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ABSTRACT Culture-independent studies of the cystic fibrosis (CF) airway micro-
biome typically rely on expectorated sputum to assess the microbial makeup of
lower airways. These studies have revealed rich bacterial communities. There is often
considerable overlap between taxa observed in sputum and those observed in sa-
liva, raising questions about the reliability of expectorated sputum as a sample rep-
resenting lower airway microbiota. These concerns prompted us to compare pairs of
sputum and saliva samples from 10 persons with CF. Using 16S rRNA gene sequenc-
ing and droplet digital PCR (ddPCR), we analyzed 37 pairs of sputum and saliva sam-
ples, each collected from the same person on the same day. We developed an in
silico postsequencing decontamination procedure to remove from sputum the frac-
tion of DNA reads estimated to have been contributed by saliva during expectora-
tion. We demonstrate that while there was often sizeable overlap in community
membership between sample types, expectorated sputum typically contains a higher
bacterial load and a less diverse community compared to saliva. The differences in
diversity between sputum and saliva were more pronounced in advanced disease
stage, owing to increased relative abundance of the dominant taxa in sputum. Our
effort to model saliva contamination of sputum in silico revealed generally minor ef-
fects on community structure after removal of contaminating reads. Despite consid-
erable overlap in taxa observed between expectorated sputum and saliva samples,
the impact of saliva contamination on measures of lower airway bacterial commu-
nity composition in CF using expectorated sputum appears to be minimal.

IMPORTANCE Cystic fibrosis is an inherited disease characterized by chronic respira-
tory tract infection and progressive lung disease. Studies of cystic fibrosis lung mi-
crobiology often rely on expectorated sputum to reflect the microbiota present in
the lower airways. Passage of sputum through the oropharynx during collection,
however, contributes microbes present in saliva to the sample, which could con-
found interpretation of results. Using culture-independent DNA sequencing-based
analyses, we characterized the bacterial communities in pairs of expectorated spu-
tum and saliva samples to generate a model for “decontaminating” sputum in silico.
Our results demonstrate that salivary contamination of expectorated sputum does
not have a large effect on most sputum samples and that observations of high bac-
terial diversity likely accurately reflect taxa present in cystic fibrosis lower airways.
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Despite the considerable advances made in the care of persons with cystic fibrosis
(CF) and the resultant increase in life expectancy in this population during the last

3 decades, chronic airway infection leading to respiratory failure remains the primary
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cause of death. Initially, studies of CF airway infection focused on human-pathogenic
bacterial species (Staphylococcus and Haemophilus) recovered in cultures of respiratory
secretions. The bacteria of interest in CF gradually expanded to include several oppor-
tunistic pathogens including Pseudomonas, Burkholderia, Achromobacter, Stenotroph-
omonas, and mycobacteria (1). The advent of culture-independent approaches to study
the human microbiome has, more recently, enabled a deeper exploration of CF airway
microbiology, and studies employing these methods have indicated that CF airways
likely harbor more diverse bacterial communities than previously appreciated (2, 3).
These new insights hold promise to translate into novel approaches to better manage
airway infection, further reducing respiratory system-associated morbidity and mortal-
ity in CF.

Sampling of the lower airways to assess the microbial communities therein presents
a challenge, however. Although bronchoscopy has been used to obtain airway secre-
tions (i.e., via bronchoalveolar lavage [BAL]) in several studies of CF microbiology (4–10),
this approach is invasive, not without risk, and not feasible for studies requiring analysis
of serial samples from individuals across a large subject cohort. Expectorated sputum,
therefore, has been most often used to address the dynamics of airway bacterial
communities in CF. Because this respiratory tract specimen passes through the non-
sterile upper airway and oropharynx, however, it must be assumed to be “contami-
nated” with microbes residing in these sites, raising concerns about the reliability of
sputum in reflecting lower airway microbial communities. The degree to which upper
airway microbes contribute to the bacterial communities measured in expectorated
sputum—and, by extension, the degree to which these species can be held to account
for the conclusion that CF lower airways harbor rich bacterial communities—is difficult
to ascertain.

To improve our understanding of the relationship between upper and lower airway
bacterial communities, we analyzed pairs of expectorated sputum and saliva samples
collected from individuals with CF. We estimated the effect of saliva contamination on
expectorated sputum and propose a model to account for the contribution of salivary
microbiota to measures of sputum bacterial community composition.

