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Abstract

Objective: To report normative data for retinal thickness in wild-type C57BL/6 mouse utilizing a miniature SD-OCT system.

Methods: Thirty adult mice (range: 3–5 months) were anesthetized and secured into the Bioptigen Spectral Domain
Ophthalmic Imaging System. Right eye SD-OCT images were standardized by centralizing the optic nerve head (ONH) prior
to image acquisition. Global and quadrant total retinal thickness (TRT) values were measured from retinal nerve fiber layer to
retinal pigment epithelial layer. Posterior segment analyses also included the outer retinal layer (ORL) and inner retinal layer
(IRL). Further sublayer analyses of four layers from the ORL and three layers comprising the IRL were also performed.

Results: The overall mean6SD global TRT in a C57BL/6 mouse model was 204.4165.19 mm. Quadrant mean TRT values
were 204.8565.81 mm inferiorly, 204.9766.71 mm nasally, 205.0865.44 mm temporally, and 202.7464.85 mm superiorly.
Mean6SD thickness for ORL, and IRL were 126.37610.01 mm, and 107.03610.98 mm respectively. The mean6SD estimates
for the four layers of the ORL were 18.2362.73 mm, 26.0464.21 mm, 63.866.23 mm, and 19.2264.34 mm. Mean6SD values
for the three IRL sublayers were 27.8264.04 mm, 59.6266.66 mm and 19.1263.71 mm.

Conclusion: This study established normative values for the total retinal thickness and sublayer thickness for the wild-type
C57BL/6 mice. Moreover, it provides a standard of retinal morphology, in a commonly used animal model, for evaluating
therapeutic interventions and retinal disease pathophysiology.
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Introduction

Spectral domain optical coherence tomography (SD-OCT) is an

important imaging modality in clinical ophthalmology and vision

science for characterizing morphology and understanding patho-

physiological changes within the retina. The rapid, high resolu-

tion, non-invasive cross-sectional images produced by SD-OCT is

an important tool for diagnosing and monitoring posterior

segment pathology longitudinally [1,2].

Mouse models have been instrumental for understanding

pathophysiology in a variety of retinal diseases [3–21]. Historical-

ly, ex vivo histological sectioning is used to study retinal disease in

mouse models. Inherent methodological limitations confound

tissue integrity and curtail longitudinal evaluations within a single

subject. With the advent of in vivo applications such as fundoscopy,

confocal scanning laser ophthalmoscopy (cSLO), angiography,

electroretinography (ERG), and optical coherence tomography

(OCT), limitations associated with ex vivo histological preparations

can now be circumvented. Although SD-OCT provides non-

invasive histological – grade sections of the rodent posterior

segment, image acquisition is technologically cumbersome as

human devices are retrofitted for animal use.

Hand-held spectral domain ophthalmic imaging system

(SDOIS) (Bioptigen, Inc., Durham, NC) represents an alternative

non-invasive in vivo imaging device. It contains the animal imaging

mount with rodent alignment stage (a unique platform with

adjusters that stereotactically secures mice within a cassette while

mounted to a rotational stage) and a hand-held 840 nm SD-OCT

probe (HHP) capable of axial resolutions of 5 micrometers (mm)

[22–25]. Bioptigen SD-OCT technology is increasingly imple-

mented in rodents [26] for biometrical analysis as well as

evaluation and management of retinal disorders. However, data

on normative values of the retina for wild-type C57BL/6– a

common mouse model for the study of retinal diseases – is not

available. The overall goal of this study is to report normative SD-

OCT data of the mouse retina with the Bioptigen SDOIS.

Methods

Ethics Statement
All experiments were performed in compliance with the

University of Florida institutional animal care and use committee

(IACUC) guidelines and/or adhered to the Association for

Research in Vision and Ophthalmology Statement for the Use

of Animals in Ophthalmic and Vision Research. This study was

reviewed and approved by the University of Florida IACUC. All

animals were managed in accordance with the University of
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Florida animal care services (ACS) rodent handling procedures.

Animal wellbeing and welfare were monitored daily by the ACS

staff and the study investigators. Ketamine/Xylazine anesthetic

mixture was used to sedate animals during scanning in order to

minimize distress. During the course of this study, no animal was

sacrificed or showed signs of suffering.

