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Abstract: Pneumonia generates considerable negative impacts on the elderly. Despite the widespread
uses of vaccines and appropriate antibiotics, the morbidity and mortality of elderly pneumonia are
significantly higher compared to the counterparts of young populations. The definitive mechanisms
of high vulnerability in the elderly against pathogen threats are unclear. Age-associated, chronic
low-grade inflammation augments the susceptibility and severity of pneumonia in the elderly.
Cellular senescence, one of the hallmarks of aging, has its own characteristics, cell growth arrest and
senescence-associated secretory phenotype (SASP). These properties are beneficial if the sequence
of senescence–clearance–regeneration is transient in manner. However, persisting senescent cell
accumulation and excessive SASP might induce sustained low-grade inflammation and disruption
of normal tissue microenvironments in aged tissue. Emerging evidence indicates that cellular
senescence is a key component in the pathogenesis of chronic obstructive pulmonary disease (COPD)
and idiopathic pulmonary fibrosis (IPF), which are known to be age-related and increase the risk of
pneumonia. In addition to their structural collapses, COPD and IPF might increase the vulnerability
to pathogen insults through SASP. Here, we discuss the current advances in understanding of the
impacts of cellular senescence in elderly pneumonia and in these chronic lung disorders that heighten
the risk of respiratory infections.

Keywords: elderly pneumonia; aging; cellular senescence; senescence-associated secretory
phenotype; antimicrobial defense system; chronic obstructive pulmonary disease; idiopathic
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1. Introduction

Pneumonia causes significant mortality and morbidity in elderly patients, defined as those aged
over 65 years, compared to younger populations [1–5]. The annual incidence of pneumonia in the
elderly populations is 4 times that of younger populations [6]. In addition, the rates of hospitalization
for pneumonia increase in elderly patients with each passing year [2], and with an expected 20% of the
world’s population reaching elderly status by 2050, the burden of community-acquired pneumonia
will be even more significant in the coming years [7]. Furthermore, hospitalization for pneumonia has
a considerable effect on economic burden, particularly for the elderly population [8]. Despite these
continuing concerns and the widespread use of vaccines and appropriate antibiotics, the prognosis
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of elderly pneumonia remains dismal, and specific strategies to clear the vulnerability to pathogen
threats in older individuals have not been proven.

Aging, defined as a time-dependent functional decline that affects most living organisms [9],
causes progressive loss of physiological integrity, impaired organ function, and subsequent increased
vulnerability to death [9]. In the respiratory system, aging might render individuals more susceptible
to infection by undergoing various physiological changes, including dilatation of airspaces, increased
air trapping, decreased chest wall compliance, reduced respiratory strength, decline in mucociliary
clearance, and diminishment of cough reflex [3,10–13]. In addition, aging weakens the immune system
in conjunction with the presence of comorbid diseases (e.g., diabetes mellitus, chronic heart disease,
malignant tumors, and use of immunosuppressive drugs) [2,3,5,14–16]. However, the definitive
mechanisms underlying the high morbidity and mortality of pneumonia in elderly populations are
not fully understood.

Several lines of evidence indicate that age-associated, nonmicrobial, and chronic low-grade
inflammation enhances the susceptibility of pneumonia in the elderly populations. A previous
study reported that elevated tumor necrosis factor (TNF)-α and interleukin (IL)-6 levels positively
correlated with the incidence of pneumonia in healthy elderly individuals [17]. Other studies
demonstrated that aged mice had increased lung inflammation and were found to be highly susceptible
to pneumococcal pneumonia [18,19]. Furthermore, young mice infused with age-relevant physiological
levels of TNF-α for 5 days by using a subcutaneously implanted osmotic pump had 100-fold more
Streptococcus pneumoniae in their lungs and 10-fold more bacteria in their blood than control mice one
day after intranasal infection with S. pneumoniae [19].

