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Abstract 
Amniotes show a great diversity of limb phenotypes, including limbs specialized for running, flying, swimming, and digging. Here, we have 
examined how this diversity is generated during limb development in 13 species using transcriptomics and in situ hybridization. The selected 
species show evolutionary changes in the number of phalanges and/or loss of claws. We first looked at genes that show cyclical expression 
during digit development. Significantly, we find that Gdf5 cycles more rapidly in digits developing more phalanges. We identified two novel 
cyclically expressed genes: Ackr3 and Wnt9a. We also identified a transition point at which phalanx formation stops and claw development 
begins. We found that this transition point is marked by the downregulation of multiple developmental genes in the phalanx-forming 
region, and upregulation of claw-related genes. The timing of this transition is conserved, taking place at the same developmental stage in all 
digits of all species examined—except in the clawless digits of the Chinese soft-shelled turtle, the crocodilians, and birds. We suggest a 
model based on transcriptional heterochrony, in which the frequency of phalanx formation and the timing of the phalanx–claw transition are 
evolutionary control points open to natural selection on the phenotype. Furthermore, our model suggests that relaxation of developmental 
constraints on the timing of the phalanx–claw transition allows the digits to develop more phalanges (hyperphalangy). This is seen in some 
turtles, crocodilians, and dolphins. More broadly, our findings are consistent with the hypothesis that “hotspots” in otherwise conserved 
developmental pathways may be targets for evolutionary tinkering.
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Introduction
The terminal part of the amniote limb is the autopod (hand or 
foot). It includes the digits, which are made up of phalanges and 
often carry a claw. The ancestral autopod of amniotes (mam-
mals + sauropsids [reptiles including birds]) probably had, as 
Pogona vitticeps does now, five clawed digits with a phalangeal 
formula of 2-3-4-5-3 in digits I–V in the forelimb and 2-3-4-5-4 
in the hindlimb (Fig. 1 and references Williston 1925; Romer 
1956; Smithson 1989; Sumida 1997; de Bakker et al. 2021; 
Mann et al. 2021). During the adaptive radiation of amniotes 
(Sumida and Martin 1996; Brocklehurst and Benson 2021), 
the ancestral limb and its claws became variously adapted to 
such niches as swimming, flying, digging, climbing, and moving 
on land (Fig. 1; see also Hamrick 2001; Ethier et al. 2010; de 
Bakker et al. 2013; Baeckens et al. 2020 ; Doody et al. 2020; 
Alibardi 2021). As a result, the autopod shows remarkable 
variation between species, making it a good model for studying 
morphological evolution (Delfino et al. 2010).

Various phenotypic changes are associated with the adapta-
tion of the ancestral amniote limb to different niches. For ex-
ample, digits sometimes lost one or more phalanges while 
retaining the claw, as in tortoises and most mammals (de 
Bakker et al. 2013); or they lost phalanges and the claw, as 
in the digits of the chicken wing (Casanova et al. 2012); or 
they showed an increase in the number of phalanges and a 
loss of the claw, as in the posterior digits of soft-shelled turtles 
(Trionychidae) and crocodilians, and the flipper of cetaceans 

(whales and dolphins; Richardson and Oelschlager 2002; 
Fedak and Hall 2004; Cooper et al. 2007). In the Chinese 
soft-shelled turtle (Pelodiscus sinensis) and crocodilians, digits 
I–III are claw-bearing and are used for walking on land, 
whereas digits IV and V are slender, clawless “swim-fingers” 
that support the skin-web used in swimming ([Rabl 1910; 
Delfino et al. 2010; de Bakker et al. 2021]; note that digit V 
has been lost in the crocodilian hindlimb). Digits IV and V 
in the Chinese soft-shelled turtle may develop 2–3 additional 
phalanges, a condition known as hyperphalangy (Delfino 
et al. 2010). The American alligator (Alligator mississippien-
sis) also develops one extra phalanx in the clawless forelimb 
digit V (Müller and Alberch 1990). In birds, the evolution of 
the wing involved loss of at least one phalanx from all digits, 
loss of claws from at least one digit, and complete loss of digits 
I and V (Fig. 1; Richardson 2012; de Bakker et al. 2013, 2021).

Claws are parts of the phenotype that interact physically 
with the environment in a way that facilitates specialized be-
havior (e.g. digging and locomotion; Maddin et al. 2009; 
Thomson and Motani 2023). Among amphibians 
(Lissamphibia), claws are only seen in clawed toads and a 
few species of salamander (Maddin et al. 2009 ; Alibardi 
2021). Because of the functional importance of the claws, 
this study includes stages of limb development up to chicken 
stage 36 when claw development is underway. 

