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Natural killer (NK) cells represent a subset of CD3- CD7+ CD56+/dim lymphocytes with
cytotoxic and suppressor activity against virus-infected cells and cancer cells. The overall
potential of NK cells has brought them to the spotlight of targeted immunotherapy in solid
and hematological malignancies, including multiple myeloma (MM). Nonetheless, NK cells
are subjected to a variety of cancer defense mechanisms, leading to impaired maturation,
chemotaxis, target recognition, and killing. This review aims to summarize the available
and most current knowledge about cancer-related impairment of NK cell function
occurring in MM.

Keywords: NK cells, multiple myeloma, inhibitory receptors, activating receptors, immunotherapy,
microenvironment, niche
INTRODUCTION

Multiple myeloma (MM) is a malignant disorder of plasma cells (PCs) with a median age of 65 years
at diagnosis. MM evolves from monoclonal gammopathy of undetermined significance (MGUS)
present in >3% of the population aged >50 years (1). The disease’s clinical manifestations are mostly
elevated serum calcium, renal failure, anemia, and bone involvement (the acronym CRAB) (2).
Eventually, in up to 20% of cases, MM can progress into extramedullary disease (EMD), a soft tissue
plasmacytoma, which represents a highly aggressive and treatment-resistant stage of MM (3–6).
The mechanisms and biology of EMD are poorly understood, though PCs accumulate more
chromosomal aberrations during EMD transformation (7).

Due to their natural tumor suppressor potential, natural killer (NK) cells became a subject of
intensive research in cancer immunotherapy in both solid tumors and hematological malignancies
(8, 9). Restoring or enhancing the effector abilities of NK cells for the treatment of MM has been one
of the key topics in recent years (10–12). NK cell therapy is advantageous for several reasons: (1) NK
cells are easy to isolate and expand in vitro using well-established methodologies; (2) these cells are
capable of both direct killing and secretion of cytokines that can either potentiate other immune
cells or suppress tumor cells; (3) overall biological features of NK cells are reducing the possibility of
undesired side effects such as the ones observed with CAR-T cells; (4) NK cells are not antigen
specific and there is no need for a specific target, although this can enhance the effectiveness of the
therapy (13–15); and (5) the infusion of allogeneic NK cells is safe and does not cause the unwanted
and deleterious graft vs. host disease (GvHD), thus opening the possibility of a more affordable off-
the-shelf cancer cell-based immunotherapy (16).

Novel NK cell-based therapy possibilities include infusion of allogeneic/autologous NK cells,
administration of in vitro expanded and genetically modified NK cells (including CAR-NK cells),
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cytokine-stimulated NK therapy, and monoclonal antibody
(mAb)-based NK therapy (13, 15, 17). Modification of
inhibitory or activating surface molecules represent a
promising option to potentiate efficacy of NK cells (18, 19).
Another promising approach is priming of NK cells with certain
interleukins (ILs). IL-2 and IL-15 supplementation in vitro was
confirmed to enhance the NK cells’ killing abilities, increasing
the expression of activating NK cell receptors (20–22). Although
the NK therapy seems to hold a huge potential for cancer
therapy, a recent study showed that haploidentical NK cell
transplantation in relapsed/refractory (RR) MM patients did
not report significant therapeutic outcomes. The study had to
be halted after all 12 patients relapsed within 90 days (23). Also,
it is important to understand that mAb therapies for the
treatment of MM act through (amongst others) NK-cell
activities like antibody-dependent cell cytotoxicity (ADCC)
mediated via either the mAb or mAb–drug conjugate (24–26).
Anti-CD38 daratumumab (approved in 2015), anti-SLAMF7
elotuzumab (2015), and anti-CD38 isatuximab (2020) are
mAbs used for the treatment of MM (25, 27, 28). The novel
anti-CD38 MOR202 is now in the clinical trial phase in MM
patients (29). Likewise, proteasome inhibitors and
immunomodulating agents such as thalidomide, lenalidomide,
and bortezomib have been proved to potentiate NK cell activity
against MM (28).

Understanding the NK cell biology and mechanisms affecting
the function of NK cells in MM is crucial for further progress
in the field of targeted and NK cell therapy. This review
summarizes the most recent and available data providing a
necessary insight into the origin and development of NK cell
subsets, their biology, antitumor abilities, and, mainly,
impairment of function occurring in the MMmicroenvironment.
NK CELL DEVELOPMENT AND SUBSETS

NK cells represent 2–31% of peripheral blood (PB) lymphocytes
(30). Although the organ and tissue distribution and circulation
of NK cells are not fully understood, they are also present
in the bone marrow (BM), liver, spleen, lungs, uterus, thymus,
and secondary lymphoid tissues (31, 32). Maturation and
differentiation of early NK subsets occurs in BM and
secondary lymphoid organs. Even though NK cell development
in humans is understood less than in mice, stages 1 to 6 were
identified (8 overall with substages) in humans, each having a
distinct immunophenotypic profile (Figure 1) (33, 34). Several
ILs are crucial for the development of the NK lineage,
mainly IL-2, IL-7, and IL-15, but also pro-inflammatory IL-12,
IL-18, IL-27, and IL-35 (35, 36).

Similar to all other hematopoietic lineages, the NK lineage is
derived from bone marrow-residing hematopoietic stem cells
(HSCs), which transition into CD34+ CD45RA- CD133+
multipotent progenitor (MPP) cells and subsequently to
CD34+ CD133+ CD45RA+ lymphoid-primed multipotent
progenitors (LMPPs), determining the lymphoid line potential.
Direct NK cell lineage precursors seem to be derived from the
Frontiers in Immunology | www.frontiersin.org 2
CD34+ CD133+ CD45RA+ CD10+ fraction, known as common
lymphoid progenitors (CLPs) in the conservative model of
hematopoiesis, or multi-lymphoid progenitors (MLPs)
according to the proposed hematopoietic tree revision. The
revision does not distinguish NK lineage potential and further
NK cell development since the study aimed at early CD34+
progenitors and also mainly on the revision of the general
myeloid and lymphoid progenitor potential (35, 37, 38). The
earliest NK precursors with acknowledged NK lineage potential
were identified as CD127+ in mice (39). This correlates with
CD34+ CD133+ CD45RA+ CD7+ CD117+ CD127+ stage 2a
phenotype in humans. CD7 (from the stage 2a) and CD122
(from the stage 2b) are subsequently expressed throughout the
whole NK cell lineage. Stage 3 represents a transitional stage
between NK precursors and mature NK cells with a complete loss
of CD34, CD133, and CD127 but with prevailed high levels of
CD117 (35, 40–42). Mature subtypes of NK cells (stages 4a, 4b, 5
and 6), all with the characteristic CD3- CD7+ CD45RA+
CD56+/dim immunophenotype are characterized by the
progressive loss of CD117 from high to low levels in stage 4 to
stage 6 (the final stage) being completely CD117-, and with the
gain of CD56 (33, 43, 44).

CD56 and CD16 represent two of the most common and
relevant markers used to identify NK cells (32, 45). For a proper
flow cytometric detection of all mature NK cell subsets, both
CD56 and CD16 should be included in the panel since CD16 is
expressed only in stages 5 and 6, and CD56 alone is not
sufficiently specific (32). CD3 should also be mandatory for
correct NK cell evaluation to exclude CD3+ CD7+ CD56+
NK-like T cells (46). Based on the expression of CD56 and
CD16, two main mature functional subsets are often
described: CD56+/bright CD16-/dim and CD56dim CD16+/
bright (47). CD56+ CD16- cells (accounting for 5-10% of
circulating NK cells) are agranular with low cytotoxic activity
and are considered mainly to be cytokine and chemokine
producers. These cells co-express CD94/NKG2A in a high
manner, meaning the CD56+ CD16- subset consist of both
stages 4a and 4b. Contrary to this, CD56dim CD16+ cells
(90%–95% of circulating NK cells) are designated as true killer
cells with a high cytolytic potential against infected, tumor-
transformed, or otherwise immunocompromised cells due to
the expression of CD16 (Fcg receptor III), which acts as a cell
lysis signal transducer. A typical feature is the diminished
expression of CD94/NKG2A compared to high levels of this
antigen on the surface of CD56+ CD16- cells (45, 48–50).