Cellular senescence, one of the hallmarks of aging [20–23], carries out its primary duty as a trigger
of tissue repair [24], regeneration [25], and remodeling during normal embryonic development [26–28]
and upon tissue damage [29]. To eliminate damaged cells, senescent cells arrest their own proliferation,
create an inflammatory microenvironment, recruit phagocytic immune cells for elimination of
senescent cells through senescence-associated secretory phenotype (SASP) [30], and promote tissue
renewal [24,29]. These processes are beneficial for organisms in young tissue where the sequence of
senescence–clearance–regeneration is transient in manner [29]. However, this beneficial processes
can be corrupted in a pathological context and aged tissues, where senescent cells persistently
accumulate [29]. The combination of senescent cell accumulation and excessive SASP results
in persistent low-grade inflammation in aging tissue [29,31], which elevates the susceptibility to
pathogen threats. Furthermore, accumulation of senescent cells causes disruption of normal tissue
microenvironments and aberrant tissue remodeling through extracellular matrix (ECM) degeneration
and tissue fibrosis [29,31,32].

In the respiratory system, emerging evidence indicates that cellular senescence is a key
component in the pathogenesis of chronic obstructive pulmonary disease (COPD) and idiopathic
pulmonary fibrosis (IPF), which are known to be age-related diseases and increase the vulnerability
to pneumonia [33,34]. Both of the diseases bear the feature of chronic low-grade inflammation with
upregulations of various growth factors and chemokines [35,36]. Thus, it is speculated that COPD
and IPF might enhance the vulnerability to pathogens not only by their structural collapse of lung
parenchyma, which makes it easier for pathogens to invade, but also by inducing chronic low-grade
inflammation due to SASP. Since both of the lung disorders predominantly affect the elderly [34,37]
and have a lot of involvement in the susceptibility to the pathogens, we contemplate that it is also
important to focus on the involvement of cellular senescence in the pathogenesis COPD and IPF for
getting to the core of the pathomechanism of elderly pneumonia. In this review, we highlight the
impacts of cellular senescence on the pathogenesis of pneumonia and in age-related lung diseases that
increase the risk of respiratory infections. We first describe the machinery and impact of the cellular
senescence in aged tissue. We next discuss the impacts of aging in respiratory tract antimicrobial
defense system. Finally, we discuss the role of cellular senescence in the pathogenesis of COPD and IPF.



Int. J. Mol. Sci. 2017, 18, 503 3 of 16

2. Cellular Senescence, SASP, and Aging

2.1. Cellular Senescence

The first formal description of cell senescence was made more than five decades ago,
when Leonard et al. showed that normal human fibroblasts had a finite proliferative capacity in
culture, and speculated that this cell property could be linked to aging [20]. Cellular senescence can
be defined as an irreversible arrest of cell proliferation coupled to induction of the multicomponent
secretory phenotype, SASP. Cellular senescence primarily acts as an irreplaceable defense against
cancer progression by preventing unrestricted cell growth of damaged cells. Cellular senescence occurs
when cells encounter various kinds of stressors and stimuli including DNA damage and mutations,
telomere shortening, oxidative stress, oncogene activation, tumor suppressor loss, and epigenomic
stress [29,31]. Senescent cells reorganize chromatin, resulting in heterochromatin formation, extensive
gene expression changes, and changes in cell and organelle shape [29,38]. Senescent cells are
relatively resistant to apoptosis, and can be efficiently cleared thorough macrophage-mediated
phagocytosis [39,40]. Emerging evidence demonstrates that the role of cellular senescence extends
beyond tumor suppression to biological processes including embryonic development [26–28], wound
healing [25], tissue repair [24], and aging [22,23].