Phalanx number, and the presence or absence of claws, are 
traits determined during embryonic development. Phalanges 
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Fig. 1. Schematic summary of phenotypic changes in the autopod of selected amniotes. The central bearded dragon (Pogona vitticeps) and tokay gecko 
(Gekko gecko) retain the plesiomorphic condition of the autopod (Zaaf et al. 1999; Simoes et al. 2017; de Bakker et al. 2021); all other species studied here 
show various deviations from that ancestral phenotype. The mouse has the typical mammalian phalangeal formula and has lost one phalanx in digit III and 
two in digit IV in the forelimb, and in the hindlimb the same except, additionally, one is lost from digit V (Parmenter et al. 2016). In the Chinese soft-shelled 
turtle (Pelodiscus sinensis), digit III has lost one phalanx, while digits IV and V have a variable number of phalanges and have lost the claw (Delfino et al. 
2010). In the crocodilians (we used three species; Caiman latirostris, Osteolaemus tetraspis, and Crocodylus niloticus), forelimb digits IV and V have lost 
the claws, as has hindlimb digit IV, and hindlimb digit V has been completely lost (Reynolds 1897; Müller and Alberch 1990; de Bakker et al. 2013). The 
greater rhea (Rhea americana) forelimb has lost digits I and V, has lost one phalanx from digit II, two phalanges and the claw from digit III, and four 
phalanges and the claw compared to the primitive condition. In the rhea, hindlimb digits I and V have been completely lost (Fisher 1940; Maxwell and 
Larsson 2009; de Almeida et al. 2015). The duck (Anas platyrhynchos) wing has lost one phalanx from digit II, one phalanx from digit III, and three 
phalanges and a claw from digit IV (Richardson 2012). The duck hindlimb has lost digit V, but digits I–IV have the full ancestral complement of phalanges 
and claws (de Bakker et al. 2021). Compared to the duck, the chicken (Gallus gallus) has lost one additional phalanx and a claw from wing digit III, while the 
zebra finch (Taeniopygia guttata) has lost a phalanx and claw from wing digit II; both species have a similar hindlimb phenotype as the duck (Richardson 
2012 ; de Bakker et al. 2013). The phylogeny is based on Chiari et al. (2012), Green et al. (2014), Jarvis et al. (2014) , and Stein et al. (2015) . Line drawings by 
Esmée Winkel.
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and synovial joints are specified in the phalanx-forming re-
gion (PFR), a growth zone at the tip of the developing digits 
consisting of mesenchyme capped by part of the former ap-
ical ectodermal ridge (AER). The gene Sox9 is a marker of 
the PFR (Suzuki et al. 2008; Huang et al. 2016 ; de 
Bakker et al. 2021).

In the chicken, the AER disappears at stages 32 and 33 
(Saunders 1977) and claw morphogenesis in the forelimb 
and hindlimb begins at stage 36 (Hamburger and Hamilton 
1951). At this stage, Bambi is restricted to the digit tip, in 
the ectoderm of the PFR, marking the onset of claw develop-
ment. Before this stage, Bambi was expressed in the AER 
and underlying mesenchyme around the entire margin of the 
limb (Fig. 2; Grotewold et al. 2001; Casanova et al. 2012). 
The shift in Bambi expression takes place synchronously in 
all digits in the chicken, mouse and duck at chicken stage 36 
(Grotewold et al. 2001; Casanova et al. 2012). Another gene 
linked to claw development is Msx1 (Reginelli et al. 1995; 
Hamrick 2001 ; Bensoussan-Trigano et al. 2011); in the 
Chinese soft-shelled turtle, Msx1 and its paralog Msx2 are ex-
pressed at the tips of claw-bearing digits I–III (Fig. 4 in 
Cordeiro et al. 2020). Interestingly, the claws in the hindlimb 
of the Xenopus laevis (the African clawed toad) develop syn-
chronously (Maddin et al. 2009; Keenan and Beck 2016; 
Alibardi 2021). The synchronous onset of Bambi expression 
in the digit tips marks the termination of phalanx formation. 
In Sauropsida (“reptiles” including birds), the digits will 
have developed two to five phalanges in the period leading 
up to claw formation. In Mammalia, only two or three phalan-
ges develop before the claw develops (most mammals show a 
derived phalanx formula of 2-3-3-3-3 [Fig. 1; Parmenter et al. 
2016]).

Phalanx development is influenced by many developmental 
patterning genes including Tgfb1, Fgf, and members of the 
Wnt family, along with posterior Hox genes, Noggin, Gdf5, 
and Gli3 (Huang et al. 2016). The specification of phalanges 
may be controlled by an oscillator mechanism (Pascoal et al. 
2007; Chinnaiya et al. 2014; Saiz-Lopez et al. 2017). In the ax-
ial skeleton of vertebrates, some genes with oscillating expres-
sion patterns have been likened to “clocks” whose clock speed 
or oscillation frequency can be modified by natural selection 
(Gomez et al. 2008; Vonk and Richardson 2008). Hes1 (for-
merly known as cHairy2) is a candidate cyclically expressed 
gene in limb development (Jouve et al. 2000; Pascoal et al. 
2007). An alternative model envisages a Turing-like mechan-
ism that generates periodic patterns that specify phalanx de-
velopment (Raspopovic et al. 2014; Scoones and Hiscock 
2020; Grall et al. 2024).

We have examined limb development in 13 amniote species 
that show evolutionary changes in the number of phalanges 
and/or loss of claws using transcriptomics and in situ hybrid-
ization. We compared them with the ancestral amniote limb 
phenotype in the bearded dragon (Pogona vitticeps; 
Williston 1925; Romer 1956; Smithson 1989 ; Sumida 
1997; de Bakker et al. 2021; Mann et al. 2021). The limbs 
of all species are staged according to Hamburger and 
Hamilton for easy comparison (Hamburger and Hamilton 
1951). By comparing the development of autopods in species 
belonging to the same clade but showing diverse phenotypes, 
we follow the advice of Cuvier who advocated the study of 
“experiments ready prepared by Nature” (Cuvier 1840, 
p. 15).