Animals
Thirty adult C57BL/6 mice (Jackson Laboratory, Bar Harbor,

ME) between the ages of three to five months were utilized for this

study. All mice were housed and maintained in the University of

Florida ACS facility. The mice were adherent to a 12-hour light/

dark cycle with open access to feed and water. Animal preparation

Figure 1. Imaging Apparatus. (a) The Bioptigen spectral-domain ophthalmic imaging system (SDOIS) with animal imaging mount - rodent
alignment stage (AIM-RAS) components; (b) aerial view of mouse within cassette - white arrow points to right eye where all scans were obtained.
doi:10.1371/journal.pone.0067265.g001
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and SD-OCT scanning were performed in an ACS-designated

and approved procedural location.

SD-OCT Imaging
Mice were anesthetized with a mixture of Ketamine (Ketaject;

80 mg/kg; Webster Veterinary, Devens, MA) and Xylazine (Ana

Sed; 10 mg/kg; Webster Veterinary; Devens, MA) delivered via

intraperitoneal injection to ensure restriction of movement during

optical scanning. Both pupils were dilated with topical Tropic-

amide (1%; Akorn Inc.; Lake Forest, IL). To prevent corneal

desiccation during procedure, topical Systane UltraH lubricant eye

drop (Alcon, Fort Worth, TX) was applied bilaterally every

minute. Following dilation and lubrication, the mice were

positioned into the AIM-RAS setup (Figures 1a &1b), which

permitted X, Y, and Z axis manipulation for proper alignment of

mouse eye with HHP bore in order to properly center and

visualize the ONH within the viewing panes for B-scan and en-

face images.

In order to achieve ONH centering during imaging, the

geometrical working distance between the subject eye and the

HHP bore was acquired by an aiming tip and aiming target

calibration method prior to mouse insertion into AIM-RAS

apparatus. The working distance between the SD-OCT lens and

the mouse eye was approximately 5 mm. In order to maintain

central arrangement prior to SD-OCT image capture, the ONH

was repositioned vertically by clockwise and counter clockwise

Figure 2. (a) C57BL/6 mouse en-face scan showing the central optic nerve head; (b) showing the 1 mm diameter (arrows) within and
around central retinal subfield (CSF); (c) the retinal quadrants surrounding CSF with overall mean (6SD) total retinal thickness; (d) a B-scan image
from equatorial slice of en-face scan showing the different sublayers that were measured using the manual calipers. [ORL, outer retinal layer; IRL,
inner retinal layer; RPE, retinal pigment epithelium; ELM/IS/OS, external limiting membrane/inner segment of photoreceptors/outer segment of
photoreceptors; ONL, outer nuclear layer; OPL, outer plexiform layer; INL, inner nuclear layer; IPL/GC, inner plexiform layer/ganglion cell; RNFL, retinal
nerve fiber layer].
doi:10.1371/journal.pone.0067265.g002
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animal cassette rotation and horizontally by swiveling the mouse

cassette towards the nasal or temporal locations. Careful attention

was paid to accurate focusing of the image at the time of manual

calibrations to the RAS and mouse cassette. Once image

acquisition commenced, the scans were performed in rapid

succession without need for further manipulation of the mice.

The imaging protocol entailed a 3 mm63 mm perimeter square

scan sequence producing a single en-face image of the retina

through a 50-degree field of view from the mouse lens, following

mydriasis. The en-face image comprised of 100 B-scan tomograms

with each B-scan consisting of 1000 A-scans.

All scans were performed by one of two operators (LRF or

JMD). B-scan slices were recorded only if posterior segment layers

could clearly be resolved with set standardized image display

options for both image brightness and contrast. SD-OCT scans

were not recorded if retinal vasculature cross-sections were

visualized within any of the measured segment layers. The en-

face image was transected centrally along the ONH in order to

provide a B-scan image of the retina layers at this location

(Figure 2a). The ONH was used as the landmark with central

subfield (CSF) scan diameter of approximately 1 mm (Figure 2b).