Senescent cells are characterized by several properties, markers, and morphological changes.
These characteristics include (1) the absence of proliferative markers (e.g., Ki67, 5-bromodexyuridine
incorporation); (2) senescence-associated β-galactosidase (SAβGAL) activity; (3) expression of tumor
suppressors and cell cycle inhibitors (e.g., p16, ADP-ribosylation factor (ARF), p53, p21, p15, p27,
and hypophosphorylated Rb); (4) senescence-associated heterochromatic foci; and (5) enlarged or
flat cell morphology [29]. In addition, senescent cells secrete a number of extracellular factors,
including transforming growth factor-β1 (TGF-β1), insulin-like growth factor 1 binding protein
(IGFBP), and various inflammatory cytokines and chemokines [29,31].

Among these properties, the most widely employed for cellular senescence is histochemical
detection of SAβGAL activity at pH 6.0 [41]. This activity is thought to reflect an increase in
lysosomal enzyme mass in senescent cells [42]. The increase of lysosomal content is not simply
due to the results of the general increase in cytoplasmic constituents, as demonstrated by the fact that
β-galactosidase protein content increased even when measured relative to actin [42], but reflect
the malfunctional change of senescent cells. It has been suggested that the increase of cellular
lysosomal content in aging cells is the consequence of the accumulation of nondegradable intracellular
macromolecule and organelles in autophagic vacuoles [42]. Accumulation of undigested material
(lipofuscin) inside autolysosomes disturbs their ability to fuse with autophagosomes and to degrade
their cargoes (i.e., damaged proteins and organelles) [43]. Thus, in aging tissue, the increase of
lysosomal content is thought to be a result of dysfunctional autophagy, rather than that of increased
autophagy. Since SAβGAL activity is not required for senescence [44], the increase of SAβGAL activity
in senescent cells is thought to be an outcome rather than a cause of senescence.

Autophagy, a major lysosomal degradation pathway, plays an important role in maintenance of
cellular homeostasis by removing misfolded or aggregated proteins and clearing damaged organelles,
including mitochondria (i.e., mitophagy) [43]. Autophagy has the capacity for both selective or
nonselective engulfment of bulk cytoplasmic proteins or organelles, and can limit production of
reactive oxygen species [43,45]. Failure to degrade unfolded proteins can lead to their accumulation
and aggregation, resulting in proteotoxic effects [9]. Impairment in the regulation and conduct of
macroautophagy, in which the cargoes are sequestrated within a unique double-membrane cytosolic
vesicle that later fused with lysosomes [43], contribute to functional decline during aging [46].
The activity of the autophagy–lysosomal system declines with aging [46,47], and defective autophagic
function has been reported in almost all tissues of aging organisms [43,45]. In accord with these
observations, induction of macroautophagy increases longevity in mice [48], and inhibition of
autophagy induces functional deterioration and age-related pathologies [49–51]. Thus, autophagy
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primarily functions as cytoprotective process, and insufficient autophagy contributes to, at least in
part, aging and aging-associated phenotypes.

Cellular senescence and autophagy are distinct (but closely related) cell properties, and both are
important for homeostatic stress responses. The precise mechanisms by which autophagy positively
or negatively regulates cellular senescence is still under debate. In consideration of the relation
between autophagy and cellular senescence, it is thought to be important to consider the levels
of autophagy (e.g., basal level or induced level), the mode of autophagy (e.g., general autophagy
or selective autophagy) [52], and the type of cellular senescence. Autophagy is induced when
needed, but apart from that, it is maintained at a basal level [43]. The basal level of autophagy
functions as a protective pathway for normal cell homeostasis. Autophagy inhibition promotes cellular
senescence in normal proliferating cells [53,54]. On the other hand, stress of oncogene activation
triggers autophagy induction and facilitates the process of senescence [55]. Dou et al. recently reported
that oncogene hyperactivation induces selective autophagy which targets lamin B1, a component of
nuclear lamina [56]. This autophagic degradation of lamin B1 results in oncogene-induced senescence
and subsequent tumor suppression [56]. A recent study also demonstrated that selective autophagy,
which specifically degrades GATA4, a key regulator of the SASP and cellular senescence during aging,
prevents cellular senescence [57]. These observations regarding selective autophagy may provide
an explanation for the difficult question of how autophagy positively or negatively regulates cellular
senescence. Nonetheless, because the cross-talk between cellular senescence and autophagy is quite
complex, it needs more investigations to understand the accurate interrelationship between these two
cell processes.

