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Abstract 

Background:  Transcriptomics has identified at-arrival differentially expressed genes associated with bovine respira-
tory disease (BRD) development; however, their use as prediction molecules necessitates further evaluation. Therefore, 
we aimed to selectively analyze and corroborate at-arrival mRNA expression from multiple independent populations 
of beef cattle. In a nested case-control study, we evaluated the expression of 56 mRNA molecules from at-arrival 
blood samples of 234 cattle across seven populations via NanoString nCounter gene expression profiling. Analysis 
of mRNA was performed with nSolver Advanced Analysis software (p < 0.05), comparing cattle groups based on the 
diagnosis of clinical BRD within 28 days of facility arrival (n = 115 Healthy; n = 119 BRD); BRD was further stratified for 
severity based on frequency of treatment and/or mortality (Treated_1, n = 89; Treated_2+, n = 30). Gene expression 
homogeneity of variance, receiver operator characteristic (ROC) curve, and decision tree analyses were performed 
between severity cohorts.

Results:  Increased expression of mRNAs involved in specialized pro-resolving mediator synthesis (ALOX15, HPGD), 
leukocyte differentiation (LOC100297044, GCSAML, KLF17), and antimicrobial peptide production (CATHL3, GZMB, LTF) 
were identified in Healthy cattle. BRD cattle possessed increased expression of CFB, and mRNA related to granulocytic 
processes (DSG1, LRG1, MCF2L) and type-I interferon activity (HERC6, IFI6, ISG15, MX1). Healthy and Treated_1 cattle 
were similar in terms of gene expression, while Treated_2+ cattle were the most distinct. ROC cutoffs were used to 
generate an at-arrival treatment decision tree, which classified 90% of Treated_2+ individuals.

Conclusions:  Increased expression of complement factor B, pro-inflammatory, and type I interferon-associated 
mRNA hallmark the at-arrival expression patterns of cattle that develop severe clinical BRD. Here, we corroborate at-
arrival mRNA markers identified in previous transcriptome studies and generate a prediction model to be evaluated in 
future studies. Further research is necessary to evaluate these expression patterns in a prospective manner.
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Background
Bovine respiratory disease (BRD) is the leading clinical 
disease in post-weaned beef production systems through-
out North America [1–3]. BRD is a multifactorial disease 
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that culminates from complex interactions between 
viral and bacterial etiologies, the host, and adverse envi-
ronmental circumstances, such as novel housing and 
feeding situations [3–7]. While novel diagnostic and 
therapeutic programs have been developed over the 
past decade, rates of morbidity and mortality related to 
BRD remains relatively unchanged [2, 8–10]. Ultimately, 
antemortem diagnosis of BRD is imprecise, and no gold 
standard modality currently exists for determining real-
time therapeutic intervention [11–14]. Subsequently, 
at-arrival mass medication of cattle with antimicrobials 
(e.g., metaphylaxis) is commonly employed to improve 
cattle herd health and long-term economic performance 
[15–17]. Metaphylaxis is a proven technique in reducing 
morbidity and mortality among high-risk beef cattle, but 
its usage is highly variable when evaluated across popu-
lations and may influence the development of multidrug 
antimicrobial resistance [3, 17–19]. Therefore, the evalu-
ation of gene expression and associated mechanisms of 
beef cattle at arrival may lead to the development of rapid 
diagnostics which accurately predict BRD development 
and severity. The development of a predictive test could 
allow for better assessment of BRD risk and reduce over-
all antimicrobial usage.

RNA sequencing (RNA-Seq) has become an invaluable 
tool for evaluated genomic and gene-by-environment 
associations related to clinical disease [20–22]. Previ-
ous studies have detected differentially expressed genes 
and enriched mechanisms associated with peak clinical 
disease after experimental challenge with known BRD-
associated pathogens and related to naturally occurring 
disease [23–28]. Additionally, our previous research has 
defined genes and pathways related to pro-inflamma-
tory mediation/resolution and antiviral defense to be 
increased at arrival in high-risk beef cattle that resist or 
succumb to naturally occurring BRD, respectively [29–
31]. These studies have provided a better understanding 
of the host-disease complex relationship and created a 
defined record of target molecules involved in BRD, but 
their potential use as gene expression markers requires 
substantiation through extensive testing for classification 
accuracy and mechanistic delineation.

Candidate biomarker development remains a lead-
ing area of medical research, as technologies continue 
to improve, and the understanding of patient heteroge-
neity and dynamic changes associated with pathology 
are primary focuses of therapeutic advancement. Mod-
ern panels are developed in a multi-marker approach, 
as single-molecule diagnostics lack clinical significance 
and pathological representation [32]. Furthermore, sin-
gle-molecule diagnostics often fail to define individuals 
within subgroups or cohorts of disease, as the intrica-
cies of pathological severity and temporal association 

are frequently missed [32, 33]. Thus, we developed a 
multi-marker mRNA expression panel to evaluate pre-
viously identified differentially expressed genes and 
enriched mechanisms in high-risk post-weaned beef cat-
tle at facility arrival. We hypothesized and corroborated 
that specific genes related to host immune and inflam-
matory responses are differentially expressed in equivo-
cal manner to previous BRD host transcriptome studies. 
Here, we provide mRNA expressional information that 
represents BRD acquisition and severity across multiple 
populations of cattle, serving as a platform for the devel-
opment of predictive diagnostics at arrival.

Methods
Animal use and enrollment
All animal use and procedures were approved by the 
Mississippi State University Animal Care and Use Com-
mittee (IACUC protocols #15–003 and #18–529) and 
carried out in accordance with relevant IACUC and 
agency guidelines and regulations. The information 
reported here is in accordance with Animal Research: 
Reporting of In  Vivo Experiments (ARRIVE) guidelines 
(https://​arriv​eguid​elines.​org). Whole blood samples 
were acquired from 397 cattle at facility arrival, spanning 
seven independent populations; five populations were 
cattle purchased from commercial livestock auctions 
within the state of Mississippi or neighboring states and 
housed at the H. H. Leveck Animal Research Center at 
Mississippi State University (Starkville, MS, USA; VD_15, 
n = 14; VD_17, n = 71; PS_19, n = 72; MH_19, n = 83; 
TA_20, n = 84) and two populations were cattle pur-
chased from commercial livestock auctions within the 
state of Missouri or neighboring states and housed at the 
Professional Beef Services Research Facility in northeast 
Missouri (Canton, MO, USA; DG_17, n = 33; DG_18, 
n = 40). On day 0 for each population, blood samples 
were collected into RNA preservation tubes (Tempus 
Blood RNA Tubes, Thermo Fisher Scientific, Waltham, 
Massachusetts, USA) via jugular venipuncture and stored 
at − 80 °C until analysis. All cattle were given identifica-
tion ear tags and confirmed to be negative for persistent 
infection with bovine viral diarrhea virus (BVDV) via ear 
notch antigen capture ELISA. Due to this study being 
performed in conjunction with seven independent exper-
iments, metadata collection (average daily weight gain, 
pen assignment, vaccination/anthelminthic administra-
tion, etc.) varied by population.

