiness state are different from

the normal state, so many drowsiness detection methods

are mainly eye detections [18]. Head pose is also an

important feature for judging whether the driver is drowsy.

When the drivers are drowsy, they may lower their head or

lean to the side [19]. For more robust and reliable driver

inattention monitoring systems, some researchers com-

bined more facial expressions to detect drowsiness.

Mbouna et al. [20] presented a method to analyze both eye

state and head pose for continuous monitoring the alertness

of a vehicle driver.

The third detection method is based on physiological

signals, such as electrocardiogram (ECG),
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electrooculogram (EoG), electromyogram (EMG), and

electroencephalogram (EEG) [21]. Khushaba et al. [22]

extracted the related information from ECG, EEG and

EOG, and used fuzzy wavelet-packet-based feature

extraction algorithm to classify the drowsiness state. Many

studies have shown that among many indicators of

drowsiness detection, EEG signal based method is the most

promising and feasible method for drowsiness detection

[23–25]. Lin et al. [26] proposed a novel brain–computer

interface system that can acquire and analyze EEG signals

in real time to monitor and warn the drowsiness of the

drivers, and the system obtained an average sensitivity of

88.7% and positive predictive value of 76.9%. Chai et al.

[27] presented an EEG-based driver drowsiness classifi-

cation method using sparse-deep belief networks and

autoregressive modeling, which achieved a classification

accuracy of 90.6%. Yeo et al. [28] used support vector

machines (SVM) in identifying and differentiating EEG

changes that occur between alert and drowsy states, and

obtained an accuracy over 90%. Gu et al. [29] surveyed the

recent literature on EEG-based intelligent BCI technolo-

gies and introduced driving fatigue detection research

using deep learning algorithms. Gao et al. [30] proposed an

EEG-based spatial temporal convolutional neural network

(ESTCNN) for driver drowsiness detection and achieved a

high accuracy of 97.37%. Zeng et al. [31] developed two

mental state classification models called EEG-Conv and

EEG-Conv-R for driver drowsiness detection and obtained

91.788% and 92.682% classification accuracy.

From the above literature, it can be seen that EEG sig-

nals are widely used in driver drowsiness detection.

However, researchers also found that EEG signals are very

weak and susceptible to the background noise. Therefore,

how to extract high-quality EEG signals under drowsy

driving and how to accurately classify the EEG signals

require further researches.

3 Methodology

3.1 EEG signal acquisition

Acquisition of EEG signals is the first step. We decide to

use a programmable collecting scheme of OpenBCI open

source. The Ag–CL electrode is shown in Fig. 2a, which

has higher applicability than the medical wet electrode. As

shown in Fig. 2b, the OpenBCI demo board collects EEG

signals, converts potential signals into digital signals

through digital-to-analog conversion circuits and transmits

them to the personal computer. The EEG cap consists of 8

dry electrodes with ultra-high impedance amplifiers and 2

ear clips as reference electrodes. The EEG acquisition

module has a sampling rate of 256 Hz and an operating

voltage of 6 V, which is shown in Fig. 2c.

Fig. 1 The architecture of the vehicle driver drowsiness detection system
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There are many forms of EEG signal acquisition, and

the location of the collection electrode is also different. In

order to better analyze the EEG signal of different regions,

the international 10–20 system of electrode placement has

been formulated to standardize EEG signal collection,

which is shown in Fig. 2d. According to some research

[26, 32–34], the EEG signals of prefrontal lobe (Fp1, Fp2),

central lobe (C3, C4), temporal lobe (T7, T8) and occipital

lobe (O1, O2) are related to the drowsy state, so electrodes

are placed at these points in this paper.

3.2 EEG signal pre-processing

As a weak physiological signal, EEG signal is affected by

various aspects in the process of acquisition, resulting in

low quality. One of challenges of using EEG-based sys-

tems is the contamination from EEG artifacts, including

muscle noise, eye activity, blink artifacts, and instrumental

noises such as line noise and electronic interference. So it

is necessary to perform certain pre-processing operations

on the collected EEG signals to remove these artifacts and

improve the information quality. In this paper, we use

linear filters, FastICA method and wavelet threshold

denoising to remove these artifacts. The general pre-pro-

cessing process of EEG in this paper is shown in Fig. 3.