At present, there are no markers or properties that are completely specific or universal for all
senescence types. Nevertheless, it is important to note that most of the above senescence markers
have been validated in vivo, both in association with premalignant tumors and in association with
developmental, physiological, and pathological processes [29].

Multiple stresses activate the cell senescence program. These stresses are signaled through
various pathways, but finally activate the p53–p21 pathway or p16 or both [29,31]. Both p53–p21
pathway and p16 converge on the inhibition of cyclin-dependent kinase (CDK)–cyclin components,
prevents the inactivation of Rb, and results in cell-cycle arrest. The relative contribution of the
p53–p21 pathway and p16 to cell-cycle arrest may vary depending on the cell type as well as the type
of senescence triggers and functional nature (e.g., damage-induced senescence, oncogene-induced
senescence, developmentally programed senescence).

Senescence growth arrest exhibits beneficial effects on prevention of precancerous cells [40,58,59]
and attenuation of skin and liver fibrosis [24,25]. On the other hand, senescence growth arrest also
occurs on stem or progenitor cells [29,31], in which case they lose the ability to proliferate for tissue
regeneration and repair. For example, senescence of muscle stem cells is thought to be an underlying
cause of aging-associated sarcopenia and loss of muscle regenerative potential [60,61].

2.2. SASP

On an equal footing with cell-cycle arrest, SASP is an important feature of senescent cells.
Interestingly, normal cells that senesce owing simply to the ectopic induction of p21 or p16 do not
express an SASP, despite undergoing a senescence growth arrest [62]. In contrast, cells that senesce
owing to DNA damage, mitogenic signals, oxidative stress, and other senescence-inducing stress
develop an SASP [63]. These findings suggest that the role of SASP may be (1) a communication tool of
damaged cells to neighboring cells about the information of their compromised status for preparation
of the tissue repair and (2) stimulation of the immune system to clear the damaged cells from the
tissue [63].

The SASP activation is positively regulated by DNA damage response, nuclear factor-κB (NF-κB),
and CCAAT/enhancer-binding protein β [29,63], and is negatively regulated by p53 [63]. SASP
components include many proinflammatory cytokines (e.g., IL-6 and IL-8), chemokines (e.g., monocyte
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chemoattractant proteins and macrophage inflammatory proteins), growth factors (e.g., TGF-β1, IGFBP,
vascular endothelial growth factors, and granulocyte-macrophage colony stimulating factor), and
proteases (e.g., matrix metalloproteinase (MMP)-1, -2, -3). SASP factors vary in distinct cell types
and under different senescence-inducing stimuli [31]. On the other hand, proinflammatory cytokines
and chemokines are among the SASP components that are highly conserved features, cutting across
many different cell types and senescence-inducing stimuli [31,63]. Thus, SASP factors might intimately
contribute to signaling for migration of phagocytes that play important roles in the clearance of
senescent cells and the regeneration of damaged tissue [29,38]. SASP components also have the
potential to modulate the tissue microenvironment through various biological processes including
cell proliferation, cell migration, inflammation, fibrosis, degradation of ECM, neovascularization,
and epithelial–mesenchymal transition in paracrine and autocrine manners [31]. TGF-β1, a notable
component of SASP, leads senescence in neighboring cells in a paracrine manner via upregulation
of the cell cycle inhibitors p21, p27, and p15 through the Smad signaling pathway [29]. Similarly,
IL-6 and IL-8 secreted by senescent cells can trigger paracrine senescence in bystander cells [64,65].
Furthermore, the stimulation of the IL6R/NF-κB pathway cooperates with TGF-β1/Smad to induce
bystander senescence [66]. Thus, SASP has powerful reinforcement activities in a cell-autonomous and
bystander activation manner to develop the inflammatory microenvironment for the elimination of
senescent cells.