Cattle within each population were assessed daily for 
clinical signs of BRD by trained staff. Cattle identified 
with clinical BRD were assigned a severity score of 0–4, 
adapted from the scoring system described by Holland 
and colleagues [34]. Necessary antimicrobial therapy for 
cattle housed in Mississippi was instituted as previously 
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described [19]. Necessary antimicrobial therapy for cattle 
housed in Missouri followed a regimen of gamithromy-
cin (Zactran; Boehringer-Ingelheim Animal Health USA, 
Duluth, GA, USA) and vitamin C, enrofloxacin (Baytril, 
Bayer Animal Health, Shawnee Mission, KS, USA) and 
vitamin C, or florfenicol with flunixin meglumine (Res-
flor Gold, Merck Animal Health, Madison, NJ, USA); all 
drugs were given at labeled dosage and route of admin-
istration. After the third antimicrobial treatment cat-
tle with signs of predetermined endpoints indicative of 
unlikely recovery were evaluated by project veterinarians, 
and euthanized via methods approved by the American 
Veterinary Medical Association guidelines on euthanasia 
if necessary. All cattle that died or were euthanized were 
subjected to necropsy to identify grossly visible abnor-
malities of lungs and other organ systems. Clinical end-
points included severe dyspnea, dull mentation, and/or 
weakness leading to inability to take in feed and water 
adequate to sustain life.

A priori and post‑hoc power calculations
A priori and post hoc power analyses were performed 
with G*Power v3.1.9.7 [35] for sample size estimation 
to assess Healthy versus BRD gene expression and ret-
rospective power estimation for the constructed deci-
sion tree model. Means and standard deviation observed 
between ΔCt values generated from RT-qPCR analysis 
of ALOX15 [29] was utilized for a priori power calcula-
tion, accounting for an alpha of 0.05 and power (1-β error 
probability) of 0.95; power was calculated with a two-
tailed t-Test of the mean differences between Healthy and 
BRD cattle. Two test post hoc analysis for the decision 
tree models utilized the proportions of correctly identi-
fied treated (BRD) and non-treated (Healthy) cattle.

Sample selection and RNA processing
A total of 240 samples were selected for RNA isolation 
and gene expression analysis. One hundred sixteen sam-
ples from cattle never receiving treatment throughout 
their associated study (Healthy) were randomly selected 
across all seven populations with the RANDBETWEEN 
function in Excel 2016 (Microsoft Corp, Redmond, WA, 
USA). One hundred twenty-four samples from cat-
tle treated at least once within 28 days of arrival (BRD) 
were selected and further stratified for severity based 
on treatment frequency. Of the 124 BRD samples, 33 
samples from cattle treated twice or more and/or died 
(Treated_2+) were available and prioritized for analysis; 
the remaining 91 BRD samples were randomly selected 
with the RANDBETWEEN function in Excel 2016 
from cattle treated once within 28 days of arrival and 
never treated again (Treated_1). Additional information 

regarding cattle selected for gene expression analysis is 
found in Supplementary Table S1.

RNA from samples collected into RNA preservation 
tubes (3 mL blood + 6 mL buffer) was isolated with Tem-
pus Spin RNA Isolation kits (Thermo Fisher Scientific, 
Waltham, Massachusetts, USA) according to manufac-
turer’s instructions. RNA quantification, quality, and 
integrity was assessed with a NanoDrop ND-1000 Spec-
trophotometer (Thermo Fisher Scientific, Waltham, Mas-
sachusetts, USA) and Agilent 2100 Bioanalyzer system 
(Agilent Technologies, Santa Clara, CA, USA) at the 
Emory Integrated Genomics Core (EIGC; Emory Uni-
versity, Atlanta, GA, USA). RNA isolation integrity and 
concentration values for all samples are found in Sup-
plementary Table S2. Samples having a concentration 
below 10 ng/μL were adjusted to > 10 ng/μL with a Speed-
Vac vacuum concentrator (Thermo Fisher Scientific, 
Waltham, Massachusetts, USA).

Gene selection and NanoString nCounter assay
A custom NanoString nCounter (NanoString Technolo-
gies, Seattle, WA, USA) mRNA probe set was created to 
analyze the expression of 56 mRNA molecules of inter-
est, and also four housekeeping genes (Supplementary 
Table S3). All genes selected were identified as differen-
tially expressed in our previous studies and have known 
biological relevance related to immune, metabolic, and/
or inflammatory systems [29–31]. Additionally, the panel 
included six positive and eight negative spike-in controls 
implemented by EIGC. Samples were prepared onto a 
96-well plate and analyzed with the nCounter SPRINT 
Profiler (NanoString Technologies, Seattle, WA, USA), 
according to manufacturer’s protocol. Briefly, samples 
were hybridized to target-specific reporter and capture 
probes overnight at 65 °C in a thermocycler. Following 
hybridization, 30–35 μL of each hybridized product was 
pipetted to the nCounter cartridge, sealed, and loaded 
into the drawer of the SPRINT Profiler. A maximum field 
of view (FOV) sensitivity of 555 was selected for expres-
sional capture.