The sampling frequency of the acquisition device in this

paper is 256 Hz, and the maximum frequency of the col-

lected EEG signal is 128 Hz, which is much larger than the

frequency of drowsy EEG signals, so linear filters are used

for filter first. Because the frequency response curve of the

Butterworth filter in the passband is the flattest and can

effectively retain the useful components of the signal, a

third-order Butterworth bandpass filter is selected to ini-

tially filter the signal, and the cut off frequency is set to

1 Hz to 60 Hz, preliminary filter of unwanted low-fre-

quency and high-frequency components. Next, we design a

Butterworth trap filter with a cut off frequency of 50 Hz to

remove power frequency interference.

Second, eight-channel EEG signals are implemented

with FastICA. Independent components analysis (ICA) is a

common classical algorithm for blind source separation,

which assumes that the original signal is statistically

independent and the observed signal is formed by instan-

taneous mixing of the original signal. The observed signals

are separated according to some prior knowledge to obtain

independent original signal components. Independent

components analysis has been wildly used in EEG artifacts

removal [11, 43]. The specific process of FastICA algo-

rithm used in this article is as follows:

Step 1 Centralize and whiten the observed data;

Step 2 Initialize the separation matrix W , convergence

error e, number of iterations p;

Step 3 Update

Wnþ1 ¼ E Xg0 WT
n Z

� �� �
� E g00 WT

n X
� �� �

W ð1Þ

Step 4 Standardize

Wnþ1 ¼ Wnþ1= Wnþ1k k ð2Þ

Step 5 Judge whether Wnþ1 �Wnk k\e is established, if
it is established or the number of iterations reaches p, it

ends. Otherwise, return to Step 3.

E is the mean operation and g is the non-quadratic

function that generally is shown as follows:

Fig. 2 EEG signals collection system. a The Ag–CL dry electrode,

b The open BCI platform, c The EEG acquisition hat (d) international
10–20 system of electrode placement

Fig. 3 The flowchart of EEG signal pre-processing
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g ¼ � 1

a1
logcosa1y ð3Þ

In the formula, 1� a1 � 2, usually a1 ¼ 1.

The signal separated by FastICA is only a relatively

independent component, which also contains some noise

and not accurate enough. Therefore, after signal separation,

we use wavelet threshold method to decompose and

reconstruct the signal of each channel. Wavelet threshold

method is based on discrete wavelet transforms (DWT).

First, performing wavelet decomposition on the original

signal to obtain scale coefficients. Three-layer wavelet

decomposition is used in this paper. Then, threshold pro-

cessing is used. We use a soft-threshold processing method

[35]. The specific method of soft threshold is to discard this

item when the absolute value of the wavelet coefficient is

less than the given threshold. When the wavelet coefficient

is greater than the given threshold, the coefficient is set to

the difference between the original value and the threshold.

Finally, the inverse wavelet transform is used to reconstruct

the signal to achieve the purpose of reducing noise. The

structure of three-layer wavelet decomposition is shown in

Fig. 4. We directly remove the high-frequency component

D1 and reconstruct the decomposition coefficients of D2,

D3, A3 and obtain a reliable EEG signal.

3.3 Classification of EEG signals based on CNN

Previously, the mainstream solution for classifying EEG

signals was machine learning methods. In recent years,

with the development of deep learning, convolutional

neural networks have also been applied to EEG signals

classification because of their excellent performance in

computer vision and natural language processing. Haji-

noroozi et al. [36] used convolutional neural networks for

drowsiness detection of EEG signals and achieved good

results. In this paper, the neural networks with Inception

module and modified AlexNet module are proposed to

classify the EEG signals.

3.3.1 Convolutional neural networks with Inception
module

In terms of convolutional networks, Inception and residual

network (ResNet) have the best performance and are the

most popular. The purpose of ResNet is to solve the

problem of gradient explosion or gradient disappearance.