As with the senescence growth arrest, SASP can be beneficial or deleterious, with the difference
depending on whether SASP is transiently or chronically present overtime. A localized, transient
SASP is important for recruitment of immune cells, clearance of damaged cells, and subsequent
regeneration/remodeling of tissue, at least in young tissue and in developmental transitory embryonic
structures [29,31]. However, after persistent damage, pathological status, or in aged tissue, clearance of
senescent cell and regeneration may be compromised. In these situations, senescent cells accumulate
and subsequent persistent SASP causes chronic low-grade inflammation and tissue dysfunction [29,31].
In addition, whereas senescent cells in tumors can recruit immune cells through the SASP and induce
tumor clearance [40], high burden of senescent cells and persistent SASP induce immune suppression
and tumor promotion [67].

2.3. The Role of Cellular Senescence in Aging and Aging-Related Diseases

The accumulations of senescent cells with chronological aging tissue and in progeroid syndromes
have been observed in multiple mammalian organs, including the lungs [41,68–73]. Accumulation of
senescent cells might be induced by several proposed mechanisms including (1) increased generation
of senescent cells partly by aggressive SASP; (2) decreased clearance of senescent cells due to impaired
immune system; and (3) high resistance of senescent cells against immune clearance [29,31,74].

The elegant study by Baker et al. revealed that eliminating senescent cells can delay age-related
dysfunction in a progeroid rodent model [22]. This is the first evidence that senescent cells are
direct drivers of multiple age-related pathologies. Recent studies have developed several transgenic
mouse models that enable investigations about the emergence of senescence cells in vivo and their
roles in driving aging phenotypes and age-related diseases. These models use the promoters of
p21 or p16 to drive the expression of reporter and/or killer genes by senescent cells [23,75–78].
The senescence-reporter models demonstrated that senescent cells increase in number during
chronologic aging [23,77,78]. Baker et al. reported on the direct contribution of cellular senescence
in aging phenotypes by using the model of selective elimination of senescent cells in vivo [23].
The clearance of senescent cells results in extended life span, delayed tumorigenesis, and mitigated
age-related deterioration of several organs, including kidney, heart, and fat [23]. These studies
shed a ray of light on the elucidation of the direct contribution of senescent cells on aging and
aging-related diseases.

To date, there are five possible scenarios by which senescent cells promote age-related tissue
dysfunction. First, cellular senescence can deplete the stem or progenitor cells from the tissue [29,
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31,38]. This condition decreases tissue repair and regeneration capacity. Second, the senescence
impairs the efficacy of reprogramming of somatic cells into induced pluripotent stem cells [79,80].
Third, senescence could disrupt the local stem cell niche non-autonomously through the SASP and
could negatively impact on stem cell function [31]. Fourth, inappropriate presence of SASP components
could functionally and structurally perturb normal tissue microenvironment. Persistent induction of
SASP components causes degradation of ECM, induction of aberrant cell differentiation, tissue fibrosis,
and stimulation of low-grade chronic inflammation [31,38]. Finally, SASP components (e.g., TGF-β1)
could cause paracrine senescence in healthy bystander cells, increase the population of senescent cells,
and reinforce age-related tissue deterioration.