CD57+ is a terminal marker of CD8+ T cells and also NK cells
(51). The CD56dim CD16+ subset consists of developmental
stages 5 and 6. The main difference in these two stages is in the
expression of CD57 and regulatory surface molecules known as
the Killer cell Ig-like Receptors (KIRs); stage 5 lacks CD57 and
maintain only low levels of KIRs (NK stage 5 immunophenotype:
CD56dim CD16+ CD57- KIRdim), whereas the terminal stage 6
expresses both CD57 and KIRs in a high manner (NK stage 6
immunophenotype: CD56dim CD16+ CD57+ KIR+) (32, 35).

The CD56- CD16+ subset was also identified in high numbers
in individuals with chronic infections (HIV and HCV).
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The subset is described as dysfunctional, with higher expression
of NK inhibitory receptors, lower levels of NK cytotoxic
molecules, and both limited cytotoxic function and secretion of
anti-inflammatory cytokines (52, 53). NK subsets can also be
described by different levels of CD27 and CD11b in both mice
and humans (54, 55).

Although there are several known and accurately described
subsets of NK cells, it seems that diversity in the expression of
different NK surface molecules pushes the variability of NK cells
beyond the limits of standard flow cytometry. Between 6,000 and
30,000 different NK phenotypes can be detected in one individual
and up to 100,000 in a group of individuals using the mass
cytometry approach (56).
NK CELL BIOLOGY IN
ANTICANCER IMMUNITY

The role of NK cells in anticancer surveillance is unquestionable
in the modern era. Many studies have highlighted the
significance of NK cells in the elimination of malignant cells or
in cancer progression regulation, a topic that has been heavily
reviewed in recent years (49, 57, 58). NK cells were originally
categorized as part of the innate immunity; however, memory
and education abilities have been a matter of discussion lately
(59). These cells lack specific antigen receptors compared to
other lymphocyte subsets. The anti-cancer potential of NK cells
is mediated either directly in a contact-dependent manner
through their ability to induce programmed cell death, or
indirectly in a contact-independent manner through the
secretion of various cytokines, or in both manners by
Frontiers in Immunology | www.frontiersin.org 3
cooperation with other cells of the immune system (60). A
broad spectrum of surface regulatory molecules is involved in
NK regulatory actions (61).

Anticancer Mechanisms of NK Cells
The release of cytokines and chemokines, which are soluble,
omnipresent, and crucial immune system regulators, is one of the
key antitumor abilities of NK cells (48). The CD56+ CD16- NK
cell subset is considered a major cytokine producer with low
killing abilities (47). Nonetheless, CD56dim CD16+ cells,
otherwise with a strong cytolytic potential and present in the
majority in peripheral blood, also act as cytokine producers
mainly in the initial immune response, which helps in
mobilizing other immune cells (62). Tumor necrosis factor a
(TNF-a) and interferon g (IFN-g) are among the most potent
antitumor cytokines, but the NK cell cytokine repertoire also
includes immunoregulatory IL-5, IL-10, and IL-13; chemokines
CCL2 (MCP-1), CCL3 (MIP-1a), CCL4 (MIP-1b), and CCL5
(RANTES); and GM-CSF as well (63).

The ability to induce apoptosis of the target cell is a primary
and well-known regulatory mechanism of NK cells. Apoptosis
induced by NK cells can be mediated by degranulation, death
receptors, or mAb-CD16 binding (60). The degranulation ability
of NK cells was proved to be crucial in tumor and metastatic
regulation (64). A specialized organelle called secretory
lysosome, mainly containing perforin and granzyme granules,
is involved in the highly coordinated and regulated process (65,
66). Death receptors are TNF superfamily receptors expressed on
the surface of many cells (67). Death receptor ligands expressed
by NK cells (such as Fas ligand, TNF, and TRAIL) bind
specifically to the death receptor domains on the surface of
target cells, resulting in a conformational change of the receptor,
FIGURE 1 | A scheme of the NK cell development, with immunophenotypic profile of the most relevant markers that are suitable for identification of individual
subsets by flow cytometry. NK cell lineage is derived from the CD34+ CD133+CD45RTA+CD10+ lymphoid progenitor (terned also as a stage 1), Immature stages
2a, 2b and 3 can be distinguished by the differential expression of CD34, CD122 and CD127, while high levels of CD117 are preserved. Mature stages 4 (4a + 4b),
5, and 6 can be distinguished by diverse expression of CD16, CD56 and CD57.
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recruitment of the adaptor protein, and apoptosis (65, 68).
ADCC represents one of the cancer immunotherapy-related
killing mechanisms of NK cells. ADCC is facilitated after the
binding of an IgG mAb Fab fragment to the target surface
antigen on one side and Fc fragment to the Fcg receptor III
(CD16) of the effector cell on the other side, creating the effector
cell–mAb–target cell link with subsequent engagement of
cytotoxic pathways (69).

Surface Effector Receptors
NK cell surface activating and inhibitory molecules play a crucial
role in the regulation of NK cell killing abilities, cytokine
production, and all actions, in general. These receptors are able
to detect specific stress signals and changes in expression
patterns of surface molecules on cells and consequently
regulate NK cell activity, which is a deeply balanced process
(61, 70). During differentiation, NK cells undergo a complex
ser ie s o f educa t iona l in terac t ions be tween major
histocompatibility complex type I (MHC-I) molecules and NK
surface inhibitory receptors. Thus, they are educated to self-
tolerate other healthy cells in the body (71, 72). Also, interactions
between non-classical MHC and non-MHC molecules were
described (73). The concept of induced tolerance and
inhibition of NK cell activity by recognizing MHC is
fundamental for the regulation of the anti-cancer response.
During malignant transformation, a series of changes in gene
expression occur in transforming cells, leading to the
downregulation or upregulation in the expression of surface
molecules (74). In this context, the most important is the
diminution of surface MHC-I molecules, which tags
transformed cells as a potential target for eliminating NK cell-
regulatory mechanisms (75, 76).

NKG2A/CD94 heterodimer (CD159a), LAG-3, and a fraction
of the killer Ig-like receptor (KIR/CD158) family (inhibitory
KIRs [KIR2DL, KIR3DL subgroups]) are categorized as specific
MHC-I/HLA-I recognizing inhibitory NK cell receptors
(61, 77, 78). However, this does not necessarily mean that any
cells lacking MHC-I are the target of NK cells. There are several
other inhibitory and co-inhibitory NK cell molecules like the
Siglec family (e.g., Siglec 7 and Siglec 9), Tactile (CD96), PD-1,
TIGIT, CD112R, IL-1R8 and TIM-3 (Figure 2) (77, 79, 80).

Nevertheless, a “missing-self” signal is not enough for the
activation of NK cells. Expression of stress-induced signals which
stimulate the NK cell-activating receptors is crucial for activating
NK cell response (81). Cellular stress activates a variety of DNA-
damage response, senescence, and tumor-suppressor signaling
pathways, which consequently lead to the expression of
activating ligands that are recognized by NK cell activating
receptors (82). Also, the synergistic action of multiple
activating molecules is required for the activation of NK cells,
except for CD16 and NKG2C, which are able to activate cell
response on their own without any other co-stimulation
(19, 83, 84). Several MHC-dependent and MHC-independent
molecules are categorized as NK cell activating receptors,
including activating KIRs (KIR2DS and KIR3DS subgroups),
NKG2D, NKG2C, natural cytotoxicity receptors (NCRs [NKp30,
NKp44, and NKp46]), Nkp80 (not clearly categorized as NCR),
Frontiers in Immunology | www.frontiersin.org 4
ICOS, DNAM-1 (CD226), CRTAM, and signaling lymphocyte
activation molecule (SLAM) family members like 2B4 (CD244),
CD48, Ly9 (CD229), NTB-A (CD352), and SLAMF7 (CD319)
(Figure 3) (19, 85–92).

Originally, functional receptors of NK cells were categorized
either as inhibitory or activating, but there are hints that the
function of some molecules might be much more complex with a
dual inhibitory and activating potential or at least a
costimulatory function (13). For example, both the inhibitory
and activating potential of 2B4 (CD244) was proved (93). There
seems to be evidence that the activating molecule NKG2D also
has broad costimulatory abilities of other activating
receptors (94).