Results
Phalanges Are Formed in a Similar Time Window in 
All Species
We find that the onset of phalanx formation is at chicken stage 
29 (± 1 stage) in all digits in all species, as indicated by Gdf5 
expression in the metapodial-phalangeal joint (Fig. 2; 
supplementary fig. S1, Supplementary Material online) The 
exception to this is the highly-derived avian wing. Thus, in 
the chicken, the first phalanx of each digit forms over the range 
of stages 30–32 (Fig. 3c). The offset of phalanx formation is at 
stage 36 (± 0.5 stages) when Sox9, a marker of the PFR, is 
downregulated; and Bambi, a marker of claw development, 
is upregulated (Fig. 2). In the chicken, we find that in addition 
to Sox9, six other genes expressed in the PFR (Ackr3, Bmpr1b, 
Hes1, Hes2, Id4, and Wnt9a) are downregulated around stage 
36 (supplementary fig. S2, Supplementary Material online). 
Furthermore, the upregulation at this stage of the claw 
markers Msx1 and Msx2 confirms the Bambi results 
(supplementary fig. S3, Supplementary Material online).

The Oscillation Frequency of Gdf5 Expression in a 
Digit Is Correlated With the Number of Phalanges It 
Will Develop
A study (Grall et al. 2024) reported that Gdf5, Noggin, and 
pSmad show cyclical expression in digits III and IV of the chick 
and the mouse. We have explored those findings in a broader 
phylogenetic sample of 13 species (Fig. 1; supplementary table 
S1, Supplementary Material online). We also explored the cyclical 
expression of Gdf5 in more detail in a series of chicken and 
bearded dragon limbs (Fig. 3). In the bearded dragon, which 
has the plesiomorphic condition of the autopods (Romer 1956; 
Wagner and Gauthier 1999; Vargas et al. 2008; Richardson 
2012; de Bakker et al. 2013; Xu and Mackem 2013 ; Simoes 
et al. 2017), forelimb digits II and V have three phalanges, and 
hindlimb digits III and V have four phalanges. In a model based 
on cyclically expressed genes, these isomorphic digits should 
have the same oscillation pattern during development. Our com-
parison of 18 developing bearded dragon autopods (Figs. 3 and 4) 
shows a high correlation between the phase of the Gdf5 expres-
sion cycle in forelimb digits II and IV, supporting the hypothesis 
that the oscillation frequency in a digit is related to its final phal-
anx number.

Identification of Novel Cyclically Expressed Genes in 
the PFR
To identify genes expressed cyclically during phalanx forma-
tion, we carried out transcriptome sequencing on the microdis-
sected tips of chicken hindlimb digits (stage 35, three biological 
replicates per digit; see Fig. 5). We processed the contralateral 
limbs of the same embryos for wholemount in situ hybridiza-
tion with a Gdf5 probe to determine the oscillation phase of 
each digit tip at the time of tissue harvesting (Fig. 5). We then 
carried out differential gene expression analysis between these 
digit tip transcriptomes to detect putative oscillation genes 
whose expression was out of phase in the different digit tips 
(Fig. 5; supplementary fig. S4, Supplementary Material online). 
Applying a threshold level of 25 transcripts per million yielded 
38 candidate cyclical genes (Fig. 5) which were screened against 
the literature and public databases to refine the list. This left 16 
genes which we supplemented with other candidates from the 
literature (including Hes1 and Hes4). In situ hybridization on 
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all 16 candidates identified Ackr3 and Wnt9a as novel oscilla-
tion genes expressed in the PFR (Fig. 6).

Ackr3 is a chemokine receptor involved in bone differenti-
ation (Liu et al. 2023). It is also expressed during limb develop-
ment (Kee and Bronner-Fraser 2001; Tokuzawa et al. 2010; 
Duffield et al. 2021) and is a regulator of circadian variation 
in glucocorticoid levels (Quinn et al. 2018). The cyclical ex-
pression of Ackr3 that we detected is shown in Fig. 6. Wnt9a 
is a member of the Wnt family of secreted signaling proteins 
that play important roles in limb development and many other 
biological processes (Nusse and Clevers 2017). We find Wnt9a 
to be cyclically expressed in the PFR (Fig. 6). Interestingly, we 
did not find cyclical expression of Hes1 and Hes4 
(supplementary fig. S2, Supplementary Material online), even 
though these two genes are associated with the somite clock 

(Maia-Fernandes et al. 2024) and the early limb development 
clock (Jouve et al. 2000; Vasiliauskas et al. 2003; Sheeba 
et al. 2012, 2016).

Synchronous Changes in Developmental Gene 
Expression at the Transition Between Phalanx 
Formation and Claw Development
We find that a group of developmental patterning genes are 
downregulated synchronously when phalanx formation ends 
and claw development begins around stage 36. These downre-
gulated genes include Sox9, Gdf5, Wnt9a, Ackr3, Hes1, Hes4, 
Id4, and Bmpr1b (supplementary fig. S2, Supplementary 
Material online). The expression of the PFR marker, Sox9, ter-
minates at stage 36 in all claw-bearing digits in all species studied 

Fig. 2. A phalanx–claw transition as shown by Sox9 and Bambi expression in selected amniotes. The species shown are (top to bottom): Taenopygia 
guttata, Gallus gallus, Anas platyrhynchos, Osteolaemus tetraspis, Pelodiscus sinensis, Pogona vitticeps, Gekko gecko, and Mus musculus. Anterior is to 
the top, distal to the right. In the early stage limbs, the digit tips express Sox9 (in the PFR) but in the late stage, after the phalanx-to-claw transition, Sox9 is 
downregulated. The exceptions are the posterior, clawless digits of the dwarf crocodile and turtle (arrowheads) which still express Sox9 at the late stage. 
In all species shown, the early Bambi expression round the periphery of the digital plate becomes restricted to the digit tips at later stages. However, this 
restriction of Bambi expression fails to occur in clawless digits in the bird wing and turtle and dwarf crocodile limbs (arrowheads, persistent expression of 
Sox9; arrows, down-regulation of Bambi, in the same digits and specimens as the photos with arrowheads).
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(Fig. 2; supplementary fig. S5, Supplementary Material online). 
At the same stage that phalanx formation terminates (stage 36), 
a group of genes associated with claw development is upregu-
lated in all claw-bearing digits in all species studied. These genes 
include Bambi, Msx1, and Msx2 (Fig. 2; supplementary figs. S3
and S6, Supplementary Material online).