3. The Impacts of Aging in Respiratory Tract Antimicrobial Defense System

Aging has a wide spectrum of defective impacts on both innate and adaptive immunity, including
the functions of alveolar macrophages, dendritic cells, and neutrophils, and the mechanisms involved
have been extensively reviewed [81–83]. In regard to the antimicrobial peptide production, the levels
of cathelicidin and β-defensin-2 in healthy elderly were comparable with those found in healthy
young individuals [84]. In contrast, aging causes slowing in ciliary beat frequency in mice [85] that
may lead to diminished mucociliary clearance for elimination of pathogens from the airway. Aging
also causes impaired alveolar barrier integrity after lung injury. In comparison with young mice,
old mice had increased response of acute lung injury in association with decreased expressions of
tight junction protein after lipopolysaccharide insult [86]. Yin et al. demonstrated that aged mice
had increased susceptibility to influenza viral pneumonia with exacerbated damage and delayed
repair of alveolar epithelial cells (AECs) [87]. Previous studies reported that signaling of Toll-like
receptors (TLRs), pattern recognition receptors for detection and initiation of innate immune response,
were impaired in aging [88–90]. Defective TLR signaling in the elderly might lead to impairment of
rapid recognition of pathogens, and might contribute to increased baseline levels of inflammation.
Elderly individuals have baseline low-grade chronic inflammation, known as “inflamm-aging”, in the
absence of an infectious insult [81,82]. Blunted immune response, referred as immunosenescence,
might contribute to the development of inflamm-aging in elderly. In addition, the accumulations of
senescent cells in aged tissues might also contribute to the evolution of low-grade chronic inflammation.
Interestingly, Shivshankar et al. reported that aged mice had increased bacterial ligand expression,
and enhanced susceptibility to pneumococcal pneumonia with elevated levels of senescence markers
in the lung [18]. These findings suggest that cellular senescence might contribute directly to the
susceptibility of elderly to bacterial infection.

4. The Impacts of Cellular Senescence in Age-Related Lung Diseases

4.1. The Role of Cellular Senescence in COPD

COPD is characterized by persistent airflow limitation that is usually progressive and associated
with an enhanced chronic inflammatory response in the lungs [37]. COPD predominantly affects the
elderly, with the peak prevalence at approximately 65 years old [37]. COPD patients have a chronic
inflammatory response in the lungs, and this response might induce emphysema and obstruction of the
small airways [37]. Patients with COPD have an increased risk of community-acquired pneumonia [33].

For a long period of time, inhalation of toxic particles and gases, primarily cigarette smoke,
is thought to play a central role in the development of chronic inflammatory response in COPD
patients. However, this scenario cannot fully explain the development of chronic inflammation in the
lungs, because persistent airway inflammation and progression of disease are observed in patients
with COPD who have already ceased smoking [91]. This observation, in conjunction with the high
prevalence of COPD in elderly, suggests the involvement of cellular senescence in the pathogenesis
of COPD. Several studies indicated the existence of shortened telomeres in various type of cells in
patients with COPD, including type II AECs, fibroblasts, endothelial cells, and peripheral blood
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lymphocytes [92–95]. Previous studies also showed cigarette smoke induction of cellular senescence
in AECs and fibroblasts with the expressions of SAβGAL in vitro and in vivo [96,97]. In addition,
multiple SASP components—including IL-6, IL-8, and MMPs—are upregulated through the activation
of NF-κB, and are closely linked to the pathogenesis of COPD [35].

The level of anti-aging sirtuin 1 (SIRT1), a NAD+-dependent protein/histone deacetylase, was low
in alveolar macrophage and epithelial cells in the lungs of patients with COPD [98]. SIRT1 activation
by genetic overexpression and a pharmacological SIRT1 activator mitigated cigarette smoking-induced
and elastase-induced emphysema with the reduction in number of SAβGAL-positive epithelial cells in
mice [99]. In accordance with these findings, deletion of SIRT1 resulted in aggravated emphysematous
change with the increased number of SAβGAL-positive epithelial cells after cigarette smoke challenge
in mice [99]. These findings indicated that cellular senescence is a key player in the pathogenesis of
COPD, and activation of SIRT1 might be an attractive therapeutic strategy against COPD.