nCounter analysis
Reporter code counts (RCC) and reporter library file 
(RLF) obtained from the nCounter SPRINT Profiler were 
utilized for gene expression analysis though the nSolver 
Advanced Analysis Software v4.0 (NanoString Technolo-
gies, Seattle, WA, USA; https://​www.​nanos​tring.​com/​
produ​cts/​analy​sis-​solut​ions/​ncoun​ter-​analy​sis-​solut​
ions/). Background correction, quality assessment, and 
inter-sample normalization was performed in accord-
ance with the Gene Expression Data Analysis Guidelines 
(MAN-C0011–04). Imaging quality control measure-
ments were set to flag any lane failing to have a registered 

https://www.nanostring.com/products/analysis-solutions/ncounter-analysis-solutions/
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FOV above 75%. Binding density was flagged if any lane 
recorded an optical feature per square micron outside 
the range of 0.1 to 1.8. Positive control linearity, used to 
assess the efficiency of hybridization, was flagged if any 
resulting count was below a correlation of 0.95. Positive 
control limit of detection flagged any sample if the 0.5 fM 
positive control counts were ≤ 2 SD above the mean of 
the negative controls. Background thresholds were set to 
the mean of the manufactured negative controls plus two 
standard deviations. Positive control normalization was 
performed using the geometric mean to compute nor-
malization factors for each sample; lanes with a normali-
zation factor outside of the 0.3–3.0 range were flagged. 
Codeset content normalization was performed with the 
geometric mean of the four housekeeping genes, flagging 
lanes if the normalization factor was outside of the 0.1–
10.0 range. In total, six samples (72_VD_15, 118_VD_17, 
147_VD_17, 188_VD_17, 143_PS_19, and 205_TA_20) 
were removed from further analysis due to low quality. 
Normalized mRNA counts were analyzed for differential 
expression in four comparative analyses: Healthy ver-
sus BRD, Treated_1 versus Healthy, Treated_2+ versus 
Healthy, and Treated_2+ versus Treated_1. Differential 
expression analysis was performed with the normalized 
count data via the nSolver Advanced Analysis module, 
accounting for study (VD_15, VD_17, etc.) as a potential 
confounding variable; study-level effect was incorporated 
into the data analysis model to ensure it did not skew the 
parameter estimation for differential expression analy-
sis and reduce the likelihood of type I error. Information 
regarding confounding variables and estimation of model 
coefficients are found in the nCounter Advanced Analy-
sis User Manual, pp. 46–52 (MAN-10030-03; https://​
www.​nanos​tring.​com/​wp-​conte​nt/​uploa​ds/​2020/​12/​
MAN-​10030-​03_​nCoun​ter_​Advan​ced_​Analy​sis_2.​0_​
User_​Manual.​pdf ). Differentially expressed genes (DEGs) 
were determined to be significant with a p-value of < 0.05. 
Gene expression data produced in this study were sub-
mitted to the National Center for Biotechnology Infor-
mation Gene Expression Omnibus (NCBI-GEO) under 
accession GSE179536.

Statistical analyses and data characterization
Due to discrepancies in metadata recording across all 
seven studies, average daily gain in pounds at the end 
of each study, when cattle were sold at study conclusion 
(ADGend), was assessed for distributive differences asso-
ciated with frequency of treatment. Residual normal-
ity and assumption of equal variance was assessed in R 
v4.0.4 with the Shapiro-Wilk and Bartlett’s test, respec-
tively. When accounting for disease severity, the residuals 
were found to be non-normally distributed. A one-way 
Kruskal-Wallis test was used to test the relationship 

between ADGend and severity of disease, blocking for 
study as a potential confounding variable. Pairwise com-
parisons were assessed, accounting for familywise error 
rate with the Bonferroni correction method; any com-
parison with an adjusted p-value of < 0.05 was considered 
significant.

Normalized gene expression values were exported 
from nSolver as a comma separated values file. Counts 
were imported into R v4.0.4 and converted to log2 count-
per-million (log2CPM) values for downstream statistical 
and classificational analyses. Heatmap visualization and 
unsupervised hierarchical clustering of z-score-scaled 
log2CPM gene expression values were performed with 
the Bioconductor package pheatmap v1.0.12 [36], utiliz-
ing Ward’s minimum variance method of unsupervised 
hierarchical clustering on Minkowski distances and 
Pearson correlation coefficients for samples and DEGs, 
respectively. Multi-level modeling (MLwiN v2.25, Centre 
for Multilevel Modelling, University of Bristol, Bristol, 
EN, UK) was used to assess the proportion of variance at 
each level of disease status (BRD, Healthy) within study 
and severity of disease (Healthy, Treated_1, Treated_2+) 
within study. Variance partition coefficients were calcu-
lated to observe the proportion of the response variation 
that lay within each level of the hierarchy by dividing 
the variation within a level by the sum of all the varia-
tion within the model. Equal variance between genes by 
disease status was assessed using the Levene’s test for 
homogeneity of variance in the general linear model pro-
cedure of SAS v9.2 (SAS Institute, Cary, NC, USA), in 
order to evaluate for outlier-driven gene expression. An 
a priori level of significance was set at an alpha of 0.10. 
Visual assessment of the conditional residuals confirmed 
the assumption of normal distribution. Remaining data 
visualization was conducted with ggplot2 v3.3.3 [37] 
and UpSetR v1.4.0 [38, 39]. Graphical color scaling was 
performed with viridis v0.6.1 [40] to allow ease of visual 
interpretation for individuals with color blindness.

Counts from uniquely identified DEGs were utilized 
for multiclass receiver operating characteristic (ROC) 
curve analysis, recording aggregate areas under the 
curve (AUC) and cutoff values used to distinguish dis-
ease severity cohorts. ROC curve analyses were con-
ducted with the Bioconductor package pROC v1.17.0 
[41]. Classification between the three groups (Healthy, 
Treated_1, and Treated_2+) was evaluated as “excellent” 
(AUC: > 0.900), “good” (AUC: 0.899–0.800), “fair” (AUC: 
0.799–0.700), “poor” (AUC: 0.699–0.600), or “failed” 
(AUC: < 0.600). An empirical decision tree model was 
constructed to identify the maximum predictive accu-
racy of disease severity classification from DEGs, utiliz-
ing log2CPM value thresholds generated from the ROC 
analysis of Treated_2+ versus Healthy cattle. Correctly 

https://www.nanostring.com/wp-content/uploads/2020/12/MAN-10030-03_nCounter_Advanced_Analysis_2.0_User_Manual.pdf
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identified and misclassified Healthy and Treated_1 cat-
tle from the resulting decision tree model were assessed 
for differences in ADGend values via two-tailed Student’s 
t-Test with an a priori level of significance set to an alpha 
of 0.10.