RESULTS
Subjects, samples, and DNA sequencing controls. Ten adult subjects with CF

provided 37 same-day pairs of sputum and saliva samples. Subject demographics and
sample characteristics are summarized in Table 1. The median subject age was 32 years.
The median percent predicted forced expiratory volume in 1 s (ppFEV1) was 61,
measured within 1 to 45 days of the collection day. The number of sample pairs per
subject ranged from one to five. For subjects with more than one sample pair, the
period of time between the first and last sample pair averaged 94 days (range 8 to
330 days), and the time between consecutive samples averaged 32 days (range 7 to
253 days). Six sample pairs were collected during antibiotic treatment (i.e., treatment

TABLE 1 Subject and sample characteristics for 37 pairs of expectorated sputum and
saliva

Subject
No. of
pairs Sex CFTR genotype

Age (yr) at
1st sample

Disease
stagea

1 5 F F508del homozygous 19 Int
2 5 F F508del homozygous 30 Early/Int
3 5 F F508del heterozygous 26 Int/Adv
4 5 M F508del heterozygous 21 Early
5 5 F F508del homozygous 56 Early/Int
6 1 F F508del heterozygous 51 Int
7 2 M F508del heterozygous 32 Int
8 3 F F508del homozygous 29 Int
9 3 M F508del heterozygous 35 Adv
10 3 F Other 32 Int
aDisease stage was assigned as described in the text. Int, intermediate; Adv, advanced.
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other than maintenance antibiotic use). Only one subject had advanced lung disease,
but all spontaneously expectorated sputum on a daily basis.

The median DNA sequencing error rate, based on mock community analyses, was
0.032% (range 0.025% to 0.036%). The median bacterial load of reagent controls was
4.2 � 103 (range 3.8 � 103 to 4.5 � 103) 16S rRNA gene copies/ml, which was more
than 5 logs lower than the median bacterial load of sputum and saliva samples. Neither
the reagent nor water controls amplified during library construction. The mean pairwise
theta-YC similarity of 59 generous donor control replicates was 0.983 (range 0.931 to
0.998).

Total bacterial load, bacterial community richness, and community structure.
In the aggregate, the bacterial load (expressed as 16S rRNA gene copies/ml) in sputum
samples (median 1.4 � 109; range 8.3 � 106 to 1.0 � 1010) was greater than the bac-
terial load in saliva samples (median 5.4 � 108; range 9.3 � 105 to 7.0 � 109), although
this difference failed to reach statistical significance (linear mixed model, P � 0.054;
Fig. 1A). For 25 of 37 pairs, the bacterial load of the sputum sample was greater than
that of the corresponding saliva sample (Fig. 1B). The median bacterial load difference
between paired sputum and saliva samples was 9.3 � 108 more 16S rRNA gene
copies/ml in sputum than in saliva (range, 3.8 � 109 fewer to 9.8 � 109 more). Consid-
ering all samples (37 saliva and 37 sputum) together, bacterial load was not significantly
different between disease stage groups (linear mixed model, P � 0.655; Fig. 1C). The
bacterial load of all samples collected during antibiotic treatment was significantly
lower than that of all other samples (linear mixed model, P � 0.038; see Table S1 in the
supplemental material). Saliva samples collected during antibiotic treatment had lower
bacterial load compared to nontreatment saliva samples, treatment sputum samples,
and nontreatment sputum samples; however, there was no significant interaction
between sample type and antibiotic treatment status in the model (linear mixed model,
P � 0.176; Table S1).

The median bacterial richness (number of observed operational taxonomic units
[OTUs]) in sputum samples was significantly lower than in saliva (linear mixed model,
P � 0.021; Fig. 2A). For 25 of 37 pairs, fewer taxa were observed in sputum compared
to the respective saliva sample (Fig. 2B). The median difference between saliva and
sputum richness was six OTUs (range, �16 to 29). For all sputum and saliva samples in
the aggregate, bacterial richness was not significantly different between disease stage
groups (Fig. 2C), nor between on- or off-antibiotic-treatment groups (linear mixed
model, P � 0.958 [disease stage group] and P � 0.829 [antibiotic treatment groups]).