These data pinpoint a developmental window of phalanx 
pattering, in all species studied, from stage 29 to 36, a finding 
that is further supported by our analysis of Gdf5 expression 
patterns in the developing interphalangeal joints (Fig. 3b 
and c). The exceptions among the digits studied were the claw-
less digits in the bird wing and the posterior digits of the turtle 

Fig. 3. Different numbers of phalanges form with different cyclical patterns—but within the same developmental time-window (stages 29–36). 
a) Expression of Gdf5 in chicken stage 28 and 29 hindlimbs of the bearded dragon, Chinese soft-shelled turtle, chicken, and zebra finch. In this early stage, 
only the metatarsophalangeal joints express Gdf5. b and c) Joint development in the bearded dragon and chicken. The data in these tables are derived 
from the series of whole mounts in supplementary fig. S1, Supplementary Material online. In the top rows, the digits are labeled I–V, from anterior to 
posterior. The first column of each table indicates the chicken (HH) stages. The developing joints are color-coded and numbered 1–5 from proximal to 
distal as follows: dark blue, no joint developed; light blue, first joint veloped; green, second joint developed; pink, third joint developed; khaki, fourth joint 
developed; purple, fifth joint developed. The numbers in the rows correspond to the most recently-formed joint as indicated by Gdf5 expression. Line 
drawings by Esmée Winkel.
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Fig. 4. High correlation in the phase of the cyclical expression of Gdf5 in bearded dragon digits having the same phalanx number. The expression of Gdf5 
starts in the PFR and persists in the developing joints as the digit tip grows out. a) The 18 forelimbs measured for this study. Anterior is to the top, distal to 
the right; the youngest (stage 29) is on the left; the oldest (stage 36) is on the right. Second and third rows are replicates of the same stages. The hindlimbs 
were measured in the same way. b) To illustrate our approach, we show here only one example (stage 33, digit III). The expression intensities in this digit 
were measured by drawing a line from distal to proximal (yellow line). The intensity of of purple color in each pixel along that line was measured. 
Depending on the size of each digit, we measured between 184 and 1,195 datapoints. Together, these datapoints form the continuous green line shown 
in the graph below this digit III (staining density against normalized length). c) Graphs of all five digits of the example autopod in b), each digit length 
normalized for easier comparison. The thicker red and light blue lines are from the isomorphic digits II and V (here isomorphic means having the same 
number of phalanges in the adult). d) Bar graphs of correlations of intensity measurements of all digits; right side forelimbs and left side hindlimbs. The bar 
graphs are the accumulation of the correlation coefficients of the 18 samples shown in a) and span therefore the development from 29 to 36 chicken 
stage. The Pogona vitticeps isomorphic forelimb digits II and V and hindlimb digits III and V (asterisks) show the strongest correlation. For further details of 
the analytical technique, see Material and Methods.

6                                                                                                                                 de Bakker et al. · https://doi.org/10.1093/molbev/msaf113



and crocodilians (Crocodilia). Thus, at stage 34, the clawless 
chicken wing digit IV shows downregulation of Sox9. This 
digit is reduced in all birds and shows apoptosis in the tissue 
at its apex (Fig. 4 in de Bakker et al. 2021). In the turtle and 
crocodilians studied here, Sox9 expression continues in the 
PFR as late as stage 37, a stage at which it has already termi-
nated in the clawed digits of the same limb (Fig. 2; 
supplementary fig. S5, Supplementary Material online).

Discussion
We identify a conserved developmental time window for phal-
anx formation, in all the amniotes we studied, corresponding 
to chicken stages 28–36 (Fig. 3; supplementary figs. S1 and S2, 
Supplementary Material online). We also identify two novel 
cyclically expressed genes, Ackr3 and Wnt9a, in the chicken 
PFR (Fig. 6). We show that the frequency of cyclical 

Fig. 5. Candidate cyclical genes revealed by bulk transcriptomic analysis of stage 35 chicken toe tip tissues. a) Heatmap of 38 genes with differential 
expression >25 transcripts per million. Genes in bold type are genes known to be involved in limb development. b) Chicken embryo hindlimbs (stage 35) 
indicating the source of tissues for bulk transcriptomics. Upper figure: in situ for Gdf5 showing lack of expression in the PFR of digits I–III and expression in 
the PFR of digit IV. Lower picture: the contralateral hindlimb of the same embryo with a green dotted line indicating the excision plane. c) Profile plots of 
selected genes. Note the difference in transcript abundance for Ackr3 and Gdf5 between the four digits suggesting that they are at different phases of the 
cycle at this moment. Hes1 and Hes4 appear not to be cyclical in any of our analyses including in situ hybridization (supplementary fig. S2, Supplementary 
Material online). The expression of Wnt9a at this stage has an equally low expression across all four digits, but in a time series of limbs, it can be seen to be 
cyclical in expression (Fig. 6).
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expression of Gdf5 in the PFR is correlated with the number of 
phalanges developed in that digit. Finally, the PFR in clawless 
digits remains active after it has disappeared in clawed digits, 
as indicated by continued Sox9 expression (Fig. 2). Together, 
these observations suggest that shifts in the timing of gene ex-
pression may be responsible for significant evolutionary 
changes in the phenotype of the amniote autopod. Such 
changes in developmental timing are known as transcriptional 
or molecular heterochrony (Zákány et al. 1997; Kim et al. 
2000; Skaer et al. 2002; Bickelmann et al. 2012). We used 
Gdf5, Sox9, Bambi, and other genes as “reporters” of this het-
erochrony. We do not suggest that these genes are the most 
proximal (causal) members of the relevant regulatory path-
way, however.