Results
A priori power analysis concluded that 210 samples 
would be required (Healthy, n = 105; BRD, n = 105) to 
achieve a power level of 0.95. After removal of samples 
that failed quality control assessment, 115 Healthy and 
119 BRD (Treated_1, n = 89; Treated_2+, n = 30) sam-
ples remained for differential expression analysis. Sev-
enteen genes were identified as differentially expressed 
between Healthy and BRD cattle (Supplementary Table 
S4). Healthy cattle, when compared to BRD, possessed 
increased expression of genes associated with anti-
inflammatory processes (CPB2 and IL5RA), specialized 
pro-resolving mediator (SPM) metabolism (ALOX15 
and HPGD), lymphocytic maturation (LOC100297044, 
GCSAML, and KLF17), and antimicrobial peptide pro-
duction (CATHL3, GZMB, and LTF); BRD cattle pos-
sessed increased expression of genes associated with type 
I interferon production (HERC6 and IFI6), alternative 
complement (CFB), and granulocyte adhesion/cell-cell 
interaction (DSG1, LRG1, and MCF2L). Pairwise analy-
sis of each severity cohort revealed 11, 22, and 16 genes 
to be differentially expressed between Treated_1 versus 
Healthy, Treated_2+ versus Healthy, and Treated_2+ 
versus Treated_1 comparisons, respectively (Supplemen-
tary Tables S5, S6, S7). CFB was decreased in expression 
in Healthy cattle when independently compared to both 
Treated_1 and Treated_2+ cattle. Type I interferon-
associated genes (HERC6, IFI6, ISG15, and MX1) were 
increased in Treated_2+ cattle compared to Healthy, 
but only HERC6 was considered differentially expressed 
between Treated_2+ and Treated_1 cattle. ALOX15 and 
HPGD were decreased in Treated_1 cattle compared to 
Healthy, but were not considered differentially expressed 
between Treated_2+ and Healthy cattle. In total, 30 
genes were uniquely identified as differentially expressed 
in at least one comparative analysis (Fig. 1).

A heatmap was generated for twelve DEGs that best 
stratified disease severity, based on hierarchical cluster-
ing of gene expression patterns across samples (Fig.  2). 
Clustering of Pearson correlation coefficients was used 
to stratify the twelve genes into four expressional arrays, 
which consisted of type I interferon-associated genes 
(HERC6, IFI6, ISG15, and MX1), complement factor B 
(CFB), SPM and leukocyte-associated genes (ALOX15, 
HPGD, and LOC100297044), and cell adhesion/lym-
phocyte-associated genes (ITGA4, GZMB, GCSAML, 
and LOC100335828). BRD cattle, specifically within the 

Treated_2+ classification, appeared to cluster more to 
the right side of the heatmap associated with higher lev-
els of type I interferon-associated gene expression and 
lower levels of SPM and cell adhesion/lymphocyte-asso-
ciated gene expression. However, Healthy and Treated_1 
cattle appeared more similar in expressional patterns 
compared to Treated_2+ cattle.

ADGend values were used to assess growth perfor-
mance across the three disease severity cohorts. One-way 
Kruskal-Wallis testing revealed a significant difference 
in the distribution of average daily weight gain across 
the three cohorts (F = 24.699, p < 0.001). Pairwise com-
parisons of the three groups demonstrated an overall 
decrease in weight gain with increased frequency of 
treatment (p < 0.001; Fig. 3).

Multi-level modeling identified the proportion of vari-
ance was highest when factoring for disease severity, 
with an average of 92.50% lying between disease severity 
cohorts within study (Supplementary Table S8). IFI6 pos-
sessed the highest discrepancy in variance, as 16.97% lay 
between studies and 83.03% lay between disease cohorts 
within study. MGC126945 possessed the highest level of 
variance between disease cohorts within study (100%). 
Analysis for homogeneity of variance across severity of 
disease revealed that unequal variance existed for ten 
DEGs (p < 0.10): CFB, DSG1, DSP, GYPA, HPGD, KRT10, 
LOC100297044, LRG1, MCF2L, and MGC126945 
(Fig. 4). CFB, GYPA, LOC100297044, LRG1, and MCF2L 
demonstrated more homogeneous gene expression 
within the Treated_2+ cohort compared Healthy and 
Treated_1 cattle. Notably, DSG1, DSP, HPGD, KRT10, 
and MGC126945 were more variable in terms of gene 
expression within and between disease cohorts. Com-
plete results for homogeneity of variance analysis across 
severity cohorts is found in Supplemental Fig. S1 and 
Supplemental Table S8.

All 30 unique DEGs were selected for multiclass ROC 
curve evaluation to determine log2CPM cutoffs and 
discriminative capability for predicting BRD sever-
ity outcomes (Table  1). For univariate ROC analysis, all 
but three DEGs (DSG1, DSP, and KRT10) best discrimi-
nated Treated_2+ versus Healthy cattle, as opposed 
to Treated_1 versus Healthy or Treated_2+ versus 
Treated_1. Consequently, these three genes were shown 
to possess high inter-group variation and outlier-driven 
means associated with Treated_2+ (Fig.  4; mean versus 
median values). Eleven independently evaluated DEGs 
failed to discriminate Treated_2+ and Healthy cattle 
(AUC < 0.600). LOC100297044 demonstrated good dis-
crimination of Treated_2+ and Healthy cattle and was 
subsequently the top independent classifier (AUC: 0.868). 
To assess pathway-based expressional classification, two 
multivariable classifier models were constructed: type 
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I interferon-associated (IFN) with HERC6, IFI6, ISG15, 
and MX1 and SPM-associated with ALOX15 and HPGD. 
IFN demonstrated good discrimination of Treated_2+ 
from Healthy (AUC: 0.730). SPM demonstrated poor dis-
crimination of Treated_2+ from Healthy (AUC: 0.646). 
Multiclass ROC curve analyses by population for DEGs 
previously evaluated [31] and/or selected for decision 
tree construction are found in Supplemental Table S9.

An at-arrival treatment decision tree model was con-
structed from these DEG classifiers, utilizing log2CPM 
value expression levels for all individuals (Fig. 5A). Post-
hoc power analysis of the resulting decision tree indi-
cated a power of 0.94 for determining Healthy and BRD 
cattle. Overall, the treatment model successfully iden-
tified 73.9% (88/119) of all BRD cattle and both predic-
tive values, dependent upon the distribution of Healthy 
and BRD within this study, were above 61.0% (Fig.  5B). 
Notably, when stratifying for disease severity, the model 
accurately identified Treated_2+ and Treated 1 individu-
als with 90.0 and 68.5% accuracy, respectively (Fig. 5C). 

Statistical assessment of the Healthy cattle misclassified 
as needing treatment (n = 56) compared to correctly 
identified Healthy cattle (n = 59) revealed no difference 
in ADGend (p = 0.193). However, Treated_1 cattle mis-
classified by the decision tree as not needing treatment 
(i.e., Healthy) possessed a significantly higher ADGend 
(n = 28; x̅=2.091, σx = 0.844) than those correctly identi-
fied (n = 61; x̅=1.728, σx = 0.850) (p = 0.084).