However, the size of the dataset trained in this paper is

small, and it is better to capture features rather than

increase network depth, so the network structure with

Inception unit is selected. The Inception unit was first

proposed by Szegedy et al. [37] in 2015. The structure of

Inception increases the width of the neural network and

replaces large convolution kernels with several parallel

small convolution kernels to perform operations. While

increasing the running speed, it can connect different out-

puts together and adaptively select the required information

through the weight of the next layer of network.

In addition to the Inception unit, we also use the batch

normalization (BN) layer in the construction of the network

model. Ioffe et al. [38] proposed the BN layer which is a

training optimization method. The essence of the BN layer

is to adjust the distribution. When the distribution of

training data and test data is different, the generalization

ability of the network will be affected. The BN layer is to

normalize each training mini-batch and finally restore it to

an approximate original distribution.

The specific operation is as follows:

Suppose that the input of a batch in a layer of neural

network is X = [x1,x2;:::xn�, and set two learning parame-

ters c and b. First find the mean and variance of the ele-

ments in this mini-batch:

lB ¼ 1

n

Xn

i¼1

xi ð4Þ

r2B ¼ 1

n

Xn

i¼1

ðxi � lBÞ2 ð5Þ

Then normalize each sample element:

xi
0 ¼ xi � lBffiffiffiffiffiffiffiffiffiffiffiffiffi

r2B þ e
p ð6Þ

Finally, scaling and deviation are performed to

approximate the original distribution, and the output is:

yi ¼ cixi
0 þ bi ð7Þ

In the BN layer, the performance of the network can be

optimized by learning the two parameters c and b. The
network with the BN layer has a faster convergence speed

and can effectively prevent the gradient dispersion problem

and enhance the robustness of the network. Therefore, in

the network construction of this paper, the BN layer is used

to improve the capabilities of the model.Fig. 4 Three-layer wavelet decomposition structure
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We are inspired from the Inception network structure

and propose our own network structure, which is shown in

Fig. 5. The model in this paper consists of five convolu-

tional layers, two pooling layers, three Inception modules,

and three fully connected layers. All paddings use the same

type.

3.3.2 Modified AlexNet model

Because the EEG signals are relatively weak, and the

acquisition and pre-processing are difficult, the dataset size

is relatively small. In order to judge whether the adopted

Inception model is reasonable, a modified AlexNet model

is also used for comparative analysis.

AlexNet model was proposed by Krizhevsky et al. [39].

The AlexNet model is divided into 8 layers, 5 convolu-

tional layers, and 3 fully connected layers. Generally, the

activation function of neurons will choose tanh function or

sigmoid function. To speed up training, AlexNet model

used rectified linear unit (ReLU) in each convolutional

layer.

Because the value range obtained by the ReLU activa-

tion function does not have an interval, the results obtained

by ReLU should be normalized, which is local response

normalization (LRN). The LRN is as follows:

Fig. 5 The proposed network structure with Inception module
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bix;y ¼ aix;y= k þ a
Xmin N�1;iþn=2ð Þ

j¼max 0;i�n=2ð Þ
aix;y

� �2

0

@

1

A

b

ð8Þ

where aix;y is the activity of a neuron computed by applying

kernel i at position (x, y), N is the total number of kernels in

the layer, n is ‘adjacent’ kernel maps at the same spatial

position, k ¼ 2; a ¼ 10�4; b ¼ 0:75.

AlexNet model also uses the overlapping pooling

method and the experiments show that using pooling with

overlap is better than the traditional.

In this paper, a similar structure is used. Compared with

the original AlexNet network, we reduce the size of the

convolution kernel of the convolution layer to extract more

detailed features, and the output nodes of the convolution

layer are also reduced. In addition, the LRN layer in the

network structure is deleted and changes to the BN layer.

The position of the BN layer is after the convolution layer

and before the activation layer, and the Group convolution

operation is deleted at the same time, so that the training

can be performed on one GPU. On the other hand, a con-

volutional layer has been added to increase the depth of the

network to increase its capabilities of representation.

Finally, because the BN layer is added, the dropout

parameter setting at the fully connected layer is small. The

network model built in this paper includes 8 convolutional

layers, 4 pooling layers, and 3 fully connected layers. The

padding of the first three convolutional layers selects the

valid mode, and the padding of the subsequent layers

selects the same mode. The modified AlexNet model

structure is shown in Fig. 6.