Analysis of SD-OCT Imaging
The SD-OCT B-scan cross-sectional images were analyzed with

the InVivoVue Clinic software incorporated with the SDOIS. The

software included ‘manual calipers’ that could be used for

measurements in microns (mm) of the various posterior segment

sublayers. Retinal en-face scans were divided into inferior, nasal,

temporal, and superior quadrants surrounding the retinal CSF

containing the ONH (Figure 2c). The total retinal thickness (TRT)

was defined as the width from the RNFL to the RPE layer,

including both layers. Four measurements were made on the same

scan and averaged. Within the center of each quadrant, three B-

scans separated by approximately 150 mm were used for

measurements. Hence, 12 points were used for each quadrant to

average the retinal thickness measurements.

After determining the total retinal thickness in the retinal

quadrants, measurements were made for the outer retinal layer

and inner retinal layer. Further, retinal thickness sub-analyses were

done to measure each individual layer of the outer and inner

retina (Figure 2d) with manual calipers in the following order:

outer retina – retinal pigment epithelium (RPE), external limiting

membrane/inner segment of photoreceptors/outer segment of

photoreceptors (ELM/IS/OS), outer nuclear layer (ONL), outer

plexiform layer (OPL); inner retina – inner nuclear layer (INL),

inner plexiform layer/ganglion cell (IPL/GC), and the retinal

nerve fiber layer (RNFL). Although the recording of the scans were

done on a single day for each mouse, the measurement of the

TRT and the retinal thickness sub-layers were done at different

times.

Table 1. Mean Total Retinal Thickness and Sublayer
Thickness6Standard Deviation (mm).

n = 30

Total Retinal Thickness – Global 204.4165.19

Total Retinal Thickness – Inferior 204.8565.81

Total Retinal Thickness – Nasal 204.9766.71

Total Retinal Thickness –Temporal 205.0865.44

Total Retinal Thickness – Superior 202.7464.85

Outer Retina Layer 126.37610.01

Inner Retinal Layer 107.03610.98

Retinal Pigment Epithelium 18.2362.73

External Limiting Membrane/
Inner Photoreceptor Segment/
Outer Photoreceptor Segment

26.0464.21

Outer Nuclear Layer 62.866.23

Outer Plexiform Layer 19.2264.34

Inner Nuclear Layer 27.8264.04

Inner Plexiform Layer/
Ganglion Cell

59.6266.66

Retinal Nerve Fiber Layer 19.1263.71

doi:10.1371/journal.pone.0067265.t001

Table 2. Mean Global Total Retinal Thickness (mm) and in
Different Quadrants of Retina in Each Animal.

Animal TRT-I TRT-N TRT-T TRT-S TRT-Global

1 204.17 203.67 205.00 198.83 202.92

2 206.33 200.67 206.67 200.00 203.42

3 203.33 203.67 203.00 202.17 203.04

4 202.67 208.33 201.00 199.83 202.96

5 203.17 208.00 200.67 202.33 203.54

6 205.00 205.67 204.33 200.83 203.96

7 199.00 197.33 200.00 195.50 197.96

8 199.67 204.33 204.67 196.67 201.33

9 203.33 201.33 207.33 204.50 204.13

10 198.67 195.00 200.00 196.50 197.54

11 199.83 190.00 201.33 203.00 198.54

12 199.00 194.67 193.00 193.00 194.92

13 203.00 208.00 207.00 205.50 205.88

14 209.50 205.33 202.67 202.17 204.92

15 230.33 225.00 225.00 216.33 224.17

16 208.00 213.00 213.67 209.00 210.92

17 201.33 205.33 201.67 206.17 203.63

18 209.67 207.00 203.33 204.17 206.04

19 200.00 203.33 205.33 200.50 202.29

20 202.50 196.00 205.00 200.17 200.92

21 203.83 204.00 204.67 199.67 203.04

22 206.17 203.67 205.33 204.50 204.92

23 203.17 207.67 206.00 204.00 205.21

24 204.50 207.33 203.00 206.17 205.25

25 202.83 202.67 202.00 202.33 202.46

26 207.00 210.00 210.00 202.00 207.25

27 206.50 214.00 208.00 206.83 208.83

28 209.83 205.00 204.33 203.33 205.63

29 204.50 205.67 206.00 202.67 204.71

30 208.67 213.33 212.33 213.67 212.00

Total retinal thickness (TRT) consists of all retinal layers including retinal
pigment epithelium (RPE). TRT-I, total retinal thickness-inferior quadrant; TRT-N,
total retinal thickness-nasal quadrant; TRT-T, total retinal thickness-temporal
quadrant; TRT-S, total retinal thickness-superior quadrant.
doi:10.1371/journal.pone.0067265.t002
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Statistical Analysis
Mean and standard deviation (6 SD) were calculated for the