Discussion
Trained individuals within conventional beef produc-
tion systems handle cattle at a limited number of time 
points, predominately at arrival, to reduce animal stress 
and minimize labor demand. Coupled with the com-
plex nature of BRD and lack of a gold standard diag-
nostic test, these systems have difficulty determining 
likelihood of disease acquisition and severity on an 
intra-population scale. Accordingly, our previous RNA-
Seq studies were conducted to better characterize the 
at-arrival host response in cattle related to subsequent 

Fig. 1  Overlap of the 30 unique DEGs identified from nSolver analysis between the four comparative analyses. Interaction size represents the 
quantity of overlapping genes within and between each analysis. Set size represents the total number of DEGs identified in each analysis. Healthy 
are cattle never diagnosed nor received antimicrobial therapy for clinical BRD. T1 are cattle treated for clinical BRD once within 28 days of arrival. 
T2 are cattle having been treated at least two times within 28 days of arrival for and/or died following a diagnosis of BRD. BRD are T1 and T2 cattle 
combined into one group
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development and treatment of naturally-acquired BRD 
within the first 28 days of facility placement [29–31]. 
RNA-Seq studies employ robust statistical and math-
ematical models in an effort to identify potential 
molecular targets and mechanisms that may improve 
disease understanding, detection, and therapy [42, 
43]. Such studies reduce the overall dimensionality 
of host expression and allow for the determination of 
a finite number of molecules to assess in future stud-
ies. However, the development of disease prediction or 
prognostic models requires rigorous testing and can 
be resource intensive, as gene-by-environment inter-
actions and disease temporality are difficult to account 
for in developing predictive models [33, 44]. Therefore, 
we focused on corroborating differential expression 
and retrospectively classifying the predictive capability 
of mRNA molecules previously identified by RNA-Seq, 
but through a method feasible for use in large num-
bers of cattle. To this purpose, we utilized NanoString 
nCounter mRNA profiling as a less variable and higher 
throughput method of evaluating specific gene expres-
sion, compared to the commonly utilized alternative, 
RT-qPCR [45–49]. To our knowledge, this study is the 
first to substantiate selective at-arrival gene expres-
sional patterns previously associated with BRD acqui-
sition and severity, utilizing blood samples from beef 
cattle across multiple independent populations.

A limitation of this work is that we aimed to identify 
at-arrival gene expression profiles that predicted future 
treatment for BRD based on clinical assessment, which 
can lack diagnostic sensitivity [13, 14]. While we recog-
nize that the visual identification of clinical BRD is rela-
tively insensitive and potentially confounded by study 
location and associated experimental conditions, our sta-
tistical analyses and modeling were conducted to account 
for this effect. Furthermore, analysis of weight gain 
records at time of sale (ADGend) demonstrated an objec-
tive loss in production that was associated with increased 
frequency of treatment, in agreement with previous 
research (Fig.  3) [50, 51], confirming the significance of 
the BRD diagnoses in this study.

In total, 30 unique genes were determined to be dif-
ferentially expressed across all comparisons (Fig. 1; Sup-
plemental Tables S4, S5, S6, S7). Cattle never diagnosed 
with clinical BRD possessed increased expression of 
genes broadly associated with leukocyte/granulocyte 
development and differentiation (GCSAML, IL5RA, 
KLF17, LOC100297044 (CCL14), and LOC100335828 
(CD200R1)), SPMs (ALOX15 and HPGD), anti-inflam-
matory/apoptotic processes (CPB2 and ITGA4), and 
antimicrobial peptides (CATHL3, GZMB, and LTF). 
CD200R1, CCL14, GCSAML, and IL5RA have previously 
been identified as chemokines for macrophage activ-
ity and enhanced lymphocyte migration and survival 

Fig. 2  Heatmap and unsupervised hierarchical clustering of the gene expression from twelve select DEGs. Expression values (− 3 to + 3) were 
calculated from z-score calculation of nCounter normalized expression values for each gene. Samples were further labeled for disease status (BRD, 
Healthy) and severity (Healthy, Treated_1, Treated_2+). Yellow/white: relative high expression; purple/black: relative low expression
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[52–56]. SPMs, while not widely explored in ungulates, 
are categorized into two primary categories based on 
the metabolism of arachidonic acid (lipoxins) or essen-
tial polyunsaturated fatty acids (resolvins, maresins, and 
protectins) [57, 58]. In other mammalian species, SPMs 
are involved in quelling prolonged pro-inflammatory 
events and promoting cellular/molecular homeosta-
sis in the lower airways; these molecules are currently 
under investigation as therapeutic modalities in humans 
with sepsis or viral-induced pneumonia/acute respira-
tory distress syndrome (ARDS) [59–62]. CPB2 and 
ITGA4 are key regulators of pro-inflammation, as they 
are involved in modulating the complement system, 

degrading induced plasma anaphylatoxins, and reduc-
ing nitric oxide accumulation [63–68]. Cattle are capable 
of producing a myriad of well conserved innate peptides 
within the cathelicidin and defensin peptide families, 
such as CATHL3, GZMB, and LTF, which have oxygen-
independent killing capacity against both Gram-positive 
and Gram-negative pathogens [69, 70]. These ampho-
philic molecules align specifically to bacterial cell walls 
via electrostatic interactions and penetrate into the cyto-
plasmic space, leading to DNA replication disruption 
and/or bacterial autolysis [71–74]. Collectively, these 
findings indicate that cattle that remain clinically healthy 
possessed enhanced immunological, anti-inflammatory, 

Fig. 3  Distributive differences in average daily weight gain in pounds at time of sale (ADGend). Boxplots limits are associated with the first (lower) 
and third (upper) quartiles. Horizontal lines within the boxplots represent the ADGend median for each cohort. White points within the boxplots 
represent ADGend mean for each cohort. Whiskers for each boxplot extend to 1.5 times the interquartile ranges. Any black point outside the 
vertical range of whiskers represents outlier individuals within the associated cohort
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and microbial killing mechanisms at arrival, compared to 
cattle that require antimicrobial therapy within the first 
28 days of arrival.