A wide range of overlap in community membership and structure was observed in
sputum-saliva sample pairs (Fig. 3). The median theta-YC similarity between each
sputum and paired saliva sample was 0.400 (range 0.029 to 0.856). For context, the
median theta-YC similarity between all sputum samples from all subjects was 0.207,
while the median theta-YC similarity between 59 replicate generous donor control
samples was 0.985. Community structures were significantly more similar for sample
pairs collected from subjects at earlier (early plus early/intermediate) disease stage
compared to later (intermediate plus advanced) disease stage (Fig. 4A; t test, P � 0.007).
Pairs from subjects in the later disease stage group tended to have lower Jaccard
similarity, although this difference was not significant (Fig. 4B; t test, P � 0.105). The
relative abundance of the dominant OTU in sputum was significantly greater than the
relative abundance of the dominant OTU in the respective saliva sample for sample
pairs in the later disease stage group only (Fig. 4C; paired t tests P � 0.001 [later disease
stage] and P � 0.239 [earlier disease stage]). Community structures (theta-YC and
Jaccard) were not significantly different between sputum and saliva sample pairs
collected during antibiotic treatment compared to all other pairs (t tests, P � 0.119
[theta-YC] and P � 0.979 [Jaccard]).

In silico sputum decontamination. Bacteria in sputum that originate solely via
contamination from saliva during expectoration would be expected to be present in
approximately the same relative proportions as are found in the respective saliva
sample. In other words, regardless of the volume of saliva that contaminates a sputum
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FIG 1 Bacterial load (16S rRNA gene copies/ml) in sputum and saliva samples. (A) In the aggregate,
bacterial load was greater in sputum samples than in saliva samples, although this difference failed to

(Continued on next page)
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sample, the taxa present in that volume of saliva would add proportionately to the
sputum sample. Furthermore, the abundance of each taxon observed in a given volume
of expectorated sputum that can be ascribed to saliva contamination is limited by the
abundance of that taxon in a comparable volume of saliva. We used this conceptual
framework to estimate the maximum possible contribution of taxa from saliva to
expectorated sputum samples.

For each sputum-saliva sample pair, the following procedure was performed, as
illustrated in Fig. 5. OTUs with at least 1% relative abundance in the saliva sample (top
saliva OTUs) were identified; OTUs with �1% relative abundance in the saliva sample
were not included to avoid false negatives at the lower limits of sequence detection.
The absolute abundance of each of the top saliva OTUs was calculated by multiplying
the total bacterial load in the saliva sample (quantified by 16S rRNA droplet digital PCR
[ddPCR]) by the relative abundance of the OTU in that sample. The absolute abundance
of each of the top saliva OTUs present in the corresponding sputum sample was
similarly calculated. The ratios of the top saliva OTUs in sputum-saliva sample pairs
were calculated by dividing the absolute abundance of each of these OTUs in sputum
by its absolute abundance in saliva. The lowest resulting ratio value among all top saliva
OTUs in each sample pair was identified as the contamination constant for that sample
pair. For pairs where the lowest resulting value was greater than 1 (i.e., the abundances
of all top saliva OTUs in sputum were greater than their corresponding abundances in
saliva), the contamination constant was set at 1. For sample pairs where a top saliva
OTU was absent in sputum, the contamination constant for the pair was set at 0. Next,
for each shared OTU in a saliva-sputum sample pair, the absolute abundance of the
OTU in the saliva sample was multiplied by the contamination constant for that pair,
resulting in the calculated contamination value for that OTU. This value was subtracted
from the absolute abundance of that OTU in the respective sputum sample to yield a
corrected abundance of the OTU in sputum. The resulting community structure, based
on the corrected abundances of all shared OTUs, is the corrected community in the
sputum sample.

The mean contamination constant among the 37 sputum-saliva sample pairs was
0.230 (range 0 to 1) (Table S2). The mean theta-YC similarity of pairs of sputum samples
(each pair consisting of a sample pre- and post-in silico decontamination) was 0.970
(range 0.309 to 1). There was no significant effect of disease stage group, antibiotic
treatment status, sputum alpha diversity, or sputum bacterial load on the similarity of
sputum before and after decontamination (linear mixed model, P � 0.375 [disease
stage group], P � 0.589 [antibiotic treatment status], P � 0.427 [sputum alpha diver-
sity], and P � 0.886 [sputum bacterial load]). For the five subjects who each contributed
five pairs of samples, the decontamination procedure did not significantly change the
bacterial community structure in sputum samples (Fig. 6, analysis of molecular variance
[AMOVA] P � 0.01).