In all 13 species studied here, the phalanx–claw transition 
takes place simultaneously at stage 36 in all digits (Fig. 2). 
At this stage, the digits are developing autonomously from 
one another (there is no tissue web connecting them). This 
supports the hypothesis that each PFR of each digit has its 
own “developmental clock settings”. Our species sample en-
compasses mammals, squamates, testudines, crocodilians, 
and birds (Fig. 1). Furthermore, the synchronous downregula-
tion of Sox9 expression in the digits can be seen in a published 
study of the Iberian mole, Talpa occidentalis, and the North 
American least shrew, Cryptotis parva (Fig. 2 in Mitgutsch 
et al. 2012).

In the chicken and many other sauropsids, each digit devel-
ops a different total number of phalanges, but in the same time 
window, ending at stage 36. At this stage, the phalanx–claw 
transition occurs in the same stage range (chick stages 36 
and 37) in all species studied (Fig. 2). We suggest that the fre-
quency is set for each digit before stage 29, i.e. during early 
limb patterning when the zone of polarizing activity and 
AER are still active (Summerbell 1974; Riddle et al. 1993; 
Galloway and Tabin 2008; Pickering et al. 2018). 

Therefore, the PFR of each digit has its own internal clock 
that runs autonomously at a digit-specific speed, and this 
clock runs in a fixed time window between stages 29 and 
36 (Fig. 3b and c).

In the PFR, at the moment of the phalanx–claw transition 
(chicken stage 36), there are two notable transcriptional 
changes. First, numerous developmental patterning genes, in-
cluding the PFR marker Sox9, show downregulation; and se-
cond, Bambi, Msx1, and Msx2, which are markers of claw 
development, show upregulation (supplementary figs. S3 and 
S6, Supplementary Material online) and also seen in the turtle 
(Cordeiro et al. 2020). Importantly, we find that this transition 
is delayed beyond chicken stage 36 in digits that lack claws. 
Thus, in the Chinese soft-shelled turtle, and in the crocodilians 
studied here, Sox9 expression continues after chicken stage 37 
in the posterior clawless digits (Fig. 4; supplementary fig. S5, 
Supplementary Material online). In digits I, II, and III, 
Bambi is still expressed after the phalanx-transition. The 
claw-related gene Bambi is never expressed in the clawless 
posterior digits IV and V.

Another important fact is that clawless digits in amniotes 
often show hyperphalangy. For example, the Chinese 
soft-shelled turtle has a variable number of phalanges in its 
clawless (posterior) digits, and this number sometimes exceed-
ing the ancestral number (Delfino et al. 2010). In that paper, 
the authors suggested that hyperphalangy in digits IV and V 
of Pelodiscus sinensis might be due to prolonged growth of 
those two digits. Also the American alligator develops four 
phalanges in fore limb digit V instead of the ancestral three 
(Müller and Alberch 1990). As noted above, both Pelodiscus 
sinensis and the crocodilians do not express the claw develop-
ment marker Bambi—but still express Sox9, the PFR marker, 
in digits IV and V at this transitional stage (Fig. 2). These claw-
less digits fail to undergo the transition from phalanx formation 
to claw development. This failure could represent the lifting of a 

Fig. 6. Ack3 and Wnt9a show cyclical expression in the chicken embryo hindlimb PFRs. Anterior is to the top, distal to the right. Asterisks denote PFRs in 
which there is no detectable expression. Below the photographs is a schematic representation of the expression of the genes. As can be seen by 
comparing different digits at different stages, the expression of Ackr3 and Wnt9a is cyclical. For example, Ackr3 is “on” (expressed) in digit II at stage 30, 
“off” (not expressed) at stage 31, on at stages 32 and 33, off at stage 34, on at stages 35 and 36, and off at stage 37, after the phalanx-to-claw transition. 
An example of the cyclical expression of Wnt9a is provided by digit I; it is off at stage 31, on at stage 32, off at stages 33 and 34, on at stage 35, and off at 
stages 36 and 37. The lack of expression of these genes at later stages is not due to failure of the in situ protocol, because a stage 37 forelimb from the 
same embryos (far right column) shows expression of Ackr3 and Wnt9a (fainter) in the feather buds.
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developmental constraint, allowing the digit to progress to a state 
of hyperphalangy. Several other species also show a combination 
of claw loss and hyperphalangy. The Tarentola geckos 
(Gekkonidae) have lost a claw in digit I and have hyperphalangy: 
three instead of the ancestral two phalanges (Haacke 1976; 
Carranza et al. 2002; Khannoon et al. 2024). The New World 
fossil turtles (Pan-Trionychidae) show loss of claws combined 
with hyperphalangy in digits IV and V (Vitek and Joyce 2015) 
as do fossil mosasaurs and ichthyosaurs in all its digits 
(Nopcsa 1903; Fedak and Hall 2004; Thewissen et al. 2007).