within-subject triplicate measurements from each layer of the

posterior segment. The mean (6 SD) between subject values for

the posterior segment layers were then computed. Students’ T-test

was used to calculate statistical significance and a p-value less than

0.05 was considered significant. We looked at the interobserver

variability between two independent observers (LRF and WL)

using two methods: first, by measuring TRT for all animals, and

then the sublayer thickness values from ten randomly selected

animals. The mean difference and 95% confidence interval (CI)

for interobserver measurements were estimated. A two-way mixed

effect intraclass correlation (ICC) assessment (SPSS.21) was used to

measure interobserver agreement. Bland-Altman plots were

constructed to assess the degree of interobserver agreement for

TRT and sublayer measurements.

Results

Retinal thickness measurements from a total of thirty adult mice

eyes were analyzed. Globally, the mean6SD TRT value for all

study mice was 204.4165.19 mm (Table 1). The four outer

quadrant retinal areas surrounding the CSF region had mean

retinal thickness values of 204.8565.81 mm inferiorly,

204.9766.71 mm nasally, 205.0865.44 mm temporally, and

202.7464.85 superiorly. The overall mean thickness for the outer

retina and inner retina were 126.37610.01 mm, and

107.03610.98 mm respectively. Thickness values for the retinal

sublayers were: RPE = 18.2362.73 mm; ELM/IS/

OS = 26.0464.21 mm; ONL = 62.866.23 mm;

OPL = 19.2264.34 mm; INL = 27.8264.04 mm; IPL/

GC = 59.6266.66 mm; RNFL = 19.1263.71 mm (Table 1).

Table 2 shows the mean global TRT and the retinal thickness in

the four quadrants in each animal. Similarly, Table 3 depicts the

mean retinal thickness of different sublayers in each animal.

Table 3. Mean Retinal Thickness (mm) in Different Sublayers In Each Animal.