3.4 Early warning strategy module

Reasonable strategies can effectively remind vehicle dri-

vers to restore their attention. In this paper, we propose a

simple and feasible early warning strategy for EEG signals,

which can prompt the driver when the driver drowsiness is

detected, so that the driver can restore attention as soon as

possible. The early warning strategy process is shown

below.

(1) When the vehicle driver is driving normally, the

EEG signal detection system does not detect an

abnormal state, and the system indicator light is

white.

(2) When the vehicle driver is determined to be drowsy

for 3 s, the driver is deemed to be in a drowsy state.

The indicator light will be red to remind the driver to

restore his attention. At this time, the driver is judged

as a first-level drowsiness state.

(3) When the red light continues to turn on for more

than 5 s, if the vehicle driver’s EEG signal is still

judged to be drowsy at this time, it can be determined

that the driver is already at a high level of drowsiness

at this time, that is, the second-level drowsiness state.

The buzzer sounds to alert the driver.

(4) If the red light turns on less than 5 s and the EEG

signal returns to the normal state, it means that the

vehicle driver has recovered his attention, the

indicator light returns to white.

4 Experimental results

The goal of this section is to experiment and demonstrate

scientifically the capability of the vehicle driver drowsiness

detection method using wearable EEG based on convolu-

tion neural network.

4.1 EEG signals acquisition program

Twenty subjects (18 males and 2 females) were selected for

this collection experiment. They ranged in age from 22 to

42 years old and were in good health and had no history of

mental illness. Before the experiment, all subjects have

been informed of all experimental purposes and specific

operating procedures and signed a written consent form.

In order to avoid the influence of blood glucose level in

human body on EEG, data collection experiments were

carried out at least one hour after meals. All sedatives and

sleeping drugs were stopped three days before the experi-

ment. And in order to reduce scalp resistance, the hair was

washed the day before the experiment. The sampling fre-

quency of the acquisition device is 256 Hz, and the sub-

jects will collect awake and drowsy EEG data in the

following two time periods after completing the above

acquisition preparation conditions: One is that the subjects

had effective sleep for 8 h before the awake data collection

experiment, eating breakfast at 8 a.m., and maintaining

emotional stability, collecting awake EEG data from10
Fig. 6 Modified AlexNet model structure
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a.m. and 12 a.m. The other is that the subjects staying up

late before collecting drowsy data. Collecting drowsy EEG

data between 3 a.m. and 5 a.m. after one day. The time

interval between the collection of awake EEG data and

drowsy data for each subject was one week.

The data acquisition experiment of EEG signals is

shown in Fig. 7. We collect the awake EEG signals, while

the subject is driving a vehicle on the road in school

campus without people during 10 a.m. and 12 a.m., which

can be seen in Fig. 7a, b. Considering the danger of col-

lecting drowsiness driving data in really driving environ-

ment, we collect drowsiness driving data in a stationary

laboratory location during 3 a.m. and 5 a.m., which are

shown in in Fig. 7c, d.

The experiment used fatigue warning system MR688

[40] to assist in verifying the true state of the subjects when

collecting EEG signals.

4.2 Experimental setup

The data used in this article is collected by OpenBCI and

imported into the data stream in real time through

MATLAB. The pre-processing part which includes linear

filter, FastICA, and wavelet threshold are all completed on

MATLAB, and the dataset in the format of ‘mat’ is

obtained.

The hardware environment of this experiment is as

follows: CPU Intel I5-6300HQ, frequency 2.6 GHz, GPU

is NVIDIA GeForce 960 M, video memory is 4G, running

memory is 16G DDR4 2133 MHz.

The software environment includes Python 3.6, and

Anaconda is selected for package management. The Ten-

sorflow version used is the Tensorflow 1.7 GPU version.

The NVIDIA computing platform CUDA version 7.0 is

adopted, and the supporting CuDNN 7.0 is adopted to

accelerate the calculation.