DISCUSSION

Although chronic lung infection and inflammation is the primary cause of morbidity
and mortality in CF, the microbiology of CF lung infection is not well understood.
Whereas culture-based methods to study CF airway microbiology have focused on a
narrow set of opportunistic bacterial pathogens, culture-independent analyses of CF

FIG 1 Legend (Continued)
reach statistical significance (linear mixed model, P � 0.054). (B) For 25 of 37 pairs, the bacterial load of
the sputum sample was greater than that of the corresponding saliva sample. Sample pairs collected
during antibiotic treatment are marked with a “T.” (C) Bacterial load of all samples (37 saliva and 37
sputum samples) was not significantly different between subjects with early or early/intermediate
disease stage (n � 15 sample pairs from 3 subjects) and subjects with intermediate, intermediate/
advanced, or advanced disease stage (n � 22 sample pairs from 7 subjects) (linear mixed model,
P � 0.655). The top and bottom boundaries of each box indicate 75th and 25th quartile values,
respectively; black lines inside each box represent the median values; solid black circles inside each box
represent the mean values.
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FIG 2 Bacterial community richness (number of observed OTUs) in sputum and saliva samples. (A) In the
aggregate, bacterial richness was greater in saliva samples than in sputum samples (paired t test,

(Continued on next page)
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respiratory specimens have revealed bacterial communities that can be quite diverse
(11–15). Expectorated sputum is most commonly used in these studies, but the
reliability of this specimen in reflecting lower airway microbiota is a concern, consid-
ering that expectoration involves passage of sputum through the nonsterile upper
airway and oral cavity.

Few studies have addressed this concern directly. Goddard and colleagues (16) used
sterile technique to obtain endobronchial samples from the airways of explanted CF
lungs from several patients undergoing lung transplantation, thereby circumventing

FIG 2 Legend (Continued)
P � 0.021). (B) For 25 of 37 pairs, the bacterial richness of the saliva sample was greater than that of the
corresponding sputum sample. Sample pairs collected during antibiotic treatment are marked with a “T.”
The vertical black bars at 0 indicate samples where sputum and saliva samples have equal richness. (C)
Richness of all samples (37 saliva and 37 sputum samples) was not significantly different between
subjects with early or early/intermediate disease stage (n � 15 sample pairs from 3 subjects) and subjects
with intermediate, intermediate/advanced, or advanced disease stage (n � 22 sample pairs from 7
subjects). The top and bottom boundaries of each box indicate 75th and 25th quartile values, respec-
tively; black lines inside each box represent the median values.

FIG 3 Relative abundance of taxa observed in 37 pairs of expectorated sputum and saliva samples collected from
10 subjects, showing individual OTUs with an average relative abundance �1% across all samples. “Other” taxa
combine remaining OTUs in each sample. Disease stage is indicated above each subject’s plots.
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FIG 4 Community similarity of 37 pairs of expectorated sputum and saliva. (A) Community structures
were significantly more similar (theta-YC similarity) in sample pairs from subjects with early or early/

(Continued on next page)
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the possibility of sample contamination by upper airway secretions. Using DNA se-
quencing, they compared the bacterial species detected in lower respiratory tract
airways to the species found in paired upper airway samples from the same patients
and observed airway communities with very low diversity, heavily dominated by
“typical” CF pathogens. The paucity of oropharyngeal microbiota in the endobronchial
samples led the authors to question the reliability of expectorated sputum in reflecting
the lower airway microbiome in CF. As the authors acknowledge, however, analysis of
explanted lungs is, by definition, representative of end-stage CF lung disease, wherein
very low bacterial community diversity, owing to the overwhelming dominance of a
single species, is typically observed (12, 13, 17). Thus, the relevance of this study to
airway microbiology in the majority of CF patients who are at earlier stages of lung
disease is limited. In a subsequent investigation, Brown and colleagues (18) dissected
the diseased lung tissue of a 3-year-old child who underwent lobectomy for severe
localized CF lung disease and similarly investigated the microbiota therein. In addition
to typical CF pathogens, including Staphylococcus and Haemophilus, a diverse bacterial
population was detected that included Ralstonia and anaerobic species.