Animal RPE ELM/IS/OS ONL OPL INL IPL/GC RFNL ORL IRL

1 15.33 20.67 75.33 14.00 27.67 51.00 23.33 124.67 103.33

2 17.00 26.33 54.00 19.33 27.33 62.00 16.00 116.33 104.67

3 16.33 26.00 62.00 17.00 32.00 48.67 23.33 121.33 104.67

4 23.00 34.67 59.33 26.67 28.00 57.00 15.33 143.67 102.00

5 12.67 25.00 57.00 18.67 28.33 51.33 21.33 115.00 101.00

6 19.67 26.67 59.00 19.33 26.00 56.00 19.00 125.00 103.67

7 19.67 28.00 58.00 24.33 28.33 62.00 20.67 129.00 111.00

8 21.33 20.67 63.67 18.67 26.67 68.33 24.00 123.67 120.00

9 22.33 35.67 71.00 21.00 26.00 61.67 19.67 148.67 107.67

10 21.33 27.67 65.67 16.67 24.67 60.67 21.00 130.33 105.33

11 21.67 27.67 63.67 18.33 23.00 61.33 20.00 131.33 106.00

12 20.33 20.33 56.67 27.33 22.33 56.00 11.67 123.67 90.33

13 14.67 25.33 64.67 13.67 25.67 52.67 14.00 120.00 92.33

14 19.67 24.33 61.67 13.00 26.33 55.00 11.33 118.67 93.33

15 18.33 27.33 64.00 21.00 33.00 61.67 18.33 130.67 116.67

16 12.00 28.33 61.33 17.67 20.33 52.00 21.00 120.00 94.33

17 19.00 28.33 85.33 28.33 32.67 76.33 24.67 160.00 133.67

18 16.00 20.33 65.67 18.33 36.33 71.67 21.67 121.00 129.33

19 18.00 31.33 61.67 18.33 29.67 62.33 20.67 130.33 113.67

20 15.33 26.33 64.33 17.00 26.33 56.33 18.33 125.33 101.67

21 17.33 26.33 58.67 19.67 28.33 57.33 15.00 122.67 101.33

22 19.00 29.00 64.00 20.00 30.00 60.67 19.00 132.00 108.67

23 18.33 20.33 67.33 16.33 17.33 55.67 20.33 121.00 92.67

24 18.00 29.00 63.67 14.67 27.00 56.67 17.33 124.33 102.00

25 16.33 29.67 57.00 17.33 26.67 63.67 18.33 118.33 109.00

26 18.33 23.67 62.67 17.33 32.67 62.33 20.00 124.67 116.00

27 17.33 23.67 63.00 31.00 32.33 75.00 27.33 134.33 131.67

28 22.33 16.67 61.33 18.33 27.00 55.33 19.33 118.33 101.67

29 17.33 24.00 55.33 15.67 29.67 56.67 17.33 113.33 104.67

30 19.00 28.00 57.00 17.67 33.00 61.33 14.33 123.33 108.67

RPE, retinal pigment epithelium; ELM/IS/OS, external limiting membrane/inner segment of photoreceptors/outer segment of photoreceptors; ONL, outer nuclear layer;
OPL, outer plexiform layer; INL, inner nuclear layer; IPL/GC, inner plexiform layer/ganglion cell; RNFL, retinal nerve fiber layer; ORL, outer retinal layer; IRL, inner retinal
layer.
doi:10.1371/journal.pone.0067265.t003
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In order to look for interobserver variability, as mentioned in

Methods, we had two independent observers go back and measure

the TRT in all animals. There was excellent interobserver

agreement, as depicted in Figure 3, with an ICC of 0.88

(p,0.001, 95% CI = 0.76–0.94). Also, as seen in Figure 3, the

majority of variability between observer TRT measurements was

less than 10 mm. We also measured interobserver variability in

sublayer retinal thicknesses, as shown in Table 4. Again, there was

excellent interobserver agreement with an ICC value of 0.99

(p,0.001, 95% CI = 0.99–1). Here too, the observers showed

remarkable consistency with layer measurements (Figure 4).

Discussion

SD-OCT technology has expanded the boundaries of vision

science as it relates to non-invasive imaging of human retina. In

human studies, SD-OCT normative values have been established

for macular thickness [27,28] and its sublayers [29]. This has

served to further enhance the understanding of retinal architecture

and structural deficits. With the use of SD-OCT, multiple,

reproducible, high-resolution scans, accuracy in identifying defects

at the micron level has improved. Moreover, serial imaging over

time has also helped in studying the course of diseases and their

prognoses.

Similarly, although the advent of this technology has heralded a

revolution for animal study in vision science, normative database

from a ubiquitous small animal species used to model the human

eye has not been established. Various groups have assessed mouse

TRT and retinal sublayers by utilizing different imaging setups.

Some have measured these layers with retrofitted human SD-

OCT devices coupled with an external lens to neutralize mouse

corneal optical power [22,23]. Other groups have incorporated

custom-designed SD-OCT instruments that maintain resolution

capabilities, while eliminating the need for external lens, when

imaging rodent retinas [23,25,26].

In this present study, we determined the mean TRT measure-

ment for the four retinal quadrants surrounding the ONH.

Additionally, our findings included the mean thickness values for

the individual layers that comprise the posterior segment in the

C57BL/6 mouse strain, while utilizing a miniaturized SD-OCT

with stereotactic multi-axis rotational rodent containment device

(i.e. Bioptigen SDOIS).

In terms of TRT for the four retinal quadrants surrounding the

ONH, our data suggest that there is uniformity in measurement

value. Despite not reaching a significant difference, the superior

retina region (202.7464.85 mm) showed a trend of being the

thinnest region as compared to inferior (204.8565.81 mm), nasal

(204.9766.71 mm), and temporal (205.0865.44 mm) areas. We

estimated that the TRT for the C57BL/6 mouse – as extrapolated

from averages of quadrant measurements– to be

204.4165.19 mm. The results from our study are consistent with

those obtained by previous groups [25,30]. There have been other

investigators who have shown mean TRT values ranging from

200–250 mm [22,30,31]. However, the measurement values

obtained by Gabriele et al. (2010) [26] overestimates all prior

mentioned reports. In addition to assessing global TRT, their

report was the first to examine quadrant TRT in the C57BL/6

mouse. They employed a similar SD-OCT device, as in our study

(Bioptigen Inc., Durham, NC), to generate en-face volumetric

images, centered at the ONH. In the Gabriele et al. study,

automated segmentation software was used to measure B-scan

TRT spanning from the inner limiting membrane (ILM) to the

RPE. Global and quadrant TRT outcome measurements were

estimated by applying a linear mixed-effects statistical model.