Recently, Richmond et al. reported that polymeric immunoglobulin receptor-deficient mice,
which lack secretory immunoglobulin A, spontaneously developed fragmentation of alveolar wall
and small airway fibrosis with the activation of NF-κB associated with chronological aging [100].
These mice showed an altered lung microbiome, increased bacterial penetration into bronchial
epithelium, enhanced macrophage accumulation, and increased MMP-12 levels [100]. Interestingly,
re-derivation of these mice in germ-free conditions protected them from chronic lung inflammation
and emphysema. Since downregulation of polymeric immunoglobulin receptor correlates with airway
inflammation in patients with COPD [101], alteration of the microbiome might contribute to the
progression of COPD, and cellular senescence might collaborate with an altered airway microbiome in
development of the vicious circle of low-grade chronic lung inflammation in COPD.

4.2. The Role of Cellular Senescence in IPF

IPF is defined as specific form of a chronic, progressive, age-associated, fatal, irreversible,
and fibrosing interstitial pneumonia of unknown causes, occurring primarily in older adults [34].
The incidence of disease increases with older age, with presentation typically occurring in the
sixth and seventh decades [102–104]. The most significant environmental risk factor is cigarette
smoking [34,102]. IPF patients are considered to have increased risk of respiratory infection due
to receiving immunosuppressive drugs and therapy and repeated hospitalization [34]. From the
perspective of histopathologic characteristics of IPF, two essential properties of senescent cells, cell-cycle
arrest and SASP, are thought to be intimately involved in the pathogenesis of IPF. Reconstitution
of AEC-barrier integrity might fail due to cell-cycle arrest of AECs, and that might result in
proliferation and activation of fibroblast, surplus collagen deposition, and fibrotic scarring. In addition,
accumulation of fibroblasts adjacent to large or flattened AECs in fibroblastic foci suggest the disruption
of normal epithelial–mesenchymal interaction due to excessive SASP components originated from
senescent cells. In fact, SAβGAL-positive senescent cells are frequently detected in both AECs [105–107]
and fibroblasts [105] in fibroblastic foci of lungs affected by IPF. The expressions of CDK inhibitors
(p16, p21, and p53) were elevated in type II AECs isolated from IPF patients [107]. In addition,
short telomeres were also detected in AECs of lungs affected by IPF [108]. Furthermore, AECs of lungs
affected by IPF are the primary source of various SASP components that act as chemotactic factors,
mitogens, or ECM remodelers, including TGF-β1, MMPs, and IGFBP [36]. Among these, TGF-β1
plays a pivotal role in the pathogenesis of IPF through the induction of migration, proliferation,
and activation of fibroblasts, and evocation of epithelial mesenchymal transition in AECs [36].

Recent transgenic mouse model studies demonstrated that cellular senescence in AECs has
an intimate involvement in the pathogenesis of IPF. Type II AEC-specific deletion of type II
telomere repeat binding factor (TRF)-1—a telomere shelterin protein—in mice resulted in short
telomeres [109], increased expressions of p53 and p21 [110], accumulation of SAβGAL-positive
senescent cells [109], increased TGF-β1 expression [109], and development of spontaneous lung
fibrosis [109,110]. Importantly, short telomeres and accumulation of SAβGAL-positive senescent cells
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were detected only in older, but not in younger, TRF-1 deleted mice [109]. Alder et al. reported that type
II AEC-specific TRF-2-deficient mice resulted in robust activation of DNA damage response, increased
expressions of p53 and p21, decreased cell proliferation of type II AECs, increased spontaneous
macrophage recruitment, and impaired lung repair after injury [111]. They also demonstrated
that TRF-2 deletion in type II AECs limited self-renewal and differentiation of AECs in vitro [111].
These findings suggest that cellular senescence in AECs plays an important role in the pathogenesis
of lung fibrosis through the cell growth arrest, SASP induction, and limitation of alveolar stem
cell function.

In regard to fibroblasts in IPF, Yanai et al. demonstrated the accelerated replicative cellular
senescence and large and irregular morphology with high frequent positivity for myofibroblast marker
(α-smooth muscle actin) in lung fibroblasts isolated from patients with IPF [112]. Similarly, Im et al.
reported the decreased autophagy activity in primary lung fibroblasts from patients with IPF [113].