Other molecules are of course present on the surface of NK
cells, but they are not clearly categorized among the activating or
inhibitory receptors. Nevertheless, CD38, which is an important
signal transducing, activating, and adhesion molecule, was also
proved to activate NK cell effector response (95, 96). CD27, a T-
cell co-stimulatory molecule, is not mentioned similarly in this
context, but CD27 was connected with the enhanced cytotoxic
activity of NK cells (97).
MM MICROENVIRONMENT

The BM niche, in general, is a deeply complex environment,
which consists of cellular and noncellular components. The
cellular compartment is represented either by hematopoietic
cells, or nonhematopoietic cells such as mesenchymal stromal
cells (MSCs), osteolineage cells, adipocytes, and endothelial cells.
Cytokines, chemokines, growth factors, reactive species,
extracellular matrix (ECM) proteins, and other molecules form
the noncellular compartment (98, 99). BM function is negatively
affected in hematological malignancies due to the tumor
microenvironment (TME), which creates advantageous
conditions for clonal cells and suppressive conditions for
normal cells. In MM, disease manifestation, progression, and
treatment resistance are often reflected with TME and its
individual components (100, 101). Single-cell transcriptomics
data revealed that alteration in the immune setup of the BM
niche can be observed early from the MGUS stage, including
increased frequency of NK cells, T cells, and monocytes. T cells
exhibit accumulation of Treg and gd T-cell subsets at MGUS,
accompanied by decrease of CD8+ memory subsets at the stage
of SMM. Importantly, the patterns of immune dysregulation are
heterogeneous in MM patients and might represent a possible
indicator for the risk stratification (102).

Non-Cellular Compartment
The role of cytokines, growth factors, extracellular vesicles, and
other molecules was described in the process of TME
transformation and MM progression (103). Furthermore, the
presence of tumorigenic molecules plays a critical role in the
concept of pre-metastatic niche describing slow and remote TME
orchestration, connected to the disease dissemination (104, 105).
Malignant BM is highly inflammatory and hostile to non-
malignant cells (including NK cells), a fact that is reflected by
January 2022 | Volume 12 | Article 816499
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elevated levels or altered expression of pro-inflammatory factors
such as IL-1, IL-6, IL-10, IL-17, IL-18, IL-21, IFN-g, TGF-b,
TNF-a, HGF, EGF, and HIF-1a; chemotactic factors recruiting
other pro-inflammatory cells such as CCL2, CCL3, CCL4,
CXCL12 (SDF-1) , CSF-1, GM-CSF, and MSP; and
proangiogenic factors supporting neovascularization such as
VEGF, IGF-1, FGF, PDGF, reactive oxygen species (ROS), and
reactive nitrogen species (RNS). The overall profile of soluble
factors is a deeply complex topic itself (106–110).

Cellular Compartment
Normal cells present in the BM stroma can be clearly
reprogrammed to support the disease manifestation and
progression. This is reflected by the fact that immature BM
MSCs have an abnormal genomic profile compared to their
normal counterparts and provide advantageous environment for
the expansion of MM cells (111, 112). Hence, the role of MSCs in
disease persistence was suggested. Single-cell transcriptomic
analysis revealed that MSCs in MM are highly pro-
inflammatory, their transcriptomic profile can be tracked even
post-treatment, and unfortunately, therapy is not effective in
normalizing the BM niche. The study also revealed that MM
MSCs are stimulated by pro-inflammatory cytokines that are
most likely produced by immune cells such as IFN-responsive T
cells and CD8+ memory T-cell subsets (113). MSCs development
is also disrupted in MM, and aberrancies were described in more
mature osteolineage cells and adipocytes (114, 115). The
differentiation of MSCs is shifted preferentially towards the
adipocyte lineage in MM, and, if the high secretory potential of
adipocytes is taken into consideration, this may favor further disease
progression as well (116). EPHB1, FBLN5, RELL1, ADAMTS17
are among the impaired genes in MM-affected MSCs.
Frontiers in Immunology | www.frontiersin.org 5
Downregulation of BMP10, the bone morphogenic protein 10
gene, in MM MSCs reflects the impaired osteoblastic
differentiation, and it seems that BMP signaling is involved in
MM bone disease progression. Therefore, inhibition of the BMP
axis, as well as others such as TGFb, Notch, Wnt, or Runx2/Cbfa1
signaling, represents a possible option for therapy improvement in
MM (112, 117, 118). Interestingly, interactions between MM cells
and BM MSCs trigger the production of IL-6 and a number of
cytokines and chemokines, including TNF-a, VEGF, IGF-1,
CXCL12 , IL -1b , TGF-b , CCL-3 , and CCL4 wi th
immunomodulatory activity (119, 120).

Over-angiogenic potential of endothelial cells (ECs) was linked
with neovascularization and disease progression inMM (121). ECs
of MM patients also have a distinctive genetic profile that strongly
supports their neoangiogenic potential. Genes involved in
neovascularization, such as bFGF, FGF-7, VEGF-A, VEGF-B,
VEGF-C, VEGF-D, and GROa, together with ETS-1, HIF-1a,
ID3, and osteospontin transcription factors, are overexpressed in
MM ECs (122). Also, filamin A, vimentin, and a-crystallin B
proteins are overexpressed by MM ECs, though anti-MM drugs
such as bortezomib and lenalidomide affect these proteins during
treatment (123). The hypoxic niche and HIF-1a overexpression
are key factors in MM neovascularization as well (124).

The most relevant hematopoietic cells contributing to the
MM TME are without a doubt malignant PCs, macrophages,
myeloid-derived suppressor cells (MDSCs), and T-regulatory
lymphocytes (Tregs) (105). Overall impact of malignant PCs
can be seen throughout the whole chapter, but briefly, the role of
PCs in the organism is much more complex than just antibody
production. They are able to produce many soluble factors,
including IL-1, IL-10, IL-12, IL-17, IL-35, TNF-a, TGF-b, and
GM-CSF, which indicate their role in immune and
FIGURE 2 | NK cell inhibitory receptors will their cognate ligands.
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hematopoietic modulation (125–127). Over 400 genes are
deregulated in MM PCs compared to normal PCs, which could
reflect their ability to alter the niche to favor myeloma
progression (128).

Macrophages, in the context of the malignant niche, are
divided into two groups: classically activated M1 macrophages,
and alternatively activated M2 macrophages. The function and
phenotype of macrophages depends on their microenvironment,
and the general term “tumor associated macrophages” (TAMs) is
used to distinguish these cells from normal macrophages
(though M2 cells are sometimes classified as TAMs) (129). M1
cells are pro-inflammatory, anti-tumor macrophages activated
by bacterial lipopolysaccharides or cytokines produced by Th-1
lymphocytes and secrete IL−1b, IL-6, IL-12, IL-23, TNF-a, ROS,
and RNS. M2 macrophages are activated in response to factors
produced by Th2 lymphocytes, such as IL-4, IL-10, IL-14, and
glucocorticoids. These cells are considered tumorigenic,
immunosuppressive and, among others, they produce IL-10,
TGF-b, VEGF, matrix metalloproteinases (MMPs), and ARG-1
(109). A high frequency of TAMs was associated with worse
prognosis and treatment resistance in MM (130). It was also
proved that TAMs cooperate with other cells in the niche. They
can mimic ECs in MM and promote neovascularization through
VEGF and FGF−2 stimulation (131). Macrophage chemotaxis
towards MM BM niche and shift to the tumorigenic M2
phenotype is mediated via CCL2, CCL3, CCL14, CXCL12,
CSF-1, GM-CSF, MSP, PDGF, and TGF−b,which are produced
by MM-associated MSCs (109).