More recently, Jorth and colleagues (4) reported that DNA sequence analysis of BAL
fluid samples from children and young adults with mild CF lung disease showed no
evidence of oral bacterial communities in samples that lacked typical CF pathogens.
They concluded that established CF pathogens are primarily responsible for CF lung
infections. The BAL fluid samples from these relatively healthy young CF patients (mean
ppFEV1 of 92; mean age 13 years; median age not provided) generally had bacterial
DNA concentrations (median �103 bacterial genome copies/ml) several orders of
magnitude lower than the levels found in sputum of expectorating adults with CF (12,
19–21), making it difficult to extrapolate these findings more broadly to the CF
population.

In our study, we similarly observed bacterial DNA concentrations in sputum (median
�109 16S gene copies/ml) far exceeding those measured by Jorth and colleagues (4) in
BAL fluid samples from younger patients. Whereas sample contamination introduced
by laboratory reagents and/or during sample collection is a critically important concern
in microbiome analyses of low-biomass samples (22–24), the impact would be expected
to be considerably less in the analysis of samples with very large biomass. In fact, we
observed that bacterial DNA levels in our reagent controls were several logs lower than
those found in sputum and saliva samples. More relevant to our study, however, was
our observation that bacterial loads in sputum were generally greater than those in
saliva (Fig. 1A and B), which would considerably mitigate the impact of salivary
contamination of expectorated sputum relative to what would be expected with
salivary contamination of very-low-biomass BAL fluid samples. Consistent with previous
work (25), we found that antibiotic treatment was not a significant factor contributing
to differences in bacterial load or bacterial richness.

Our analyses of bacterial community structures revealed considerable overlaps in
membership within pairs of sputum and saliva samples. This is not surprising consid-
ering that sputum and saliva samples each likely represent a mixture of the two.
Nevertheless, detecting taxa in sputum that are known to inhabit the upper airways
and oropharynx raises reasonable concerns about the source of these species. Assess-
ing lower airway infection in CF from an ecological theory perspective, however,

FIG 4 Legend (Continued)
intermediate disease stage (n � 15 sample pairs from 3 subjects) than among subjects with intermediate,
intermediate/advanced, or advanced disease stage (n � 22 sample pairs from 7 subjects) (t test,
P � 0.007). (B) Sample pairs from subjects with later-stage disease tended to have lower Jaccard similarity
than subjects with earlier-stage disease, although this difference was not statistically significant (t test,
P � 0.105). (C) In sample pairs from subjects with later-stage disease, the relative abundance of the
dominant (Max) OTU was significantly greater in sputum than in the respective saliva sample (paired t
test, P � 0.001 [later-stage disease group] and P � 0.2386 [earlier-stage disease group]). The top and
bottom boundaries of each box indicate 75th and 25th quartile values, respectively; black lines inside
each box represent the median values.
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provides a cogent conceptual framework whereby the upper airway serves as a source
of microbes that may migrate to and persist in the lower airways (26). Microbiologic
continuity of the aerodigestive tract has been identified in healthy individuals (27) as
well as in persons with CF (28), where similarity between oral and gastric communities
indicates connectivity between mouth, lung, and upper gastrointestinal microbiomes.
In this biogeography context, continuously mixed microbial communities inhabit these
contiguous anatomic sites, with community composition in each determined by rates
of migration, colonization/infection, and extinction (26, 29).

FIG 5 Illustration of in silico sputum decontamination procedure using a hypothetical pair of sputum and saliva samples.
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FIG 6 (A) Theta-YC based PCoA of bacterial community structures in sputum from five subjects who
each provided five pairs of samples. Sputum before (closed circles) and after (open circles) in silico

(Continued on next page)
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As has been shown in several previous studies (12, 13, 17), we found that sputum
bacterial community diversity decreased with lung disease progression, primarily due
to reduced community evenness resulting from the progressive dominance of a single
species. This trend was not observed in the corresponding saliva samples, however.
Further, we found, as have others (30), that sputum and saliva bacterial loads remained
relatively constant with advancing lung disease. Given this consistency in bacterial load
and salivary community diversity across disease stages, it is improbable that salivary
contamination would account for high sputum community diversity during early stages
of lung disease but not during late disease stages.