4.3 Dataset description

The data samples used in this paper include drowsy state

and awake state. The acquisition equipment is an eight-

channels EEG signal acquisition device with a sampling

frequency of 256 Hz. This paper selects the EEG signal for

1 s as a training sample and collects the EEG signal for 1 h

under the condition of awake and drowsiness for each of

the 20 subjects. In the end, we obtain a total of 69,054

samples, of which 33,035 were awake period samples and

36,019 were drowsiness period samples. Figure 8 shows

the EEG of the selected O1 channel in the awake state and

drowsy state. It can be seen from the figure that the EEG

signal is sparser in the drowsy state and presents a certain

waveform, which is caused by the increase of a wave

activity in the drowsy state of the human body. The col-

lected signals are first filtered by linear filter, then FastICA

is used for signal separation, and then wavelet threshold is

used to denoise. Then perform matrix stitching to obtain an

EEG dataset with dimensions of 69,054 9 256 9 8.

According to the different states of the EEG signals, a

69,054 9 2 corresponding label dataset is established. The

labels use one-hot coding, and ‘10’ and ‘01’ represent

awake and drowsy, respectively. Finally, the dataset is

randomly shuffled and divided into two parts: 50,000 9

256 9 8 and 19,054 9 256 9 8, which are used as the

training set and test set, respectively.

4.4 EEG signal pre-processing results

The EEG data obtained by the preliminary collection are

not completely valid EEG data, which also contains a lot of

noise, which affects the subsequent experimental results.

The EEG data collected in the acquisition experiment need

Fig. 7 EEG signal collection experiment Fig. 8 EEG of O1 channel in the awake state and drowsy state
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to be filtered to remove the noise part that does not coin-

cide with the EEG spectrum. We select a third-order But-

terworth bandpass filter to initially filter the signal, and the

results of each channel component of EEG signals after

linear filter are shown in Fig. 9a. It can be seen from the

figure that the EEG signal after linear filter has EEG signal

characteristics, which has a nonlinear trend and has ana-

lytical value. Since each channel of the EEG signal affects

each other, in order to purify the EEG signal of each

channel, Fast ICA is used for separation. After the sepa-

ration, the signal waveforms of the8 EEG channels are

shown in Fig. 9b. As can be seen from the figure, after Fast

ICA processing, the quality of EEG signals has been sig-

nificantly improved. The signals processed by Fast ICA

contain some noise and the accuracy is not enough, so we

use the wavelet threshold method to decompose and

reconstruct the signal of each channel and extract the signal

of the frequency band we need. We use three-layer wavelet

decomposition to reconstruct the EEG signal, and the

results are shown in Fig. 9c. The output y in the figure is

the reliable EEG signal we need after reconstruction, and

its band is 0–64 Hz.

4.5 EEG signals classification results based
on CNN with Inception module

Considering the limited hardware resources, the training

process employs batch processing, which requires less

memory and has faster calculations. The extreme small

batch size will cause the loss curve to violently oscillate.

Therefore, the batch size is set to 64 and the learning rate is

0.0003, so that the smaller learning rate can be more

accurate to find the optimal point and be better for the

classification problem. Dropout is added to the full con-

nection layer to reduce the calculation parameters and

prevent overfitting. Finally, because the Inception model is

more complex, we also add the L2 regularity after the loss

function to further prevent overfitting and randomly extract

15% of the data from the training set as a validation set to

determine the network training status.

Figure 10a is the change of training loss of the network

structure with Inception module. By the loss function of the

training image, it can be roughly judged whether the

learning rate is reasonable. As seen from the figure, the loss

of the network initially drops rapidly to a lower value due

to the batch normalization layer. In the subsequent itera-

tions, the training loss is constantly fluctuating since the

mini-batch is smaller than the entire training sample, but

the overall trend is declining. Figure 10b shows the change

Fig. 9 EEG signal pre-processing. a EEG signal after linear filter.

b EEG signal after FastICA. c EEG signal after wavelet threshold

Fig. 10 Loss change of the network structure with Inception module:

(a) training loss; (b) validation loss
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of the validation set loss during the training process. As the

iterations increase, the loss of the validation set also con-

tinuously decreases and eventually stabilizes. It can be seen

from the images that the overfitting phenomenon has not

occurred because the model parameters were selected

properly.