Cattle that would go on to develop BRD possessed 
increase expression of genes at arrival broadly associ-
ated with pro-inflammatory, granulocytic processes 
(LRG1, MCF2L, SPP1), alternative complement (CFB), 
and type I interferon signaling (HERC6, IFI6, ISG15, 
and MX1), when compared to healthy cattle. Notably, 
Treated_1 cattle only possessed increased expression of 
CFB and LRG1 when compared to Healthy cattle. There-
fore, these aforementioned genes and their associations 
are predominantly detected within Treated_2+ cattle. 
LRG1 encodes for a leucine-rich glycoprotein specifi-
cally stored and secreted by neutrophils, which appears 
to be marker of early differentiation [75, 76]. MCF2L 
explicitly binds with RAC subfamily of Rho GTPases and 
may be critical in neutrophilic signal transduction [77, 
78]. SPP1 is a major secreted component of pro-inflam-
matory leukocytes and enhances cellular infiltration and 
fibrosis of the airways [79–81]. CFB, increased in both 
Treated_1 and Treated_2+ cattle when independently 
compared to Healthy cattle, encodes for the proenzyme 
of alternative complement. In human sera, CFB has been 
indicated in early, severe infectious disease, such as that 

induced by severe acute respiratory syndrome corona-
virus 2 (SARS-CoV-2) [82, 83]. Additionally, CFB pro-
duction is exaggerated in human airway epithelial cells 
following experimental asthma and rhinovirus challenge 
[84]. HERC6, IFI6, ISG15, and MX1 encode for proteins 
induced by type I interferons, such as IFN-α, IFN-β, IFN-
ω, and are typically produced by host cells in response 
to viral infection [85–87]. Cattle experimentally infected 
with BRD-associated viruses, such as bovine respiratory 
syncytial virus (BRSV) and bovine herpesvirus 1 (BHV-
1), demonstrate increased expression of these genes dur-
ing peak clinical presentation, when compared to sham 
controls [23–26]. While this appears to be a natural host 
(bovine) response to viral infection, our previous and 
current findings, coupled with the work of Sun and col-
leagues, indicate that anti-viral responses are indicative 
of early stage and, often, severe naturally-acquired BRD 
[27, 30]. Previous work indicated strong elevation and co-
expression of these genes at arrival in cattle that died of 
BRD, with predicted interactions with pro-inflammatory 
cytokine production such as interleukin-6 and tumor 
necrosis factor-α [30, 88]. Taken together, our findings 
suggest that cattle that required multiple antimicro-
bial therapies, and/or died of naturally-acquired BRD, 
entered the production system with increased anti-viral 

Fig. 4  Boxplots of the log2CPM gene expression for the ten genes with unequal variance across severity. Genes were identified through the 
Levene’s test for homogeneity of variance (p < 0.10). Boxplots limits are associated with the first (lower) and third (upper) quartiles. Horizontal lines 
within the boxplots represent the median log2CPM for each cohort. White points within the boxplots represent log2CPM mean for each cohort. 
Whiskers for each boxplot extend to 1.5 times the interquartile ranges. Any black point outside the vertical range of whiskers represents outlier 
individuals within the associated cohort
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Table 1  Receiver operator characteristic (ROC) curve analysis with area under the curve (AUC), sensitivity, and specificity

Comparison Gene AUC​ Cutoff Sensitivity Specificity

Treated_1 vs Healthy ALDH1A1 0.520 8.115 0.360 0.730

Treated_2+ vs Healthy 0.533 8.585 0.667 0.478

Treated_2+ vs Treated_1 0.494 8.143 0.767 0.371

Treated_1 vs Healthy ALOX15 0.590 12.855 0.966 0.191

Treated_2+ vs Healthy 0.635 8.703 0.400 0.904

Treated_2+ vs Treated_1 0.554 8.415 0.333 0.865

Treated_1 vs Healthy BGN 0.514 8.115 0.348 0.730

Treated_2+ vs Healthy 0.527 8.585 0.667 0.478

Treated_2+ vs Treated_1 0.508 8.503 0.633 0.472

Treated_1 vs Healthy CATHL3 0.540 8.388 0.416 0.696

Treated_2+ vs Healthy 0.625 8.585 0.633 0.626

Treated_2+ vs Treated_1 0.577 8.878 0.767 0.436

Treated_1 vs Healthy CD27 0.524 13.946 0.382 0.730

Treated_2+ vs Healthy 0.659 14.306 0.800 0.557

Treated_2+ vs Treated_1 0.613 14.310 0.800 0.506

Treated_1 vs Healthy CFB 0.483 9.629 0.483 0.583

Treated_2+ vs Healthy 0.656 10.058 0.667 0.661

Treated_2+ vs Treated_1 0.618 9.673 0.767 0.494

Treated_1 vs Healthy CPB2 0.588 8.714 0.562 0.652

Treated_2+ vs Healthy 0.679 8.793 0.767 0.635

Treated_2+ vs Treated_1 0.573 9.020 0.833 0.404

Treated_1 vs Healthy DSG1 0.516 8.115 0.360 0.739

Treated_2+ vs Healthy 0.499 8.792 0.733 0.374

Treated_2+ vs Treated_1 0.475 0.900 0.800 0.281

Treated_1 vs Healthy DSP 0.499 8.115 0.337 0.739

Treated_2+ vs Healthy 0.494 8.585 0.600 0.487

Treated_2+ vs Treated_1 0.489 8.482 0.567 0.517

Treated_1 vs Healthy GCSAML 0.543 9.225 0.337 0.774

Treated_2+ vs Healthy 0.750 9.340 0.700 0.739

Treated_2+ vs Treated_1 0.694 9.586 0.800 0.584

Treated_1 vs Healthy GYPA 0.571 8.800 0.584 0.565

Treated_2+ vs Healthy 0.692 8.801 0.800 0.565

Treated_2+ vs Treated_1 0.612 8.881 0.833 0.404

Treated_1 vs Healthy GZMB 0.609 10.318 0.618 0.583

Treated_2+ vs Healthy 0.732 9.786 0.700 0.696

Treated_2+ vs Treated_1 0.640 9.488 0.633 0.652

Treated_1 vs Healthy HERC6 0.575 14.942 0.663 0.504

Treated_2+ vs Healthy 0.741 15.352 0.600 0.835

Treated_2+ vs Treated_1 0.660 15.352 0.600 0.719

Treated_1 vs Healthy HPDG 0.608 9.582 0.809 0.391

Treated_2+ vs Healthy 0.617 8.964 0.700 0.609

Treated_2+ vs Treated_1 0.522 8.952 0.700 0.494

Treated_1 vs Healthy IFI6 0.585 15.478 0.494 0.687

Treated_2+ vs Healthy 0.699 15.496 0.733 0.687

Treated_2+ vs Treated_1 0.631 15.630 0.667 0.640

Treated_1 vs Healthy IL5RA 0.622 10.898 0.775 0.443

Treated_2+ vs Healthy 0.651 8.907 0.433 0.852

Treated_2+ vs Treated_1 0.555 8.921 0.433 0.742



Page 11 of 16Scott et al. BMC Veterinary Research           (2022) 18:77 	

ROC evaluation was used to generate log2CPM cutoffs for decision tree construction and assess DEGs as single-molecule predictors of BRD severity