We found that despite the overlap in bacterial community membership between
paired sputum and saliva samples, we observed, in some pairs, taxa that were dispro-
portionately represented in one sample or the other. We noted, for example, some
sample pairs with comparable bacterial loads in which a taxon was present in high
relative abundance in saliva but present in very low relative abundance or not detected
at all in the corresponding sputum sample. Conversely, we observed some sample pairs
in which a specific taxon was present in much greater relative abundance in sputum
than in the corresponding saliva sample. Our in silico decontamination model is
premised on the principle that the contribution of species from saliva to sputum must
be proportionate to the relative abundance of species in saliva. Taking total bacterial
load and taxon relative abundance into account in this model allows an estimation of
the maximum salivary contamination of sputum for each sample pair, providing a
liberal estimate of potential contamination and a means to “decontaminate” expecto-
rated sputum in silico.

While the thrust of our study was to estimate the impact of salivary microbiota on
measures of microbial communities in sputum, this effort allowed us to consider
previously described software packages for estimating the proportion of contaminants
in microbial communities of interest. Programs such as SourceTracker (31) and decon-
tam (32) seek to objectively remove entire OTUs or genera based on their a priori
identification as contaminants, or their low abundance, or their presence in control
samples. In contrast, our approach considers the absolute abundances of taxa and
estimates contamination separately for each pair of sputum and saliva samples. This
strategy is more similar to microDecon (33), which also addresses overlapping OTUs
(those OTUs expected to occur in both the sample and the contamination source)
based on the principle that contamination from a common source will be proportionate
and can be calculated using a “constant” OTU that is assumed to be entirely contam-
ination. The difference of our approach is that for each sample and source pair, we use
the estimation of maximum contamination to establish an upper limit of contamina-
tion, rather than make a probabilistic estimation of contamination (SourceTracker) or
remove taxa entirely (decontam). The primary goal of our method was to evaluate the
potential for saliva contamination of expectorated sputum, which in turn establishes
the utility of sputum as a measure of lower airway microbiota in CF. The calculated
saliva contamination of sputum samples therefore represents a “worst-case scenario.”

Despite this aggressive approach, the impact of saliva contamination on sputum
samples was estimated to be minimal. In fact, the mean sputum community structure
similarity before and after decontamination was within the range of technical (sequenc-
ing) replicate controls, with only three of 37 sputum samples falling outside this range,
suggesting that much of the diversity observed in sputum (i.e., due to nontypical CF
pathogens) was present prior to passage through the oral cavity during expectoration.
While we do not think in silico decontamination should be a necessary step for all CF

FIG 6 Legend (Continued)
decontamination procedure is shown for each sample (before/after decontamination sputum pairs are
connected by lines). Subjects are depicted in different colors. Fifty-nine technical replicates (generous
donor controls) are shown as open gray triangles. (B) Using the same ordination data as in panel A,
subjects and controls are visualized separately with the axes for each plot set so that the samples fill the
ordination space. As a result, the scales between plots are not comparable.
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microbiome studies employing expectorated sputum, it is nevertheless possible that
even the minor changes in community structures observed after decontamination may
reveal dynamics of interest that would have been otherwise obscured. In subject 5, for
example, the bacterial community structures of four of five sputum samples shifted in
a similar fashion after in silico decontamination. In this regard, the impact of salivary
contamination on community structure—and whether this constitutes a meaningful
change—likely varies between subjects and over time within subjects and ultimately
depends on the question at hand. Importantly, this study provides evidence that the
diversity of bacterial communities measured in CF sputum cannot be attributed solely
to the contamination of sputum by salivary microbiota during expectoration. As such,
these results support the use of expectorated sputum as a measure of lower airway
microbiota in CF and do not corroborate reports asserting that CF lung microbial
diversity is predominantly an artifact of sampling methods.