MDSCs were confirmed as immune system inhibitors in
cancer patients. These cells express typical CD33+ CD11b+
Frontiers in Immunology | www.frontiersin.org 6
HLA-DR-/low immunophenotype, with further subdivision
into CD15+ granulocytic (G-MDSCs) or CD14+ monocytic
(M-MDSCs) subsets (132). It was proposed that G-MDSCs
differentiate into tumor-associated neutrophils (TANs) and,
similarly, that M-MDSCs are precursors of TAMs. However,
possible polarization of normal neutrophils into TANs in the
TME is also discussed (133). Increased frequency of MDSCs was
found in MM patients, which was also correlated with disease
progression and therapy outcome (134, 135). MDSCs produce
ROS, RNS, and ARG1, which in detail impair the function of the
CD3 T-cell co-receptor participating in the activation of both
CD4+ and CD8+ T-cells. Also, MDSCs downregulate the
expression of L-selectin (CD62L), thus decreasing T−cell
trafficking to the malignant niche (133, 136, 137). Overall, an
inhibitory role of MDSCs on the function of NK cells was proved
by the co-culture of NK cells with MDSCs, which resulted in the
downregulation of activating receptors, decreased secretion of
IFN−g, and decreased degranulation (138). Furthermore, data
suggesting a pro-angiogenic potential of MDSCs in MM were
published (139). RNS and membrane-bound TGF-b are among
the MDSC-derived factors inhibiting NK cell function (140, 141).
Overall cooperation of cells present in the malignant niche is
reflected by a confirmed ability of MM MSCs to induce the
upregulation of TNFa, ARG1, and pro-angiogenic PROK2 in
MDSCs (135).

CD3+CD4+CD25+ Tregs are important modulators of
normal immune response. The role of Tregs in MM
progression seems to be a matter of discussion due to
contradictory data. Both decreased and increased Treg
frequency can be detected in MM. Increased Tregs were
FIGURE 3 | NK cell activating receptors and their ligands.
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associated with the disease progression, but contradictory data
are published too. Nevertheless, these cells clearly contribute to
dysfunctional immunity in MM, though the role seems to be
heterogeneous (142–146). IL-10 and TGFb are probably the
most discussed cytokines produced by Tregs that may
contribute to pathological features of MM BM (144). One of
the key Treg-related aspects to maintain functional immunity in
MM and tumors in general is a balance in the Treg vs. CD4+ T-
helper 17 (Th17) cell ratio. Th17 cells contribute to the
development and progression of chronic immune diseases, and
cancer, by overall immune regulation and production of IFN-g,
TNF-a, IL-10, IL-17, IL-21, IL-22, and IL-26. It seems that the
Treg/Th17 differentiation axis is skewed in MM by elevated
levels of IL-6 and TGFb. In the presence of TGFb alone, naive T
cells that express Foxp3 and differentiate into Tregs Th17 cells
are generated in the combination of TGF-b and IL-6, or IL-21
(146). Again, contradictory data have been published on the
topic of the Treg/Th17 cell relationship to MM prognosis, and
further clarification is needed. Nonetheless, Th17 cells produce
high levels of IL-17, which was proved to promote growth of MM
cells in vitro and in vivo (147, 148).

Without a doubt, MM niche is a deeply complex environment
contributing to disease progression and persistence through
modulation of the immune response. Nevertheless, only limited
data are published about how individual components affect the
function of NK cells, which will be discussed in the next chapter.
NK CELLS IN THE MYELOMA NICHE

NK cells act as important regulators in the development and
progression of hematological malignancies and their suppressor
activity particularly against MM cells was confirmed in many
studies (149–152). Nonetheless, significant changes in the
distribution of NK subsets and dysfunctions of NK cells were
described in MM patients (153, 154). The functional activity of
NK cells was also correlated with disease staging (155). Recent
studies providedan insight intomechanisms involved in theNKcell
−mediated killing of malignant PCs and highlighted the role of
interactions between surface effector receptors on the surface ofNK
cells and specific ligands (156, 157). The recognition of MM cells
with activating receptors, includingNKG2D,NKp46, and DNAM-
1,hasbeenproved(158).Also, a lowexpressionofHLA-1molecules
on malignant PCs and the role of NK inhibitory receptor
suppression was demonstrated in MM (150). Downregulation or
upregulation of these surface molecules was associated with severe
dysfunctions of NK cells in MM. However, details about involved
mechanisms between NK cells and individual TME components
remain poorly described (Figure 4) (159, 160) Data describing the
NK cell distribution or functional capabilities in EMD lesions are
missing completely, even thoughNKcell infiltrationwas connected
with better overall survival in solid tumors (161).

Impairment of NK Cell Development
Since malignant populations are considered to be competitive to
non-malignant cells, bone marrow brings a unique insight into
Frontiers in Immunology | www.frontiersin.org 7
the effect of myeloma on the development of healthy immune
cells (100). In hematological malignancies, cancer niche disrupts
normal hematopoiesis and results in a favorable environment for
clonal cells (162). Several publications describe that overall lower
percentage of circulating NK cells can be detected in the
peripheral blood of MM patients in advanced disease stages
with poor prognosis compared to controls, MGUS, andMMwith
good prognosis (163, 164). However, Pazina et al. recently
published that frequencies of NK cells in PB of ND MM and
smoldering multiple myeloma (SMM) patients are not
significantly decreased compared to healthy donors (HD).
Furthermore, overall numbers of PB NK cells in RR MM and
post-stem cell transplant (post-SCT) patients were increased in
this study, with CD56bright CD16- CD57- stage 4 subset
prevailing. This was argued as a possible effect of NK lineage
reconstitution after the disease and therapy depletion; hence, it
might not reflect the actual disease impact. Frequencies of total
NK cells in BM reflected the frequencies in PB, except post-SCT
where the frequency was significantly lower in BM. Also,
numbers of CD56dim CD57+ cells (representing the terminal
and highly active stage 6) are lower in BM compared to PB of
ND, RR, and post-SCT MM patients (165). To point out the
importance of the terminal stage NK cells, MM patients with
higher absolute numbers of CD57+ NK cells were associated with
better prognosis compared to patients with higher numbers of
more immature CD56bright CD16- CD57- cells (159). Similar to
what was published by Pazina et al., overall NK cell numbers and
cytotoxic abilities are reduced in B/T-ALL patients as a result of
CD56bright CD16- cytokine-producing stage 4 accumulation. In
this study, high numbers of cytokine CD56bright CD16- cells
were also associated with poor prognosis (166). The
accumulation of CD56bright CD16- subset and lower total
frequencies of NK cells in the BM reflect that NK cell lineage
differentiation is impaired during the progression of
hematological malignancies. Nevertheless, scarce information is
available in the context of altered NK cell maturation in the
environment of malignant BM in general. No study so far has
provided detailed data about NK progenitor subset distribution
in leukemic or myeloma marrow (167, 168).

In general, early CD34+ CD38- HSCs are not depleted in
leukemic marrow since they enter a self-protective quiescence.
Nonetheless, leukemic niche affects hematopoietic differentiation
leading to reduced levels of CD34+ CD38+ progenitors and
subsequent cytopenias (162, 169). There is also evidence that
NK maturation in BM is blocked in solid tumors, even though no
direct contact is needed between tumor cells and NK cells. One of
the reasons is most likely a remotely orchestrated IL-15R
downregulation in cancer-altered BM stroma (170). The IL-15/
IL-15R axis is indeed an important NK cell development regulator
and proliferation inducer, acting via IL-2Rb (CD122), and JAK/
STAT, Ras/MEK/MAPK, or PI3K/AKT pathways (171, 172).
Mutations in GATA2 (absent CD56bright cells), MCM4 (absent
CD56dim cells), IL2-R, JAK3, STAT5, and IL-15R were associated
with impaired NK maturation (44, 173, 174).

One of the possible suppressors of IL-15 signaling is
prostaglandin E2 (PGE2), which downregulates the g-chain of
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the IL-15R complex and subsequently inhibits NK cell function
(175). Another candidate is ADAM17, which is activated
through the IL-15 axis and reduces NK cell proliferation.
Blockade of this metalloproteinase results in increased levels of
L-selectin (CD62L) on NK cells, thus supporting the homing of
these cells (176). However, not only downregulation of the IL-
15R function, but also chronic exposure to IL-15 leads to the NK
cell exhaustion (177). Without a doubt, impaired IL−15R/IL−2R
signaling and distorted NK cell maturation contributes to the
disease progression. Levels of soluble IL-2R in serum and surface
expression of IL-2R on malignant PCs or mononuclear cells are
significantly increased in MM, which also correlates with the
active state of the disease (178, 179). Quite unexpectedly, defects
related to the IL-21 axis affect NK cell lytic abilities but not the
maturation, even though IL-21 promotes NK cell differentiation
(180–182). The maturation capacity of NK cells, together with
their ability to respond to the presence of malignant cells, is also
reduced with age as the BM stroma deteriorates with time, thus
Frontiers in Immunology | www.frontiersin.org 8
the age of the patients may play a crucial role in this
context (183).