Table 1  (continued)

Comparison Gene AUC​ Cutoff Sensitivity Specificity

Treated_1 vs Healthy ISG15 0.545 16.689 0.708 0.417

Treated_2+ vs Healthy 0.699 17.930 0.600 0.800

Treated_2+ vs Treated_1 0.657 17.606 0.733 0.596

Treated_1 vs Healthy ITGA4 0.540 15.461 0.303 0.817

Treated_2+ vs Healthy 0.676 15.674 0.633 0.713

Treated_2+ vs Treated_1 0.622 15.921 0.733 0.551

Treated_1 vs Healthy KLF17 0.530 8.115 0.337 0.791

Treated_2+ vs Healthy 0.596 8.589 0.700 0.522

Treated_2+ vs Treated_1 0.552 8.996 0.867 0.303

Treated_1 vs Healthy KRT10 0.509 8.115 0.337 0.748

Treated_2+ vs Healthy 0.471 8.444 0.500 0.557

Treated_2+ vs Treated_1 0.460 9.283 0.833 0.225

Treated_1 vs Healthy LOC100297044 0.629 13.045 0.899 0.313

Treated_2+ vs Healthy 0.868 9.952 0.467 0.904

Treated_2+ vs Treated_1 0.577 9.981 0.467 0.764

Treated_1 vs Healthy LOC100335828 0.529 9.695 0.371 0.730

Treated_2+ vs Healthy 0.731 9.784 0.700 0.704

Treated_2+ vs Treated_1 0.688 10.079 0.800 0.562

Treated_1 vs Healthy LRG1 0.479 8.116 0.315 0.739

Treated_2+ vs Healthy 0.566 8.585 0.700 0.487

Treated_2+ vs Treated_1 0.579 8.996 0.867 0.337

Treated_1 vs Healthy LTF 0.613 9.191 0.629 0.635

Treated_2+ vs Healthy 0.727 8.885 0.667 0.551

Treated_2+ vs Treated_1 0.615 9.211 0.800 0.617

Treated_1 vs Healthy MCF2L 0.510 8.300 0.427 0.635

Treated_2+ vs Healthy 0.532 8.585 0.667 0.487

Treated_2+ vs Treated_1 0.514 8.996 0.867 0.292

Treated_1 vs Healthy MGC126945 0.532 16.117 0.506 0.643

Treated_2+ vs Healthy 0.638 16.293 0.700 0.591

Treated_2+ vs Treated_1 0.617 15.081 0.267 0.933

Treated_1 vs Healthy MS4A2 0.506 8.115 0.326 0.783

Treated_2+ vs Healthy 0.608 8.591 0.700 0.548

Treated_2+ vs Treated_1 0.591 8.997 0.867 0.404

Treated_1 vs Healthy MX1 0.581 17.544 0.427 0.800

Treated_2+ vs Healthy 0.677 17.420 0.667 0.713

Treated_2+ vs Treated_1 0.598 17.643 0.500 0.742

Treated_1 vs Healthy SLC18A2 0.494 8.998 0.281 0.783

Treated_2+ vs Healthy 0.563 8.585 0.700 0.478

Treated_2+ vs Treated_1 0.552 8.503 0.667 0.494

Treated_1 vs Healthy SPP1 0.514 8.115 0.348 0.730

Treated_2+ vs Healthy 0.529 8.585 0.667 0.487

Treated_2+ vs Treated_1 0.508 8.996 0.833 0.281

Treated_1 vs Healthy IFN (HERC6, IFI6, ISG15, MX1) 0.578 64.739 0.652 0.539

Treated_2+ vs Healthy 0.730 66.093 0.733 0.748

Treated_2+ vs Treated_1 0.661 65.926 0.767 0.618

Treated_1 vs Healthy SPM (ALOX15, HPGD) 0.598 17.288 0.292 0.887

Treated_2+ vs Healthy 0.646 17.407 0.433 0.878

Treated_2+ vs Treated_1 0.548 17.787 0.467 0.685
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defense mechanisms without the benefit of activation/
elevation of mechanisms for pro-inflammatory regula-
tion or resolution. However, further studies pairing host 
gene expression with the microbiome and/or virome of 
cattle at arrival are necessary, as the relationship and 
influence of microbial populations on host response as it 
relates to severe BRD (Treated_2+) are unknown.

To further clarify the relationship between DEGs and 
disease status, we employed hierarchical clustering and 
visualization with a gene expression heatmap (Fig.  2). 
Notably, Healthy and Treated_1 cattle were relatively 
indistinguishable based on the expression patterns of 
those 12 DEGs, but Treated_2+ cattle tended to cluster 
with the association of elevated type I interferon-asso-
ciated gene expression and decreased SPM and lym-
phocyte proliferation-associated gene expression (Fig. 2, 
right side). This finding is similar to results found in our 
previous multipopulational transcriptome analysis, sug-
gesting that Treated_2+ cattle are more distinct in terms 
of at-arrival gene expression identification compared to 
Healthy and Treated_1 cattle [31]. This finding was made 
more apparent when assessing multilevel modeling and 
inter-cohort variance, as Treated_2+ cattle tended to be 
more similar in gene expression compared to Healthy 
and Treated_1 cohorts, regardless of study-level effect 
(Figs. 4 and S1). CFB, a gene identified with unequal vari-
ance and representing both BRD acquisition and severity, 
was relatively homogeneous in terms of gene expression 
within Treated_2+ cattle, but disproportionate within 

the Healthy and Treated_1 cohorts. Outliers within the 
Healthy and Treated_1 cohorts tended to shift mean 
gene expression higher than the median and drove dif-
ferences in variance observed between the three groups. 
The observed results of CFB may suggest that some cat-
tle within the Healthy and Treated_1 cohort had sub-
clinical BRD. Further evaluation of variance determined 
that DSG1, DSP, KRT10, and MGC126945 appeared to 
be outlier-driven, implying unproportionate differential 
gene expression across populations, and ruling them out 
as candidate predictive classifiers for BRD.