MATERIALS AND METHODS
Study design and sample collection. Expectorated sputum and saliva samples were collected from

a cohort of persons with CF as part of a long-term study of CF airway microbiota. This study was
approved by the Institutional Review Board of the University of Michigan Medical School
(HUM00037056), and informed written consent was obtained from all participants. Sputum and saliva
samples were collected by subjects at home in 30-ml sterile conical tubes. Subjects were reminded that
sputum was the thick material from deep in the lungs and not the watery fluid in their mouth. Subjects
were instructed to spit out saliva and rinse their mouth with tap water before taking a deep breath and
coughing deeply to move sputum up from their lungs. Sputum was then expectorated directly into a
collection tube. For saliva samples, subjects were asked not to eat or drink for 30 min prior to collection.
Subjects were instructed to allow saliva to collect in their mouths for at least 1 min and then gently spit
or drool into the collection tubes. Samples were immediately stored in a �20°C manual defrost freezer
(1 to 10 weeks; mean 4 weeks) before same-day courier transport on dry ice to the University of Michigan
and immediate storage at �80°C. We have previously shown that sputum storage at �20°C does not
have a significant effect on sequencing-based measures of bacterial community structure (34).

Electronic medical records were reviewed for subject demographic and clinical data. Daily antibiotic
use was recorded by subjects on the day the samples were collected, and subjects were classified as
either on or not on treatment antibiotics (i.e., antibiotics other than chronic maintenance antibiotics such
as inhaled tobramycin and oral azithromycin) at the time of sample collection. Disease stage was
assigned based on ppFEV1 over the period of sample collection: early (ppFEV1 � 70), intermediate (70
� ppFEV1 � 40), or advanced (ppFEV1 � 40) (35, 36). When subjects crossed between disease stage
categories during the course of this study, they were classified as either early/intermediate or interme-
diate/advanced.

Sample processing and 16S rRNA gene sequencing. Sputum and saliva samples were thawed on
ice prior to homogenization in 10% Sputolysin (MilliporeSigma, Burlington, MA, USA). Samples were
treated with bacterial lysis buffer (Roche Diagnostics Corp., Indianapolis, IN, USA), lysostaphin (Milli-
poreSigma), and lysozyme (MilliporeSigma) as previously described (12), followed by mechanical disrup-
tion by glass bead beating and digestion with proteinase K (Qiagen Sciences, Germantown, MD, USA).
The MagNA Pure nucleic acid purification platform (Roche Diagnostics Corp.) was used to extract and
purify DNA according to the manufacturer’s protocol. Reagent control samples were similarly prepared,
with UltraPure DNase/RNase-free distilled water (Life Technologies Corp., Grand Island, NY, USA) substi-
tuted for the sample.

DNA libraries were prepared by the University of Michigan Microbial Systems Molecular Biology
Laboratory as described previously (37). In brief, the V4 region of the bacterial 16S rRNA gene was
amplified using touchdown PCR with barcoded dual-index primers. The touchdown PCR cycles consisted
of 2 min at 95°C, followed by 20 cycles of 95°C for 20 s, 60°C (starting from 60°C, the annealing
temperature decreased 0.3°C each cycle) for 15 s, and 72°C for 5 min, followed by 20 cycles of 95°C for
20 s, 55°C for 15 s, and 72°C for 5 min and a final 72°C for 10 min. Resulting amplicon libraries were
normalized and sequenced on an Illumina sequencing platform using MiSeq reagent kit V2 (Illumina Inc.,
San Diego, CA, USA). The final load concentration was 4.0 to 5.5 pM with a 15% PhiX spike to add
diversity.

DNA sequencing controls and DNA sequence analyses. Reagent-only controls were prepared with
each change in reagent lot. Mock bacterial community DNA standards (ZymoBIOMICS Microbial Com-
munity DNA; Zymo Research, Irvine, CA, USA) and water controls were included in sequencing runs by
the University of Michigan Microbial Systems Molecular Biology Laboratory. Sequences from reagent and
water controls were analyzed to assess the impact of laboratory contaminants on sputum and saliva
sample DNA sequencing results. Mock community sequences were used to measure sequencing error
rates. DNA extracted from a “generous donor” CF sputum sample was also sequenced to determine
interrun sequencing variability. Sequencing data from 59 replicates of the generous donor control were
analyzed.