The inhibitory role of Tregs in the NK cell differentiation was
also confirmed both in vitro and in vivo. Presence of activated
Tregs in the culture of HSCs, which were expanded with NK cell
lineage differentiation protocol, led to 90% reduction in NK
numbers compared to the control. Similar inhibitory role of
Tregs was observed also in mice (184). This phenomenon seems
to be caused by increased levels of membrane-bound TGF-b and
active TGF-b signaling (184, 185).

Finally, the low numbers of NK cells represent a major issue
not only from the view of disease control and progression, but
it should also be noted that cancer patients are more
susceptible to infections, which are one of the main causes
of mortality in MM (186, 187). Understanding the maturation
distortion and recovering the generation of mature NK subsets
could be crucial for the therapy outcome and patient
survival improvement.
FIGURE 4 | Impact of multiple myeloma bone marrow microenvironment on the overall NK cell function is a complex topic, with only limited data available. Overall
decrease of NK cells frequency, accumulation of CD56bright CD16-cytokine producing subset, impaired overall fuctional properties, and alterations of surface
effector receptors were connected with the disease and its progression. Nonetheless, detailed data describing interactions between NK cells and individual
components in the niche are incomplete. MSCs, mesenchymal stromal cells; ECs, endothelial cells; G-MDSC, granulocytic myeloid-derived suppressor cell;
M-MDSC, monocytic myeloid-derived suppressor cell; TAM, tumor associated macrophage.
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Impairment of NK Cell Localization
and Chemotaxis
TME-related downregulation or upregulation of chemotactic
factors or their receptors is deeply beneficial for tumor growth,
either to attract inflammatory or tumorigenic cells like MDSCs
and TAMs, or to repel immunosuppressive cells. As already
mentioned, it was well described that tumor infiltration by NK
cells contributes to better prognosis. Thus, in hematological
malignancies, it is only logical to expect the impairment of NK
cell BM localization with consequent efflux to PB (161, 188). In
general, several chemotactic receptors are expressed by NK cells,
including CCR1, CCR2, CCR5, CCR7, CXCR1, CXCR3, CXCR4,
CXCR6, CX3CR1, S1P5, CCRL2, and ChemR23. Indeed,
aberrancies in these receptors were connected to lower NK
cells’ recruitment to the tumor (189).

CXCR4 is one of the key regulators of NK cell BM
localization, and it is expressed in high levels by NK
progenitors. With decreasing CXCR4 expression in mature
stages, levels of CXCR3, CCR1, and CX3CR1 increase, whereas
reduced CXCR4 expression, together with S1P5 activation, is
necessary for NK cells to exit to the periphery and vice versa
(190–192). In general, dysregulation in the CXCR3 and CXCR4
axes was connected to defective BM localization of NK cells in
BM. Both of these pathways are closely connected. CXCR3
triggering possibly counteracts CXCR4-mediated BM retention
by limiting the CXCR4 responsiveness. Only limited data are
available about NK cell disrupted chemotaxis, BM localization
and retention in MM, or in other hematological malignancies. In
MM BM, several chemokine ligands engaging in NK cell BM
localization show a disbalance, including increased levels of
CXCL9 and CXCL10 (CXCR3 ligands) and decreased levels of
CXCL12 (CXCR4 ligand) (Figure 5). Levels of CCL3, CCL5, and
CX3CL1 ligands are most likely not subjected to any
changes (193).

In other cancers , CXCL12 was confirmed to be
downregulated, together with CXCR2 reduction on the surface
of NK cells, though data suggest that these changes occur on the
post-translational level (194). Another study revealed that tumor
tissues tend to overexpress CXCL3 and CXCL5, while expression
of CXCL1, CXCL2, and CXCL7 decreases (195). There are also
hints, that deregulated CXCR3 signaling in malignant PCs could
play a role in MM to EMD progression, although this needs to be
confirmed (196). Also, IFN-g-mediated CXCR3 activation was
associated with lower overall survival, and it was proposed as an
independent prognostic factor in MM (197). Indeed, inhibition
of the CXCR3 axis resulted in better efficacy of IL-15 activated
NK cells against malignant PCs (198). CXCR4 was proved to be
downregulated in metastatic cells, which also demonstrates its
role in malignancy dissemination (199).

Besides, it seems that obstructions in NK cell chemokine
signaling and BM/PB localization are connected to the altered
NK cell development and the prognosis-related CD56bright
CD16- subset accumulation (as discussed previously). About
10%–20% of BM NK cells are localized in proximity to CXCL12
producing osteoblasts and reticular cells that are also able to
express IL-15 and IL-15R. This localization is also dependent on
Frontiers in Immunology | www.frontiersin.org 9
the integrin chain a4 (200). Moreover, it was proved that the
CXCR4/CXCL12 axis is essential for NK cell development in
mice (201).

Chemokine signaling also actively participates in the
recruitment of immune suppressor cells. CCR2 and CCR5
contribute to the migration of TAMs and MDSCs into the
TME, whereas Tregs with higher expression of CXCR4 are
attracted to the TME by their ligands CCL17 and CCL22,
which can be produced by TAMs and cancer cells themselves
(202). Further research is necessary to understand the chemokine
ligand/receptor interactions between NK cells and TME. For
example, studies evaluating chemokine/ligand expression
profiles on MM cells and NK cell subsets in both BM and PB
would probably uncover striking details regarding the role of
chemokines in NK cell development and functional impairment,
as well as MM-to-EMD progression.

NK Cell Inhibitory Receptors in MM
Blockade of the checkpoint axis PD-1/PD-1 ligand (PD-1/
PD-1L) involved in the inhibition of the immune response has
been discussed lately, although this therapy alone seems to be
ineffective in MM and combination with other treatment
approaches is necessary (203–205). In cancer, expression of
PD−1L1 by tumor cells is considered an evasion mechanism
promoting the suppression of immune cells (206). Malignant
PCs in MM were shown to express higher levels of PD-1L
compared to HD or MGUS patients, and significant
upregulation can be observed in RR MM patients. Also, PD-1L
expression on malignant PCs was connected with resistance to
anti−myeloma agents, and the expression of this ligand on PCs
was proposed as a marker of poor prognosis in combination with
other factors such as age and cytogenetics (205, 207, 208).

Expression of PD-1 was confirmed on the surface of NK cells
in MM while undetectable on healthy NK cells (209, 210).
Indeed, it was proved that PD-1/PD-1L negatively regulates
NK function. However, in this study, at least low levels of PD-
1 were also detected on normal circulating or resting NK cells
(211). To highlight the therapeutic potential, one study showed
that inhibition of PD1/PD-1L signaling in NK cells can increase
the degranulation or cytokine-producing ability in vitro (212). Of
note, the data reflect the importance of a cautious approach
during the flow cytometric detection of PD-1 and subsequent
data evaluation since studies reported variable (low or none)
levels of PD-1 on healthy NK cells. Furthermore, Pazina et al.
encountered difficulties in the detection of any levels of PD-1
even in myeloma samples (165). A recent study proved that PD-1
mRNA and cytoplasmic PD-1 protein can be detected in NK
cells, which suggests that surface PD-1 expression is inducible;
hence, flow cytometry may provide variable data (213). There are
data indicating the ominous role of the TME cellular
compartment in PD-1/PD-L axis-related impairment of NK
cells. PD-1L-positive MDSCs are present in higher frequency
in cancer patients (214, 215). Furthermore, PD-1L expression in
MM cells can be also induced by BM MSCs-derived IL-6, with
subsequent engagement of JAK/TAT and MEK signaling (208,
216). Use of the JAK inhibitors (ruxolitinib) in MM truly
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downregulates PD-1L expression in malignant PCs and makes
them more susceptible to lenalidomide and steroids (217). Quite
curiously, TGF-b, which is abundantly present in the MM niche,
seems to have no effect on the expression of PD1-L1 and PD-L2
(218). However, other factors like IL-2, IL-7, and IL-15 were
proved to upregulate levels of PD-1L (219). IL-2, IL-7, IL-15, IL-
18, and IL-21 are able to upregulate the expression of surface
PD−1 too, while IFN-a promotes the transcription of PD-1 (220,
221). HIF-1a is also directly involved in the PD-1L upregulation,
which, together with the inhibitory role of HIF-1a in NK cells,
propose a multilevel role of hypoxia in MM progression
(222, 223).