From their analyses, the authors reported that the mean global

TRT was 298.21 mm [26]. Moreover, they showed the superior

retina (310.38 mm) as being the thickest quadrant in comparison to

the inferior (291.55 mm), nasal (296.52 mm) and the temporal

(294.37 mm) zones. Higher TRT values obtained in that study

could potentially be attributed to the region of selection indicated

by automated segmentation. Although Gabriele et al. selected

boundary points that supposedly corresponded to the ILM and

RPE, it is possible that the choroid was factored in when

measuring the retinal distance from the ILM to the RPE (Figure 3,

Gabriele et al., 2010). This inclusion could have increased the

global and quadrant TRT values in their study. Another probable

explanation for their overestimated TRT values could be based on

Figure 3. Bland-Altman plot showing representative inter-
observer difference for total retinal thickness (TRT) measure-
ments in the nasal quadrant of all animals (n = 30). Each black
dot in the figure corresponds to a specific TRT measurement point
within the B-scan – twelve points were measured in each quadrant.
Since the graph depicts TRT values in the nasal quadrant for all 30
animals, in total, 360 TRT measurements are represented in this graph.
doi:10.1371/journal.pone.0067265.g003

Figure 4. Bland-Altman plot showing inter-observer difference
for mean retinal sublayer thickness measurements in 10
randomly selected animals. Each dot in the figure corresponds to
the mean thickness from 10 animals and the color code represents 9
different sublayers: red, retinal pigment epithelium; blue, external
limiting membrane/inner segment of photoreceptors/outer segment of
photoreceptors; pink, outer nuclear layer; purple, outer plexiform layer;
yellow, inner nuclear layer; brown, inner plexiform layer/ganglion cell;
green, retinal nerve fiber layer; orange, outer retinal layer; black, inner
retinal layer.
doi:10.1371/journal.pone.0067265.g004
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the level of resolution obtained with their B-scan images. Their

scanning protocol required only 250 averaged A-scans (each an

average of 4 individual A-scans)6250 frames, whereas our

scanning protocol included 1000 A-scans per B-scan with 100

accumulated B-scans with a higher resolution.

In addition to TRT measurements, we also performed sub-

analyses of the thickness values for different layers of the retina.

Broadly, we first analyzed the thickness of the outer retina

(126.37610.01 mm) and inner retina (107.03610.98 mm). Further,

we also analyzed each of the retinal layers constituting the

C57BL/6 retina. Although retinal sublayer measurements were

also performed in a study by Fischer et al. (2009) [23], they

investigated five retinal sublayers as compared to the seven

evaluated in our study. Their study showed slightly increased

retinal thickness as compared to our findings. This difference

could possibly be accounted for by the dissimilarity in resolution –

they used a third generation, commercially available human SD-

OCT apparatus versus the SDOIS Bioptigen system used in our

study. Another factor that could possibly account for the difference

is the absence of sharp demarcation of each layer and hence, the

inconsistency in defining different layer borders and their

measurements. This inconsistency could be a possible explanation

for the difference of about 30 mm in the mean global TRT

(,204 mm) and the sum of the mean outer retinal thickness

(,126 mm) and the mean inner retinal thickness (,107 mm) in our

study. These two measurements were done on two different days

and a slightly different demarcation line may have been used for

the actual measurements. Further improvement of resolution of

OCT instrumentation and/or inclusion of automated calipers

(unlike our study where manual calipers were used) may help

better define the dimensions of various sublayers of the retina in

the future. Despite this slight limitation, we were able to estimate

standard deviations within a 10% margin of the mean for each

TRT quadrant; this reflects a narrow range of variability. In

addition, the two independent raters showed excellent agreement

for measurements of TRT and the various sublayers.

In conclusion, this current study describes the normative retinal

values for the C57BL/6 mouse while utilizing the Bioptigen

SDOIS device. It provides normative values for the total retinal

thickness as well as the individual sublayers of the retina. This will

serve as a standard for disease models in this mouse strain to better

understand the causes of diseases, their pathophysiological

mechanisms, and any treatment options that maybe available.
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