These considerations suggest two developmental mecha-
nisms underlying the evolution of phalanx number. The first 
is seen in clawed amniote digits. In these digits, we know of 
no case where the ancestral number of phalanges is exceeded. 
By contrast, phalanx number can decrease if the PFR “oscilla-
tion” runs more slowly. This, we suggest, is what has hap-
pened in the clawless wing digits II–IV of the zebra finch and 
the clawed digits III and IV of the mouse forelimb (Fig. 1). 
The second mode for evolutionary changes in phalanx number 
is seen in digits without a claw. In these digits, the constraint 
that imposes a maximum limit on the number of phalanges 
has gone. Therefore, it is possible for hyperphalangy to de-
velop. The Chinese soft-shelled turtle shows both processes; 
in the clawed digit III, one phalanx is lost and the clawless 
digits IV and V have a variable number of phalanges (3–6 
and 2–5, respectively; Delfino et al. 2010).

The flippers of cetaceans (whales and dolphins) also show 
hyperphalangy (Richardson and Oelschlager 2002). The digits 
of these flippers have no claws (Flower 1870; Cooper and 
Dawson 2009). Not only does the cetacean flipper show hy-
perphalangy but, as in the Chinese soft-shelled turtle digits 
IV and V, the number of phalanges shows intraspecific vari-
ation (Quiring and Harlan 1953; Delfino et al. 2010). In sup-
port of our model, it has recently been shown that there is 
relaxed selection on genes associated with flipper development 
in cetaceans (Telizhenko et al. 2024). It could be argued that a 
loss of claws combined with hyperphalangy is purely a func-
tion of selection for a flipper, and not a consequence of devel-
opmental constrains as our model suggests. However, the 
flipper of the manatee (Trichechus sp.), an aquatic species, 
has claws and no hyperphalangy (Quiring and Harlan 
1953). Clawless does not always lead to hyperphalangy; for 
example, most bird wings have lost both claws and phalanges 
(Fig. 1). Thus, the zebra finch wing has no claws and has just 
four of the ancestral 17 phalanges (Fig. 1).

In summary, our findings suggest that there are at least two 
major control points in amniote digit development: (i) the vari-
able oscillation frequency of phalanx formation and (ii) the 
conserved developmental stage of the phalanx–claw transition. 
The variable oscillation frequency can explain the loss of pha-
langes during evolution, whereas the loss of the phalanx–claw 
transition unlocks a developmental constraint on maximal 
phalanx number. We call these “control points” because they 
appear to be open to natural selection for limb phenotype, as 
illustrated by the various limb adaptations seen in our species 
sample. Furthermore, our findings suggest a model in which 
even highly conserved genetic programs nonetheless contain 
developmental “hotspots” such as those postulated in 
Drosophila (Richardson and Brakefield 2003). These hotspots 
are subject to evolutionary tinkering (Richardson and 
Brakefield 2003; Duboule et al. 2007; Brakefield 2011), which 
can lead to adaptive changes in phenotype.

We believe that our model of phalanx and claw formation 
may lead to new insights into digit evolution and development. 
Evolutionary differences in phalanx number, and evolution-
ary loss of claws, can be simply explained in terms of evolu-
tionary “tinkering” (Duboule et al. 2007; Brakefield 2011) 
with the intrinsic digital clock (Pascoal et al. 2007; 
Chinnaiya et al. 2014; Saiz-Lopez et al. 2017). The develop-
ment of phalanges and claws is normally coupled by a devel-
opmental constraint which, when lifted, allows more 
phalanges to develop (hyperphalangy). In principle, our find-
ings may help us to understand the adaptive radiation of am-
niotes in terms of phenotypic character evolution, and the 
evolution of developmental mechanisms.

Materials and Methods
Collection of Embryos
In total, 467 embryos of 13 amniote species were processed 
and analyzed (supplementary table S1 and S2, Supplementary 
Material). The house mouse (Mus musculus) embryos were 
bred and harvested in compliance with the Netherlands Law 
on Animal Testing (Wet op de Dierproeven), licence number 
14,167u, at Leiden University. Sauropsid embryos were har-
vested in compliance with guidelines and regulations concern-
ing the use of experimental animals, namely European Union 
(EU) directive no. 2010/63/EU and its implementation in The 
Netherlands, the Wet op de Dierproeven. The embryos used in 
these experiments were too young to have reached the stage of 
exogenous (heterotrophic) feeding where the yolk sac has been 
exhausted (this takes place at hatching). Therefore, the experi-
ments reported here are not considered as animal experiments 
under the EU directive and Dutch law mentioned above.

The chicken (Gallus gallus), duck (Anas platyrhynchos), os-
trich (Struthio camelus), and emu (Dromaius novaehollan-
diae) eggs were from commercial breeders. Some additional 
emu embryos were provided by Dr. John Young of the 
Clifford Tabin Lab, Department of Genetics, Harvard 
Medical School, United States of America. The zebra finch 
(Taeniopygia guttata) eggs were a gift from Prof. Dr. Carel 
J. ten Cate and Dr. Katharina Riebel, both from the Animal 
Sciences Cluster, Institute of Biology Leiden, Leiden 
University, the Netherlands. The eggs of the broad-snouted 
caiman (Caiman latirostris) were a gift from René 
Hedegaard, Director of Krokodille Zoo, Eskilstrup, 
Denmark. The Nile crocodile (Crocodylus niloticus) eggs are 
from La Ferme Aux Crocodiles, Pierrelatte, France, and the 
dwarf crocodile (Osteolaemus tetraspis) eggs were a gift 
from Walter Getreuer, Serpo, Rijswijk, the Netherlands, 
under Convention on International Trade in Endangered 
Species of Wild Fauna and Flora (CITES) certificate 
21NL194589/20 from the Ministry of Argiculture, Nature 
and Food Quality, CITES Management Authority, The 
Hague, The Netherlands. Chinese soft-shelled turtle 
(Pelodiscus sinensis) embryos were collected by Dr. Tatsuya 
Hirasawa, Evolutionary Morphology Laboratory, RIKEN, 
Japan. Most of the Central bearded dragon (Pogona vitticeps) 
eggs were purchased from commercial breeders, except for 
one clutch which was donated by Bregeta Demmer and 
Jordy Hol, Purmerend, the Netherlands.