The performance of the model is evaluated next. Model

evaluation is mainly carried out in terms of accuracy,

precision, recall, F1 score and area under curve (AUC).

Assuming that the driver’s original state is awake and is

judged to be awake by the network, such samples are true

positives (TP). The awake state is judged as drowsy is false

negatives (FN). The drowsy state is judged as awake is

false positives (FP). The drowsy state is judged as drowsy

is false negatives (FN). The formulas of accuracy, preci-

sion, recall and F1 score are as follows:

Accuracy ¼ TPþ TN

TPþ TN þ FPþ FN
ð9Þ

Precision ¼ TP

TPþ FP
ð10Þ

Recall ¼ TP

TPþ FN
ð11Þ

F1 ¼
2TP

2TPþ FPþ FN
ð12Þ

The results of model evaluation are shown in Fig. 11. It

can be seen that as the iteration progresses, these indicators

continue to rise, which also shows that the capabilities of

the model continue to rise. Finally, when the network is

close to convergence, the indices tend to be stable.

The robustness of a classifier is mainly measured

through the receiver operating characteristic curve (ROC).

The abscissa and ordinate of ROC are false positive rate

(FPR) and true positive rate (TPR), respectively. The cal-

culation formulas are:

FPR ¼ FP

TN þ FP
ð13Þ

TPR ¼ TP

TPþ FN
ð14Þ

The ROC curve can reflect the classification effect of a

classifier. However, when the curve crosses, the ROC

characterization method is not intuitive enough to quickly

judge the quality of the classifier. Therefore, the area under

the curve is used to intuitively reflect the classification

ability expressed by the ROC curve, which is AUC. Fig-

ure 12 shows the variation of AUC with the number of

iterations during the training process. It can be seen from

the figure that the AUC curve rises steadily and finally

stabilizes at about 0.95 when the iteration is performed

approximately 20,000 times.

After training, the accuracy of the training set of the

model on the last mini-batch is 96.87%. The accuracy of

the validation set is 95.33%, the precision is 95.57%, the

recall is 95.60%, the F1 score is 95.48%, and the AUC is

0.9553. By introducing the test set size of 19,054 9 256 9

8 into the completed model, a final model with an accuracy

of 95.59% and a recall of 96.12% is designed.

After the training is completed, the network structure

used in this paper is visualized to visually observe the

extracted features. This paper selects the input of the first

Inception module and the output of the three Inception

modules for visualization. For the convenience of visual-

ization, the output of the first 16 filters is selected for

visualization in each layer, and the results are shown in

Fig. 13. From the feature extraction map, it can be seen

that in the shallow network, the sequence length of the data

is relatively long, and it can represent more information

and can contain more features. As the number of network

layers deepens, the length of the sequence extracted by the

convolution kernel becomes shorter, and the fewer features

extracted by each filter, but the more representative it is.

We visualize the relationship between driver drowsiness

and brain position using network structure with Inception

module. The visualization result is shown in Fig. 14. The

horizontal axis of the image represents the sequence value.

The vertical axis is the channel, which from top to bottom

are Fp1, Fp2, C3, C4, T7, T8, O1 and O2. Figure 14a

shows the beginning of the network training, and its

weights are randomly generated, which looks chaotic. As

the training progresses, the weight distribution gradually

changes. After 20,000 iterations of the network, it can be

seen from Fig. 14b that the basic white dots are concen-

trated in the bottom two rows, which means the EEG sig-

nals of O1 and O2 channels are most closely related to the

drowsy state.

4.6 EEG signals classification results based
on modified AlexNet model

The parameters of the modified AlexNet network model

built in this paper are as follows: batch size is 64, and the

learning rate is set to 0.0003. At the same time, because the

network model is simpler than the Inception structure, in

order to prevent insufficient representation capabilities, the

dropout ratio is set to 0.5, that is, neurons are retained with

a probability of 0.5 in the fully connected layer, which is

greater than 0.2 of the Inception structure, and remove the

regularization term in the cost function. The change of the

training loss and verification loss of the network model

with the number of iterations is shown in Fig. 15. The

network converged when the iteration was performed

approximately 16,000 times. During this period, the train-

ing loss continued to decline and eventually stabilized, and
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Fig. 11 Evaluation on the

validation set using Inception

module

Fig. 12 AUC change curve on the Inception network verification set

Fig. 13 Feature extraction map of network structure with Inception model

Fig. 14 Relationship between channels and drowsiness: a initial and

(b) 20,000 iterations
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the overall loss of the validation set also continued to

decline.