CD94/NKG2A is an HLA-E-binding molecule recognized as
an immune checkpoint like PD-1. Expression of this inhibitory
receptor is increased in cancer-associated NK cells, which
contributes to their exhaustion (224). Interestingly, HLA-E
overexpression in tumors was connected to both poor and
good prognosis (225, 226) Although there are data suggesting
that the expression of NKG2A is not detrimental for the anti-
MM activity of in vitro activated NK cells, NKG2A is still a valid
target for consideration in immunotherapy. High levels of HLA-
E in high-risk MM were proposed as a potential therapeutic
candidate, and the experimental blocking of NKG2A by
antibodies resulted in restored antitumor activity of NK cells
(227–230). Among the MM niche factors, IFN-g was proved to
be involved in cancer-related HLA-E overexpression (231).
Frontiers in Immunology | www.frontiersin.org 10
Furthermore, HLA-E may serve to protect TAMs from CD94/
NKG2A-mediated cell lysis (232). From the receptor point of
view, TGF-b and IL-10 are among factors inducing the
expression of NKG2A (224, 233). Also, IL-2 and IL-15 were
shown to upregulate the expression of NKG2A, as well as NCRs,
NKG2D, DNAM-1, and KIR2DL4 (234).

KIRs are crucial inhibitory regulators of NK cell response
acting through interactions with MHC-I molecules, as already
described. Tumor cells can temporarily upregulate their surface
MHC-I expression to evade NK cell lysis. On the other hand,
MHC-I downregulation is also a common mechanism to avoid
immune response (235, 236). Masking the pathological origin
(i.e., hiding the “missing-self” signal) by upregulating MHC-I
levels is also a feature of MM PCs (237, 238). Moreover,
increased levels of KIR molecules KIR2DL1 and KIR2DL2
were described on the PB NK cells of MM patients; however,
no further details are available about involved mechanisms
(61). Two strategies were proposed to exploit the KIR signaling
for the therapy (239). The first is represented by HLA/KIR
ligand-mismatched transplantation that showed promising
results. Healthy donor NK cells provided a better response
than NK cells of the patient, which are corrupted by the tumor
inhibitory niche (240, 241). The second option is to directly
block the KIR receptor with an antibody to inhibit its interaction
with HLA ligand. However, in the MM clinical trial of the anti-
KIR antibody IPH2101, this approach was ineffective due to the
FIGURE 5 | Under normal conditions, immature NK cell (iNK cell) retention in the bone marrow (BM) is mediated via a high expression of CXCR4/CXCL12. Mature
NK cells (mNK cell) express only low levels of CXCR4 and high levels of CCR1, CXCR3, CX3CL1 and S1P5 which mediate migration to the periphery. However,
expression of individual chemokine receptors, or their ligands, as well as overall function of a crucial CXCR4/CXCR3 signaling, is impaired in multiple myeloma (MM).
Occurring CXCL12 upregulation, together with CXCL9 and CXCL10 upregulation during the disease progression suggest, that NK cells are forced out of the BM by
factors present in the MM niche. Furthermore, CXCR4/CXCR3 axes seems to be also crucial for the NK cell lineage development.
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monocytic trogocytosis of KIR molecules, eventually leading to
the lack of education and hyporesponsiveness of NK cells (242).
In addition, KIR downregulation leading to enhanced NK cell
killing can be achieved also by the stimulation with IL-12, IL-15,
and IL-18, while the expression can be restored back after 3 days
of culture with IL-2, suggesting an interesting possibility of KIR
exploitation with cytokine stimulation (243).

Recently, the upregulation of other possible novel therapeutic
target molecules TIGIT, TIM-3, ICOS, and GITR on NK cells
was proved in both the PB and BM of MM patients, which
probably reflects on the additional immune evasion mechanism
(165, 244). TIGIT is a newly identified NK cell immune
checkpoint binding to PVR (CD155) and nectin-2 (CD112),
which are shared ligands with activating molecule DNAM-1
(245). Nectin-2 was found to be overexpressed on MM PCs, and
both PVR and nectin-2 expression were associated with poor
prognosis in cancer (246, 247). TIGIT inhibition was proved to
restore T-cell response in MM (248). Moreover, TIGIT ligands
are highly expressed on cells residing in the BM, which also
proposes a role of TIGIT signaling in the MM niche-mediated
suppression of NK cell function (246). This is supported by the
study showing that BM MSCs upregulate PVR on the surface of
MM cells by IL-8 secretion (249). Also, a specific role of MDSCs
in the TIGIT/CD155 axis was found. Co-culture of MDSCs with
NK cells inhibited their cytotoxic abilities; however, this effect
can be reversed either by the inhibition of ROS production
(which led to upregulation of PVR in MDSCs) or by the
blockade of TIGIT (250). Upregulation of TIM-3, a molecule
associated with both inhibitory and activating functions, was also
linked with cancer progression as well as CD8+ T cell exhaustion
(251–254). In NK cells, it was proved that interactions of TIM-3
with its ligands HMGB1, CEACAM, phosphatidylserine, and
galectin-9 inhibit the cytokine production and killing abilities
(255). CEACAM ligand overexpression was described in MM,
and the expression of HMGB1 was connected to therapy
resistance and poor prognosis (256, 257). However, CEACAM
downregulation was also correlated with cancer progression
(258). These findings may only reflect a heterogeneous role of
TIM-3 in the regulation of NK cells in cancer. Further
investigation of inhibitory receptors is definitely necessary not
only in the context of MM.
NK Cell Activating Receptors in MM
Both increased and decreased expressions of activating receptors
were described in MM. These complex phenotypic changes are
attributed to chronic ligand exposure and subsequent NK cell
exhaustion (165, 259, 260). Ligands of these receptors were
confirmed to be upregulated by MM PCs (238).

Downregulation of NKG2D, as well as 2B4/CD244 and
NKp30, can be detected on BM NK cells but not in the PB of
MGUS/MM patients (261). However, reduced levels of
NKG2D (together with DNAM-1 and CD16) can be observed
in both PB and BM of RR and post-SCT MM patients (165).
These results reflect the fact that NK cell functional alteration is
initiated in the MM BM and later, as the disease progresses,
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functional impairment is reflected even in circulating NK cells.
NKG2D activation is induced by MHC-I-related ligands, which
are upregulated as a signal of stress or malignant transformation
(262). MIC-A, MIC-B, ULBP-1, ULBP-2, and ULBP-3 are well-
known ligands for NKG2D. However, cancer cells are able to
downregulate and shed these molecules from their surface. It was
shown that high volumes of soluble NKG2D ligands, together
with exosomes, are released from tumor cells to chronically
exhaust T and NK cells (263–265). However, contradictory
data were also published showing that another soluble NKG2D
ligand, MULT-1, promotes NK cell function and tumor killing in
mice. Nonetheless, the question is whether long-term exposure
would not lead to effector cell exhaustion as well (266). One of
the mechanisms behind the downregulation and shedding
of NKG2D ligands is most likely TGF-b-induced expression of
MMP2 (218). MIF was also proved to contribute to the
transcriptional downregulation of NGD2D in NK cells (267).
Moreover, the expression of NKG2D and NKG2D ligands is
downregulated by IDO (indoleamine-2,3-dioxygenase) (268).
Recently, CAR-NK cells transduced to express NKG2D-CAR
showed a very good anti−myeloma efficacy in vivo, with minimal
activity against healthy cells. Considering the greater efficacy and
lesser toxicity compared to CAR-T cells, these are promising
results reflecting the possible use of autologous-engineered CAR-
NK cells in the treatment of MM (269).