The tokay gecko (Gekko gecko) embryos were collected by 
Luthfi Nurhidayat. Thirty-nine adult tokay geckoes were cap-
tured in the vicinity of Yogyakarta, Indonesia, under a license is-
sued by the Ministry of Environment and Forestry, the Republic 
of Indonesia (permit number: SK.83/KSDAE/SET/KSA.2/5/ 
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2021 signed on 2021 May 7), and a recommendation letter is-
sued by The Indonesian Institute of Sciences (Lembaga Ilmu 
Pengetahuan Indonesia/LIPI; Recommendation Number: 
B-2158/IV/KS.01.04/3/2021 signed on 2021 March 19). All ex-
perimental and surgical procedures needed for samples collec-
tion were done at Faculty of Biology, Universitas Gadjah 
Mada, Yogyakarta, Indonesia, with the approval from The 
Ethical Committee of Integrated Laboratory for Research and 
Testing (Laboratorium Penelitian dan Pengujian Terpadu/ 
LPPT) Universitas Gadjah Mada (Ethical Clearance number: 
Ref. 00014/04/LPPT/IV/2021 signed on 2021 April 30). The 
samples were transported from Universitas Gadjah Mada, 
Yogyakarta, Indonesia, to Institute of Biology Leiden, the 
Netherlands, under transport permission from the Ministry of 
Environment and Forestry, the Republic of Indonesia (No. 
05717/IV/SATS-LN/2021 signed on June 2, 2021).

All embryos, unless stated otherwise above, were incubated 
and harvested at the Institute of Biology Leiden (IBL), Leiden 
University, the Netherlands. After candling the eggs (in the 
case of the sauropsids studied), we removed the embryos 
into ice-cold phosphate buffered saline (PBS) in a Petri dish. 
The amnion was removed, and the embryo fixed in ice-cold 
4% formaldehyde in PBS at 4 °C overnight. The next day, 
they were dehydrated in a graded methanol series and stored 
in 100% methanol at −20 °C. Staging for all species was based 
on the chicken stages in Hamburger and Hamilton for easier 
comparison (Hamburger and Hamilton 1951). Hatching 
times vary greatly from 14 days in the zebra finch to around 
80 days in the crocodiles (supplementary table S3, 
Supplementary Material online). During development we esti-
mate the phalanx-forming period between 2.25 days of incu-
bation in the zebra finch to 15 days in the crocodilians and 
the bearded dragon (supplementary table S3, Supplementary 
Material online).

Whole Mount In Situ Hybridization

In Situ Hybridization Probes
All probes were made in-house and their sequences deposited 
at The National Center for Biotechnology Information 
(NCBI) (supplementary tables S4 and S5, Supplementary 
Material online). The Bambi and Gdf5 gene expression on 
all bird embryos were done with a chicken probe and for 
Sox9 with an emu probe. The chicken Hes1 and Hes4 (Hes 
Family BHLH Transcription Factor) coding sequences start 
with 300 almost identical base pairs. To be confident, they 
did not cross-hybridize, we amplified with forward primers 
after these identical sequences and 3′ RACE primers (Rapid 
Amplification of cDNA ends; Scotto-Lavino et al. 2006). 
The resulting probe templates also include the 3′ untranslated 
region. All crocodilian in situ experiments were done with Nile 
crocodile probes. For synthesizing the probes, we isolated to-
tal RNA from an embryo using Trizol (Invitrogen) and carried 
out reverse transcription using SuperScript III (Invitrogen). 
Polymerase chain reaction (PCR) was performed on these tem-
plates using specific primers, and the PCR products were 
cloned in the TOPOTA-PCRII vector (Invitrogen). The in-
serted amplicons were checked by PCR with M13-pUC pri-
mers located on the TOPOTA-PCRII plasmid and checked 
on an agarose gel. When they were of the right length, they 
were Sanger sequenced. After confirming the sequence results 
by Basic Local Alignment Search Tool (BLAST) searching, the 
positive results were used as templates for making the digoxi-
genin labeled antisense RNA probes.

Hybridization Protocol
The embryos were rehydrated through a graded methanol series, 
lightly digested with proteinase K (20–40 µg/ml in PBS) for 
20 min and postfixed in 4% formaldehyde in PBS after several 
washes in PBST (PBS pH 7.2 with 0.1% Tween-20). This was fol-
lowed by a prehybridization step at 60 °C for at least 3 h or until 
the embryo had sunk. The hybridization mixture consisted of 50% 
formamide, 2% Boehringer blocking powder, 5× SSC (dilluted 
form 20× standard sodium citrate buffer, 3 M sodium chloride, 
0.3 M sodium citrate, pH 7), 1 mg/ml total RNA, 50 μg/ml 
heparin, 0.1% Triton X-100, 0.1% CHAPS detergent 
(3-[(3-cholamidopropyl) dimethylammonio]-1- 
propanesulfonate) and 5 mM EDTA. After the prehybridization 
mix was removed, we added 400 ng/ml specific probe to fresh hy-
bridization mixture preheated to 60 °C before adding it to the em-
bryo. The embryos were incubated in this mix at 60 °C overnight 
with slow shaking. The next day, the specific probe mixture was 
removed, collected, and stored at −20 °C for reuse.