Multiclass ROC curve analysis was utilized to gener-
ate cutoffs and assess classificational capability for each 
unique DEG; however, this demonstrated that a single-
molecule classification model was not sufficient to cap-
ture the dynamic expressional patterns observed across 
all seven populations (Table  1). Notably, our findings 
here contrasts with our previous multiclass ROC evalu-
ation to classify disease based on at-arrival differential 
expression of ALOX15, CFB, MARCO, LOC100335828, 
and SLC18A2 [31]. While we previously found good to 
excellent discrimination of Healthy versus Treated_2+ 
cattle based on the expression levels of single genes in 
cattle from two independent populations [31], the AUCs 
resulting from ROC curve analysis in this study were 
considerably lower when results from all seven popula-
tions of cattle were assessed together. For example, in our 
previous assessment of cattle from two populations, the 
ROC curve based on differential expression of ALOX15 

Fig. 5  Gene expression decision tree model constructed from log2CPM cutoffs derived from ROC curve evaluation. A Combined type I interferon 
genes (HERC6, IFI6, ISG15, and MX1) serve as the root of the decision tree, with an additive log2CPM cutoff of 66.093. Individuals with a value above 
the threshold are marked as needing BRD treatment, and below the threshold move to the LOC100297044 leaf. Those within the LOC100297044 leaf 
below a threshold of 9.952 are marked as needing BRD treatment, and above the threshold move to the CFB leaf. Those within the CFB leaf above a 
threshold of 10.058 are marked as needing BRD treatment, and those below the threshold are considered Healthy. B Diagnostic accuracy table for 
the assessment of identified Healthy and BRD individuals. C Diagnostic accuracy table for the assessment of identified Treated_2+, Treated_1, and 
Healthy individuals
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to distinguish Treated_2+ from Healthy cattle had an 
AUC of 0.860 [31], while in this study, the AUC was 0.635 
(Table 1). The AUCs resulting from ROC curve analysis 
for each of the seven populations in this study evaluated 
individually suggests that these molecules may better dis-
criminate BRD in populations with more severe disease, 
as seen with the DG_17, DG_18, and MH_19 populations 
compared to VD_17 and PS_19 (Supplemental Tables S1 
and S9). For example, in the DG_17, DG_18, and MH_19 
populations, the AUCs for the ROC curves differentiating 
Treated_2+ from Healthy cattle by differential expres-
sion of ALOX15 were 0.806, 0.760, and 0.800, respec-
tively; compared to VD_17 and PS_19, for which the 
AUCs were 0.632 and 0.529, respectively (Supplemental 
Tables S1 and S9).

Corresponding with our differential expression and 
hierarchical clustering analyses, Treated_2+ cattle were 
the most dissimilar and routinely possessed the highest 
AUC values for genes independently evaluated, when 
compared to Healthy. Given this, we employed a multi-
variable ROC curve model for the two most explainable 
mechanisms (IFN and SPM; Table  1) and developed an 
expressional decision tree model using the ROC-gener-
ated cutoffs from Treated_2+ and Healthy comparisons 
(Fig.  5). While the combination of ALOX15 and HPGD 
(SPM) made no discernable difference in performance 
as compared to evaluation of each gene independently, 
combining the four IFN genes increased the single-
test sensitivity and specificity between Treated_2+ and 
Healthy cattle. The resulting decision tree possessed 
relatively low accuracy for discerning Healthy from BRD 
(51.3%), but possessed excellent accuracy in Treated_2+ 
categorization (90.0%). While Treated_1 individuals are 
similar to Healthy in terms of at-arrival gene expression, 
classificational accuracy (68.5%) is moderately higher 
than the estimated sensitivity of diagnosing clinical BRD 
via visual assessment alone (22.0–62.0%) [12, 13]. Fur-
thermore, Treated_1 cattle misclassified as not requiring 
treatment (Healthy) were sold having higher total aver-
age daily gains compared to those classified correctly; 
this may indicate the ability for this decision tree model 
to better stratify for disease severity compared to visual 
assessment and treatment frequency associated with 
BRD.

This report represents our third evaluation of differen-
tial gene expression in whole blood at arrival to predict 
subsequent BRD treatment in cattle, with progressively 
larger numbers of cattle from more groups evaluated 
in each study. Genes that were strongly differentially 
expressed between Healthy and BRD cattle in our ear-
lier work were not always significantly differentially 
expressed in subsequent studies. Given the heterogeneity 
of the cattle within and between these populations, and 

likely variation in the time of sample collection relative to 
disease onset, perhaps this finding is no surprise. How-
ever, some genes, such as ALOX15 and CFB, have been 
consistently differentially expressed between Healthy and 
BRD cattle across our studies, suggesting that further 
evaluation of these molecules and related pathways may 
improve prediction and understanding of BRD risk. The 
influence of the imprecise nature of current BRD assess-
ment systems must also be acknowledged, especially 
when considering individuals without more definitive 
clinical endpoints such as mortality. The development of 
a more accurate method of BRD diagnosis is essential to 
support efforts to accurately predict the disease.

Conclusions
We sought to evaluate and corroborate the at-arrival 
expression patterns of mRNA previously identified as 
differentially expressed between cattle subsequently 
treated for BRD and cattle not treated. Here, we pro-
filed at-arrival whole blood samples of 234 cattle across 
seven independent populations via NanoString nCoun-
ter and nSolver analysis. At arrival expression levels of 
mRNA associated with specialized pro-resolving media-
tor metabolism, anti-inflammatory/apoptotic processes, 
immune function, and antimicrobial peptide production 
were increased in cattle never requiring antimicrobial 
therapy for BRD. Cattle requiring antimicrobial ther-
apy for BRD within 28 days of arrival, especially those 
needing two or more treatments, possessed increased 
expression of complement factor B, pro-inflammatory, 
and type I interferon-associated mRNA. We further 
evaluated these mRNA expression levels for individual 
classificational accuracy through receiver operator char-
acteristic curves and the development of a decision tree 
model. Cattle that would require multiple antimicrobial 
therapies for BRD were classified with 90.0% accuracy. 
These findings serve as a foundation for developing an 
at-arrival mRNA prediction model in high-risk popula-
tions of post-weaned beef cattle. As this study assessed 
at-arrival expression levels, future studies evaluating 
expression longitudinally are necessary to infer relation-
ships between gene expression and long-term protection 
against or facilitation of BRD.
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