We evaluate the indicators of the model on the valida-

tion set. The accuracy, precision, recall, and F1 score on

the validation set can be seen in Fig. 16, respectively. As

the iteration progresses, all indicators maintain an upward

trend, which proves that as the training progresses, the

model continues to improve without overfitting. AUC

change trend of the model is shown in Fig. 17. After

training, the accuracy of the training set of the model on the

last mini-batch is 98.43%. The accuracy of the validation

set is 94.76%, the precision is 94.87%, the recall is 95.28%,

the F1 score is 94.96%, and the AUC is 0.9504. The

accuracy and recall of the final model on the test set are

94.68% and 95.32%

Next, select test data samples for visual management. In

the established modified AlexNet network, the second,

fourth, sixth, and eighth layers of convolutional networks

are visualized. Due to the long length of the shallow

sequence, for the convenience of visualization, the first 8

filters are selected for the second layer, and the remaining

16 filters are selected for the rest. The test data sample

visualization results are shown in Fig. 18. The modified

AlexNet network is similar to the previous Inception net-

work, and the features extracted in the shallow layer are

similar to the original waveform. With the deepening of the

number of layers, the extracted features are more and more

advanced, representing the features that are actually

applied by network recognition.

4.7 Comparison

By comparing the two models, the following conclusions

can be drawn. As the number of iterations increases, both

models eventually converge, and the accuracy on the test

set of the network structure with Inception module is

95.59%, while the modified AlexNet module is 94.68%.

The classification accuracy of the network structure with

the Inception model is slightly higher than the modified

AlexNet model, in addition to the validation set accuracy,

precision, recall, F1 score and AUC, the network model

with the Inception structure is also slightly higher, but the

difference is not large and the two types of models have

close capabilities. From the perspective of training time,

the training of the network structure with the Inception

model takes 1 h and 16 s, while the modified AlexNet

network model takes only 39 min. The modified AlexNet

model has fewer parameters, so it trains faster and con-

verges faster.

On the other hand, we compared the proposed method

with the other state of the art methods. Lin et al. [26]

proposed a one channel BCI system using Mahalanobis

distance (MD) to detect the drowsiness in real time. Zhang

et al. [41] used a support vector machine (SVM) classifi-

cation algorithm and the fast Fourier transform (FFT) to

determine the vigilance level. Li et al. [42] proposed a

smartwatch-based wearable EEG system using support

vector machine-based posterior probabilistic model

(SVMPPM) for driver drowsiness detection. Punsawad

et al. [32] developed a single-channel EEG-based device

for real time drowsiness detection. Chai et al. [43] pre-

sented a two-class EEG-based classification using Bayesian

neural network for classifying of driver fatigue. Wali et al.

[44] used discrete wavelet packet transformation (DWPT)

and fast Fourier transformation (FFT) to classify the driver

drowsiness level. The comparison results are shown in

Table 1.

It can be seen from the data in Table 1 that the method

proposed by Lin et al. [26] obtained an accuracy of 82.8%

and a recall of 88.7%. The accuracy of the method pro-

posed by Li et al. [42] is 88.6% when time window is

1 min. The method proposed by Wali et al. [44] obtained

an accuracy of 79.21% and a recall of 82.09%. Zhang et al.

[41] showed the effect of time window on accuracy. When

the time window is set to 1 s, the average classification

accuracy of the O1 EEG signal is 83.28%. As the time

window rises, the overall trend of the algorithm classifi-

cation accuracy is rising and obtained a classification

accuracy of 90.7% and a recall of 86.8% in the end.