SLAMF7 (CS1, CRACC, and CD319) is a surface signaling
lymphocytic activation molecule (SLAM family) expressed on
NK cells and PCs (both normal and malignant), while
undetectable in other cells, which makes it a valid target for
MM therapy (270, 271). Increased levels of surface SLAMF7 on
NK cells were correlated with a worse prognosis in MM (165).
Moreover, malignant PCs were proved to cleave SLAMF7 from
their surface, leading to increased levels of soluble SLAMF7,
which can be detected in MM patients, but not in MGUS. Thus,
levels of SLAMF7 can be associated with disease progression.
Data also confirmed that soluble SLAMF7 promotes MM cell
growth via interaction with surface SLAMF7 on MM cells, with
subsequent activation of ERK and SHP-2 signaling (272).
Furthermore, it was predicted that soluble SLAMF7 could
potentially interfere with the novel targeted therapy (273).
Anti-SLAMF7 elotuzumab was FDA-approved in 2015, and
since then, it has shown promising results in clinical studies.
Elotuzumab in combination with lenalidomide and
dexamethasone or bortezomib showed increased effectiveness
and sustained benefit in progression free survival (274–276). In
NK cells, elotuzumab binds to the CD16, which mediates ADCC
against the anti-SLAMF7 antibody coupled with SLAMF7 on
MM cells. Also, other mechanisms of action include NK cell co-
stimulation through NKp30 and NKG2D, stimulation of IFN-g
and granzyme B secretion, as well as macrophage−mediated
antibody dependent cell phagocytosis (276, 277). Very
intriguing are findings indicating that anti-SLAMF7 antibodies
disrupt adhesion of MM PCs to MSCs in the BM. This indicates
that elotuzumab might be one of the pioneering agents with a
multiple-hit strategy, both against malignant PCs as well as MM
niche components (267).
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As already mentioned, other activating receptors were proved
to be downregulated in MM, including DNAM-1, 2B4 (CD244),
and CD16 (165, 261). TGF-b was confirmed as one of the factors
causing the downregulation of 2B4 and 2B4 adaptor proteins
(DAP10 and SAP) (278, 279). Early studies on 2B4 showed an
activating function of this receptor leading to increased killing
and IFN-g production; nonetheless, further research also proved
an inhibitory role of this molecule (280, 281). Upregulation of
2B4 and downregulation of the associated adaptor protein SAP
were related with inhibitory signaling, while downregulation of
2B4 and normal levels of SAP were associated with activating
signaling (282). Among others, downregulation of 2B4 results in
defective interactions with its ligand CD48. This also affects the
co−stimulation of NCRs mediated through the 2B4-CD48
signaling (259). Lately, 2B4, which is also a member of SLAM
family, was proposed as a target for immunotherapy, which
could potentially have a double-hit impact affecting MM niche
similar to SLAMF7. In particular, 2B4 expression was confirmed
on MDSCs (283). Downregulation of CD16 logically results in
impaired ADCC (259). However, counterintuitively, it was
published that shedding of CD16 from the surface of NK cells
leads to the positive stimulation of the immune response by
engagement of other immune cells (284). Indeed, levels of soluble
CD16 in the serum are significantly decreased in patients with
MM compared to MGUS or healthy donors. This was also
correlated with the disease staging (285).

The NCR family consists of 3 receptors: NKp30 (NCR3),
NKp44 (NCR2), and NKp46 (NCR1). These molecules were
originally categorized as activating receptors; nonetheless, it
seems that different isoforms of NCRs may exist based on the
environment, which then deliver either activating or inhibitory
response. Blocking of individual NCRs with mAbs is rather
ineffective, while effective inhibition caused by a combination
of mAbs against multiple NCR receptors suggest a cooperative
mechanism in the process of NK cell activation (286, 287). A
positive role of NCRs in cancer control was proved by several
studies. NKp46 was connected to metastatic prevention and the
potentiation of NK cell antitumor activity by increased IFN-g
production (288, 289). Nevertheless, the activity and function of
NCRs can be downregulated in cancer, which, particularly in
NKp46, is associated with the progression of malignancy too
(290, 291). In MM, NKp30 was proved to be downregulated on
BM NK cells, but not in the PB (261). Also, increased expression
of NKp30 (on CD56dim CD16+ subset) and NKp44
(CD56bright CD16- and CD56dim CD16+) and decreased
expression of NKp44 (CD56bright CD16-) can be observed on
PB NK cells in RRMM, but it is not possible to detect any similar
changes in ND MM. Again, these data support the fact that
functional NK cell properties are impaired preferentially in the
site of disease manifestation, and that the impairment is minor
(or the function is restored) in circulating NK cells during early
states of MM. However, as the disease progresses, further
dysfunctional evolution is reflected even in PB NK cells (165).
NCRs can be activated by different viral and bacterial ligands,
growth factors, ECM−derived and membrane-derived
components, or stress related ligands (286). In cancer, several
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molecules were proved to play a role in NCR activation and
cancer cell elimination, though data related to NCR ligands in
cancer cells is scarce. B7−H6, BAG-6, and Galectin-3 were
confirmed as NKp30 ligands. PCNA, NKp44L (a MLL5-variant
protein), and PDGF-DD (platelet-derived growth factor isoform)
are among the ligands of NKp44 that might play a role in cancer
cell elimination (292–294). However, similarly to what was
described in NKG2D ligand shedding, cleavage of B7-H6
ligands by the ADAM-10 and ADAM-17 MMP-related
mechanism was showed to chronically exhaust NK cell actions
mediated through the NKp30 receptor (295, 296). Galectin-3 can
also be released in soluble form by cancer cells to inhibit the
NKp30 function (297). Furthermore, tumor-derived TGF-b is
one of the factors involved in NKp30 downmodulation (298). In
hypoxic conditions, NK cells upregulate HIF−1a, and, curiously,
maintain the killing abilities mediated via CD16. Nonetheless,
the function of activating receptors, including NKp30, NKp44,
and NKp46, is impaired (299). NCR-related therapeutical
options are not clearly elucidated, though NKp30 was
proposed as a target for immunotherapy. However, only CAR-
T cells targeting this receptor has been explored, and data
relevant to anti-NKp30 mAbs are still missing. Further
research is needed regarding the NCR impairment, ligand
identification and expression, as well as possible therapeutic
options (300).

Impact of Anti-Myeloma Therapy on
NK Cells
As already mentioned, NK cells are important cells mediating the
anti-tumor effect of novel mAbs used in the treatment of MM,
such as daratumumab, isatuximab, or elotuzumab, and induction
of ADCC represents one of several important mechanisms of
action induced by these antibodies. Moreover, additional effects
of daratumumab mediated via NK cells were described,
including monocyte activation, phagocytosis, and increased T-
cell costimulatory abilities. Hence, any disruption of NK cell
immune function might be of great concern and the overall
impact of anti-myeloma therapy, including the above-mentioned
mAbs, immunomodulatory drugs (IMiDs), or proteasome
inhibitors, on NK cells needs to be studied thoroughly (301).

Since CD38 is expressed on the surface of NK cells as well, the
question of whether anti-CD38 agents negatively affect or even
possibly kill NK cells was raised. Indeed, it was described that
daratumumab depletes CD38+ MDSCs, B cells, and Tregs (302).
Data published 2 years later confirmed that CD38+ NK cells are
also subjected to ADCC induced by daratumumab bound on
their surface, which suggested an alarming issue of anti-CD38
therapy (303). A significant reduction of NK cell numbers can be
detected in PB and BM of MM patients after initiation of the
daratumumab-containing therapy, with the persistence of low
NK cell counts during the whole course of the treatment.
Nonetheless, no adverse effects on the overall efficacy of the
therapy or function of NK cells were discovered. Furthermore,
additional immunomodulatory mechanisms of daratumumab
participating in the overall therapy efficacy were shown,
including increased frequency of CD8+ T cells with
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preferential generation of effector memory subset (304, 305).
Isatuximab was described to mediate even stronger efficacy in the
killing of target cells compared to daratumumab, and also the
drug was confirmed to induce apoptosis of Tregs with higher
CD38 expression than other T cells (28). Similar to
daratumumab, reduction of NK cells can be observed after
isatuximab application as well, together with the depletion of
CD38high B-lymphoid progenitors. Isatuximab-treated NK cells
exhibit deregulation of 70 genes, mostly connected to
chemotaxis, cytolysis, and immune defense response (28, 95,
306). Anti-SLAMF7 mAb elotuzumab also strongly stimulates
NK cell activation, induction of ADCC, and degranulation via
engagement of CD16. Calcium signaling costimulation triggered
by engagement of NKp46 and NKG2D in CD16-independent
manner is also activated by this antibody. Regimens containing
elotuzumab plus lenalidomide or bortezomib showed promising
results, while no adverse effects of elotuzumab on the overall
function or frequency of NK cells were observed (307).