Raw DNA sequences were analyzed with mothur v1.41.3 (38) following the mothur MiSeq SOP (full
list of mothur commands available at https://github.com/um-cf-microbiome/LiPuma_Sputum-Saliva).
Briefly, low-quality and chimeric reads were discarded, and remaining sequences were classified taxo-
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nomically against the SILVA database (release 132) using the RDP Bayesian Classifier. Sequences were
clustered into OTUs using a 3% dissimilarity cutoff with the OptiClust algorithm (39). To limit the effects
of sequencing depth, each sample was rarefied to the lowest number of reads in the sample set
(n � 2,076). Alpha diversity of the subsampled data was measured as observed OTUs (richness). Beta
diversity was calculated based on the Jaccard (40) or Yue and Clayton (“theta-YC”) (41) measures of
dissimilarity and, for ease of interpretation, are reported as similarity (i.e., 1 � dissimilarity). Theta-YC was
chosen to describe dissimilarity between communities, taking into consideration the proportions of both
the shared and nonshared members of each community. An advantage of this metric compared to other
dissimilarity metrics is that it is less sensitive to outlier values and weighs rare and abundant OTUs more
evenly than the Bray-Curtis or Morisita-Horn (42) metric.

ddPCR. Total bacterial load of sample and control DNAs was quantified by 16S rRNA droplet digital
PCR (ddPCR) on a QX200 AutoDG droplet digital PCR system (Bio-Rad Laboratories, Inc., Hercules, CA,
USA). Primer sequences were 5=-TCCTACGGGAGGCAGCAGT-3= and 5=-GGACTACCAGGGTATCTAATCCT
G-3= (final concentration 900 nM each), and probe sequence was (6-carboxyfluorescein [FAM])-5=-CGTA
TTACCGCGGCTGCTGG-3=-(6-carboxytetramethylrhodamine [TAMRA]) (final concentration 250 nM). All
reactions were run in duplicate. Reaction mixtures were transferred to an automated droplet generator
(Bio-Rad Laboratories, Inc.), followed by gene amplification in a C1000 Touch thermal cycler (Bio-Rad
Laboratories, Inc.). Cycling conditions were 10 min at 95°C, followed by 40 cycles at 94°C for 30 s and 58°C
for 2 min, and a final 98°C for 10 min, with a ramp rate of 2°C/s per step. DNA quantification was
performed with the QX200 droplet reader (Bio-Rad) and data analysis with QuantaSoft Analysis Pro
(Bio-Rad) using default parameters for threshold amplification. Reaction mixtures with fewer than 10,000
droplets were omitted from analysis. DNA concentrations of replicates were averaged, adjusted for
dilution factor, reported in copies of target gene per microliter of DNA, and then converted to copies of
target gene per milliliter of sample based on the DNA extraction steps.

Data analyses. A linear mixed effects model was used to compare bacterial load between sputum
and saliva samples (R packages ‘lme4’ [43] and ‘lmerTest’ [44]), with bacterial load as the dependent
variable; sample type, disease stage group, antibiotic treatment status, and an interaction term for
antibiotic treatment and sample type as fixed effects; and intercept for subject as a random effect. A
linear mixed effects model was also used to compare bacterial richness between sputum and saliva
samples, with richness (number of observed OTUs) as the dependent variable; sample type, disease stage
group, and antibiotic treatment status as fixed effects; and intercept for subject as a random effect. t tests
were performed to compare sputum-saliva theta-YC and Jaccard similarities between disease stage
groups and between antibiotic treatment status groups. Paired t tests were performed to compare
dominant OTU (the OTU with the highest relative abundance in the sample) relative abundances
between sample types within disease stage groups.

A theta-YC-based principal-coordinate analysis (PCoA) plot was generated to visualize the effects of
in silico saliva decontamination on sputum samples and to compare these effects to repeat sequencing
of a generous donor control sample. Analysis of molecular variance (AMOVA) was used to compare
differences in centroids of sputum bacterial communities within individual subjects before and after
decontamination (mothur, v1.41.3). A Bonferroni-corrected P value of 0.01 was used to assess signifi-
cance. A linear mixed effects model was used to model the impact of sample variables on the effect of
the sputum decontamination procedure, with theta-YC similarity of sputum before and after decontam-
ination as the dependent variable; sputum alpha diversity (as inverse Simpson index), sputum bacterial
load, disease stage group, and antibiotic treatment status as fixed effects; and intercept for subject as a
random effect.

Data availability. Raw sequence data are available at NCBI (SRA accession no. PRJNA611611).
Detailed protocols, mothur log file, deidentified subject data, 16S rRNA gene sequencing data, 16S ddPCR
data, and reproducible code for data analyses and figures are available on GitHub (https://github.com/
um-cf-microbiome/LiPuma_Sputum-Saliva).
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