Fig. 15 Loss change of the modified AlexNet module. a Training

loss. b Validation loss
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This is because the traditional EEG signal classification

methods rely more on extracting corresponding features

through experience and subjective observations, so the

longer time window you choose, the higher the classifica-

tion accuracy. If we choose different features, the final

classification accuracy is also different. The convolutional

neural network with the Inception module and the modified

AlexNet module proposed in this paper both use EEG

signals within 1 s time window as training samples. We

obtained a final accuracy of 95.59% and 94.68%, and a

recall of 96.12% and 95.32%. Punsawad et al. [32] used

4-channel EEG-based method and obtained a classification

Fig. 16 Evaluation on the

validation set using modified

AlexNet network

Fig. 17 AUC change curve on the modified AlexNet network

verification set

Fig. 18 Modified AlexNet model feature extraction map
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accuracy of 90.4%. Chai et al. [43] used 32-channel EEG-

based system and got a classification accuracy of 88.2%

and a recall of 89.7%. It can be seen from the comparison

that the multi-channel EEG signal classification method is

better than the single channel, as multi-channel equipment

can collect more useful information. However, with the

increase of datasets and the increase of classification cat-

egories, traditional classification algorithms will face

problems such as too long calculation time and insufficient

accuracy. For deep learning methods, with the improve-

ment of computer computing power, we only need to

produce more accurate and larger datasets, and the gener-

alization ability and performance of the model will con-

tinue to improve. After large-scale network training, we

can easily classify and warn different drivers EEG signals.

4.8 Early warning strategy module results

In order to verify the feasibility of the early warning

strategy described in this paper, MATLAB is used for

simulation. We assume that the driver’s EEG signal state

sequence is shown in Fig. 19a. ‘1’ and ‘0’ represent the

drowsy state and awake state. Figure 19b shows the vehicle

driver drowsiness level obtained from the assuming EEG

signal sequence through the proposed early warning strat-

egy. ‘0’ represents awake, ‘1’ means the driver is in the

first level of drowsiness, and ‘2’ means the driver is in the

second level of drowsiness.

For security reasons, the early warning system cannot be

tested in a real environment, so we use the OpenBCI Cyton

EEG detection system and the Arduino open-source elec-

tronic platform to verify the effectiveness of the above

simulation. The early warning strategy experiment is

shown in Fig. 20. When the driver is in awake state, first-

class drowsiness state and second-class drowsiness state,

the corresponding response of the early warning equipment

is that the white light is on, the red light is on, and the

buzzer sounds. The experimental results are consistent with

the simulation state, verifying the reliability of the early

warning strategy.

5 Conclusions

In this study, the vehicle driver drowsiness detection

method using wearable EEG based on convolution neural

network is presented. The EEG collection module, EEG

signal processing module and early warning module

formed a complete system which can be used in vehicle

driving safety. The final experimental results show the

great performance of the proposed method in vehicle driver

drowsiness detection. Specifically, the equipment provides

Table 1 Comparison

Ref No Lin

[26]

Zhang

[41]

Li [42] Punsawad [32] Chai [43] Wali [44] Present

work

Present work

Time

window

3 min 4 s 1 min 10 min 2 s 3 s 1 s 1 s

Method MD SVM SVMPPM Weighted

frequency

Bayesian neural

network

DWPT and

FFT

Inception Modified

AlexNet

Channels 1 8 1 4 32 14 8 8

Subjects 15 10 15 7 43 50 20 20

Accuracy

(%)

82.8 90.7 88.6 90.4 88.2 79.21 95.59 94.68

Recall (%) 88.7 86.8 – – 89.7 82.09 96.12 95.32

Fig. 19 Early warning strategy simulation. a Driver EEG state

sequence. b Driver drowsiness rating sequence Fig. 20 Early warning strategy experiment
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excellent classification efficiency, and the accuracy can

reach 95.59% based on a one second time window samples

using neural network with Inception module and reach

94.68% using modified AlexNet network module during

simulation and tests. The proposed early warning strategy

is also very effective. The simulation and test results

demonstrate the feasibility of the proposed drowsiness

detection system using EEG signals for vehicle driver

driving safety.

In our future research, we will focus on integrating all

modules and embedding them into the development board.

We will also conduct more in-depth research on EEG

artifact removal, signal classification and real-time signal

processing.
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