Furthermore, proteasome inhibitors such as bortezomib or
carfilzomib were described to potentiate NK cell cytotoxicity
against MM cells, while no considerable adverse effects on NK
cells were reported. Sensitization by downregulation of HLA-I
molecules on the surface of malignant PCs is one of the involved
mechanisms. Other mechanisms were revealed in studies
involving other types of cancer, including bortezomib-induced
upregulation of NK cell activating receptor ligands (MIC-A/B,
ULBP-1) or ligands related to the death receptor signaling (Fas,
DR-5) (308–310).

Immunomodulatory drugs (IMiDs), such as thalidomide,
lenalidomide, and pomalidomide, significantly improved
therapy outcome in the past two decades and represent
indispensable agents that are used to treat MM (311). These
agents exhibit pleiotropic anti-MM potential, including anti-
angiogenic, anti-inflammatory, immunomodulatory, and anti-
proliferative effects (312). In theory, earlier it was proposed that
IMiDs could enhance impaired function of immune cells. As a
matter of fact, studies confirmed that increased numbers of NK
cells can be detected in patients receiving thalidomide therapy,
and the positive effect of IMiDs on costimulation of T cells, NK
cell proliferation, and their cytotoxic abilities was confirmed as
well. Upregulation of IL-2 signaling, along with upregulation of
PVR and MIC-A ligands, was discovered to participate in the
IMiD-mediated stimulation of NK cells (312–314). Nonetheless,
no positive effect of lenalidomide on NK cell activation,
degranulation or secretion of IFN-g or MIP1-b was observed
in the study that was monitoring NK cell activity and
functionality in 10 MM patients treated with lenalidomide-
containing regimen and then maintained with lenalidomide.
Progressive post-maintenance NK cell lineage normalization
was observed, albeit this was possibly caused by the
chemotherapy discontinuation (315). On the other hand, a
positive effect of pomalidomide on innate lymphoid cells
(ILCs), which are recently discussed lymphoid cells with
antitumor potential, was described. Results indicate that
pomalidomide leads to enhancement of ILC function through
the stimulation of IFN-g production as well as downregulation of
Frontiers in Immunology | www.frontiersin.org 13
Ikzf1 and Ikzf3, which are transcription factors essential for MM
cell proliferation. Similar degradation by ubiquitination of Ikzf1
and Ikzf3 was confirmed by lenalidomide (316, 317).
DISCUSSION

Defects of NK cell cytokine production, chemotaxis, maturation,
effector molecule expression, and related target recognition and
killing are described in the context of MM BM or TME in
general, although clearly there are large gaps in current
knowledge. Unfortunately, some data are even contradictory
probably due to the complexity and heterogeneity of the
malignant niche and occurring interactions. An overall
disruption of NK cell function was correlated with MM and
cancer progression; thus, potentiating and restoring the proper
NK cell abilities, maturation, and BM localization, as well as
normalizing the BM niche, are for sure among the goals for
future improvement of patients’ survival and quality of life.

Data covering interactions between NK cells and individual
cellular or non-cellular components of the MM niche, which
would describe particular mechanisms of NK cell functional
impairment, are extensively incomplete. Furthermore,
additional information about disrupted NK cell chemokine
signaling during MM progression are needed. Data describing
the distribution of NK progenitors in the malignant marrow in
general are missing completely. Similarly, there is only limited
information about mechanisms behind the NK cell maturation
distortion during disease progression in the BM. Restoring the
generation of fully functional NK cells with normal chemotactic
abilities may be critical for the future improvement of
therapeutic options. Furthermore, data related to NK cell
immune monitoring and expression profiles of surface effector
molecules in the EMD are missing. These would provide critical
information about the functional capacities of these cells, as well
as about levels of potential targets.

Altogether, NK cells and their surface effector molecules
represent a tempting therapeutic target in MM and other
malignancies, although recent data suggest that combination with
conventional protocols is needed in the present. Thus, further
research that would uncover all the possible interactions between
these receptors, their cognate ligands, as well as interfering factors
and cells in the malignant niche is necessary.Moreover, all the data
highlight the necessity of further research in the field of IMiDs as
well as novel mAbs and proteasome inhibitors used for the
treatment of MM. Their mechanisms of action or impact on NK
cells or ILCs is still not fully understood. Promising results were
published, but unfortunately, most of the available data were
generated by in vitro or in vivo assays, and studies involving MM
patients are scarce.
AUTHOR CONTRIBUTIONS

All authors made a substantial contribution to the manuscript
preparation. OV prepared graphical figures, and conceived and
January 2022 | Volume 12 | Article 816499

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Venglar et al. NK Cells in Multiple Myeloma
wrote the review. JB, BM, TJ, and RH commented and edited first
versions of the manuscript and participated on the final version.
All authors contributed to the article and approved the
submitted version.
FUNDING

This work has been supported by the project Cell Coolab
Ostrava—Research and Development Center for Cell Therapy
in Hematology and Oncology (No. CZ.02.1.01/0.0/0.0/17_049/
Frontiers in Immunology | www.frontiersin.org 14
0008440), European Regional Development Fund—Project
ENOCH (No. CZ.02.1.01/0.0/0.0/16_019/0000868, Student’s
grant system SGS15/PrF/2021 University of Ostrava and
Institutional support University Hospital Ostrava MH CZ -
DRO (FNOs/2021).
ACKNOWLEDGMENTS

The authors would like to thank Shira Timilsina Godfrey, M.D.,
for the language correction.
REFERENCES
1. Rajkumar SV. Multiple Myeloma: 2020 Update on Diagnosis, Risk-

Stratification And Management. Am J Hematol (2020) 95(5):548–67.
doi:10.1002/ajh.25791.

2. Kyle RA, Rajkumar SV. Treatment of Multiple Myeloma: A Comprehensive
Review. Clin Lymph Myeloma (2009) 9(4):278–88. doi: 10.3816/
CLM.2009.n.056

3. Blade J, de Larrea CF, Rosinol L. Extramedullary Involvement in Multiple
Myeloma. Haematologica (2012) 97(11):1618–9. doi: 10.3324/haematol.
2012.078519
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Prieto-Chávez JL, Jiménez-Hernández E, et al. CRTAM+ NK Cells Endowed
With Suppressor Properties Arise in Leukemic Bone Marrow. J Leukoc Biol
(2019) 105(5):999–1013. doi: 10.1002/JLB.MA0618-231R
Frontiers in Immunology | www.frontiersin.org 16
92. Ogasawara K, Yoshinaga SK, Lanier LL. Inducible Costimulator
Costimulates Cytotoxic Activity and IFN-g Production in Activated
Murine NK Cells. J Immunol (2002) 169(7):3676–85. doi: 10.4049/
jimmunol.169.7.3676

93. Schlaphoff V, Lunemann S, Suneetha PV, Jaroszewicz J, Grabowski J, Dietz J,
et al. Dual Function of the NK Cell Receptor 2b4 (CD244) in the Regulation
of HCV-Specific CD8+ T Cells. PloS Pathog (2011) 7(5):e1002045.
doi: 10.1371/journal.ppat.1002045

94. Ho EL, Carayannopoulos LN, Poursine-Laurent J, Kinder J, Plougastel B,
Smith HRC, et al. Costimulation of Multiple NK Cell Activation Receptors
by NKG2D. J Immunol (2002) 169(7):3667–75. doi: 10.4049/jimmunol.
169.7.3667

95. Zambello R, Barilà G, Manni S, Piazza F, Semenzato G. NK Cells and CD38:
Implication for (Immuno)Therapy in Plasma Cell Dyscrasias. Cells (2020) 9
(3):768. doi: 10.3390/cells9030768

96. Mallone R, Funaro A, Zubiaur M, Baj G, Ausiello CM, Tacchetti C, et al.
Signaling Through CD38 Induces NK Cell Activation. Int Immunol (2001)
13(4):397–409. doi: 10.1093/intimm/13.4.397

97. Takeda K, Oshima H, Hayakawa Y, Akiba H, Atsuta M, Kobata T, et al.
CD27-Mediated Activation of Murine NK Cells. J Immunol (2000) 164
(4):1741–5. doi: 10.4049/jimmunol.164.4.1741
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