Type II AECs in the lungs of patients with IPF showed defective mitophagy and dysfunctional
mitochondria with low expressions of PTEN-induced putative kinase 1 (PINK1) that is thought to
have an important role in the maintenance of mitochondrial homeostasis and selective degradation of
damaged mitochondria by mitophagy [114]. PINK1-deficient mice showed dysfunctional mitochondria
in type II AECs with increased vulnerability to lung fibrosis [114]. These findings suggest that impaired
mitophagy in AECs promotes susceptibility to lung fibrosis. Conversely, alveolar macrophages from
patients with IPF showed increased mitophagy and apoptosis resistance with increased expression of
TGF-β1 [115]. Macrophage-specific Akt-deficient mice, which exhibit decreased mitochondrial reactive
oxygen species, showed impaired mitophagy, had decreased TGF-β1 expressions, and were protected
from lung fibrosis [115]. Taken together, mitophagy positively or negatively regulates the development
of lung fibrosis dependent on the individual, cell-intrinsic property.

4.3. The Potential Scenarios of How Cellular Senescence Causes Distinct Age-Related Lung Pathologies

As described in above chapters, several evidences have indicated that cellular senescence
plays a pivotal role in the pathogenesis of both COPD and IPF. However, it remains under debate
how this common cellular process can be involved in these distinct lung diseases. At present,
there are several potential scenarios for this conundrum. First, several aging-associated processes,
including cellular senescence and telomere attrition [108], are common features of COPD and IPF;
however, there are many distinct pathomechanisms among these diseases. For example, in addition
to hallmarks of aging, IPF has several abnormal recapitulations of the developmental pathway,
including Wnt signaling pathway [116–118] and Shh signaling [119]. Additionally, COPD and IPF have
different patterns of microRNA dysregulations [120]. Second, COPD and IPF have distinct primary
targets. While COPD generally targets small airway epithelial cells, which results in airway chronic
inflammation [35], IPF targets AECs, which causes disruption of AEC-barrier integrity, insufficient for
re-epithelialization and subsequent lung fibrosis [36,120–122]. In addition, mesenchymal precursor
cell senescence, progressive decrease of matrix protein production, and subsequent emphysema might
occur in COPD [123], as suggested by the enhanced senescence-related markers in mesenchymal
cells of the lungs in patients with COPD [93]. Third, there is a distinctive genetic architecture and
a divergent epigenetic dysregulation between the two diseases [120]. Fourth, different expression
patterns of SASP factors exist as outputs of cellular senescence between COPD and IPF due to
undetermined mechanisms, and that may lead to the distinct abnormal tissue remodeling [36,124].
As a whole, the reason why common age-related defective cell processes fall into distinct lung
pathologies is currently unknown. Further understanding the pathomechanisms of these two
diseases—including the machinery of repair process, epithelial–mesenchymal interaction, and the
involvement of immunosenescence—may help in the establishment of new therapeutic strategies
against devastating disorders.
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5. Conclusions

In this review, we discuss the impacts of cellular senescence in elderly pneumonia (Figure 1).
Cellular senescence plays a pivotal role in tissue repair, tissue renewal, normal embryonic development,
and antitumor effects. However, persistent cellular senescence and excessive SASP induce disruption
of normal tissue microenvironments and chronic low-grade inflammation that result in increased
susceptibility to infection in elderly. Thus, for elderly populations, antisenescent therapy may help
eliminate senescent cells and subsequently improve resistance against pathogen insult. Antisenescent
therapy might also prevent the development of senescent-related lung diseases, COPD and IPF. On the
other hand, it is easy to assume that antisenescent therapy may induce considerable adverse effects,
including cancer initiation and progression. Thus, it is important to investigate the precise mechanisms
and roles of cellular senescence in the pathogenesis of different pathologies. The establishment
of tissue-specific and cell-type-specific antisenescent therapy may also open new avenues for the
development of attractive therapeutic strategies against these intractable diseases.
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