Several stringent washes were done at 60 °C to remove non-
specifically bound probe [2× SSC, 0.1% CHAPS, 50% forma-
mide], [2× SSC 0.1% CHAPS], and [0.2× SSC, 0.1% CHAPS]. 
After washing several times at room temperature with TBST 
(0,1 M Tris Buffered Saline, 0.1% Tween-20, pH 7.5), the em-
bryos were preincubated with heat inactivated 10% sheep se-
rum in TBST for 90 min at room temperature followed by 
overnight incubation with sheep antidigoxigenin conjugated 
to alkaline phosphatase (Roche; 1:5,000 dilution in 10% sheep 
serum in TBST at 4 °C overnight). Next day, the nonspecifi-
cally bound antibodies were washed away by several washes 
with TBST of which one was overnight. The embryos were 
brought to a higher pH by washing them in NTT buffer 
(NaCl, Tris/HCL, Tween: 0.1 M sodium chloride, 0.1 M 
Tris/HCl, 0.1% Tween-20, pH 9.5). The enzyme reaction of al-
kaline phosphate with BM purple (Roche 11442074001) as 
substrate results in a blue precipitate. The development of 
the stain was checked regularly and stopped by washing several 
times in TBST, removing the substrate and chromogens, and 
lowering the pH.

Analysis of Gdf5 Expression
To count the number of phalanges formed during develop-
ment, we used the expression patterns of Gdf5 as a proxy. 
Gdf5 is first expressed in the PFR and persists during interpha-
langeal joint differentiation (Storm and Kingsley 1999; Suzuki 
et al. 2008; Huang et al. 2016). The scoring of the phalanges as 
tabulated in Fig. 3b and c is based on the unstained tissue be-
tween, and distal to, the Gdf5 expression domains that indi-
cate the joint (Figs. 3 and 4).

The Gdf5 expression intensity (the purple stained joints in 
each digit) was measured in order to compare the patterns 
quantitatively. Digital photographs of 18 bearded dragon 
limbs shown in Fig. 4a were imported into the image analysis 
program FIJI (Fiji is just ImageJ; Schneider et al. 2012). In FIJI, 
we used a custom-made line analysis tool (written by J.W.) to 
obtain the intensity profiles of all digits. This was done by 
manually drawing a line (see the yellow line in Fig. 4b as an ex-
ample) of which the intensity of every pixel (minimal 184 and 
maximum 1,195) was measured in Fiji from distal to prox-
imal. For each autopod, the distance (number of pixels) was 
mathematically “stretched” to normalize the lengths of the 
digits in each autopod. This normalization was necessary be-
cause the five digits of each autopod differ in length, and be-
cause pixels are squares and their width is shorter than their 
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diagonal. The stain intensities along this line were plotted 
against the normalized distance in a scatter plot giving a 
pseudo-line rendering in the final graphs (Fig. 4b, the green 
line which are in fact a row of dots). The correlations between 
the resulting digit profiles in each individual autopod were cal-
culated using the Microsoft Excel “CORREL” function. 
These correlations were averaged over all 18 fore- and hin-
dlimbs, see the developmental series in Fig. 4a.

Differential Gene Expression Analysis With Bulk 
Transcriptomics
Using stage 35 chicken embryos, one hindlimb was used for 
sampling tissue for RNA extraction (dissected, snap frozen in 
liquid nitrogen, and stored at −80 °C) while the contralateral 
hindlimb of the same embryo was fixed for Gdf5 in situ hybrid-
ization. On the base of the Gdf5 results, we selected three limbs 
with no expression in digits I–III in the tips but with Gdf5 ex-
pression in the tip of digit IV to extract RNA for transcriptome 
sequencing (Fig. 5). The RNA of the toe tips was isolated with 
ReliaPrep™ RNA Tissue Miniprep System (Promega) with mi-
nor modifications and sent to GenomeScan (Leiden, the 
Netherlands) on dry ice for transcriptome sequencing.

The library preparation and RNA sequencing were done by 
GenomeScan with in-house protocols. The sequencing plat-
form used was Illumina NovaSeq 600 with a read length of 
2 × 150 bp. Transcriptome data analysis was carried out with-
in the High Performance Computing Facility, Leiden 
University (ALICE). The transcripts of all samples were quan-
tified from the sequencing data using Salmon 1.6.0 (https:// 
salmon.readthedocs.io/en/latest/salmon.html; Patro et al. 
2017) with tanuki pipeline (https://github.com/RxLoutre/ 
tanuki.git). The transcript quantification used the chicken gen-
ome as a reference (https://www.ncbi.nlm.nih.gov/datasets/ 
genome/GCF_016699485.2/). The sequence data quality 
check with FastQC (https://github.com/s-andrews/FastQC) 
was included in the pipeline.

The quantification files were then analyzed with 3DRNAseq 
pipeline (https://github.com/wyguo/ThreeDRNAseq; Guo et al. 
2021) utilizing limma-voom weights pipeline of limma R pack-
age for differential gene expression analysis (Ritchie et al. 
2015). We compared each individual digit to all other digits as 
contrast groups. The log2 fold change (L2FC) of gene/transcript 
abundance was calculated based on contrast groups, and signifi-
cance of expression changes was determined using a t-test. 
P-values of multiple tests were adjusted with the Benjamini– 
Hochberg test to correct the false discovery rate (Benjamini 
and Yekutieli 2001). A gene/transcript was considered signifi-
cantly differentially expressed in a contrast group if it had an ad-
justed P-value < 0.05 and L2FC ≥ 1. The results were visualized 
using the ComplexHeatmap (Gu et al. 2016) package and 
ggplot2 on Rstudio, with the cut-off at 25 transcripts per million.

Supplementary Material
Supplementary material is available at Molecular Biology and 
Evolution online.
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