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Abstract

Purpose

To investigate ocular blood flow and correlations between ocular blood flow and variables in

patients with severe non-proliferative diabetic retinopathy (S-NPDR) following panretinal

photocoagulation (PRP).

Methods

In this retrospective, cross-sectional study, the blood flow on the optic nerve head (ONH)

and choroid was assessed with laser speckle flowgraphy (LSFG) using the mean blur rate

(MBR) in 76 eyes of 76 patients with S-NPDR who underwent PRP, 39 eyes of 39 patients

with S-NPDR who did not undergo PRP, and 71 eyes of 71 normal subjects. The correlation

between MBR and variables, including visual acuity (VA) and choroidal area determined by

binarization method, was analyzed.

Results

The mean age was 62.9 ± 11.9 years in the S-NPDR with PRP eyes, 55.6 ± 11.4 years in

the S-NPDR without PRP eyes, and 60.3 ± 11.1 years in the normal subject eyes. The ONH

MBR in vessel and tissue areas and the choroidal MBR were significantly lower in the S-

NDR with PRP group than in the other groups (p < 0.001, p < 0.001, and p < 0.001, respec-

tively). The luminal and the stromal areas were significantly smaller in the S-NDR with PRP

group than in the other groups (p < 0.001 and p < 0.001, respectively). LogMAR best cor-

rected visual acuity (BCVA) exhibited significant negative correlation with the ONH MBR in

vessel (r = −0.386, p < 0.001), tissue (r = −0.348, p < 0.001), and the choroid MBR (r =

−0.339, p = 0.002) in the S-NDR with PRP group. Stepwise multiple regression analysis

demonstrated that BCVA was a common independent factor associated with the ONH MBR

in vessel, tissue, and the choroidal MBR in the S-NDR with PRP group.

Conclusions

ONH and choroid MBR in addition to choroidal component, including the luminal area, were

significantly lower in eyes of patients with S-NPDR after PRP compared with no PRP and
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normal subjects group. This could suggest that the significantly reduced ocular blood flow in

PRP-treated S-NPDR eyes correlated with long-term decreased post-PRP luminal area and

visual acuity.

Introduction

Diabetic retinopathy is one of the leading causes of blindness in the industrialized world. Stud-

ies have demonstrated that panretinal photocoagulation (PRP) is a beneficial clinical treatment

that reduces the incidence of blindness in patients with proliferative diabetic retinopathy

(PDR).[1–3] A five-stage disease severity classification for diabetic retinopathy includes three

stages of low risk, a fourth stage of severe non-PDR (S-NPDR), and a fifth stage of PDR. [4, 5]

At least one of the following should be present in S-NPDR: a) "severe" haemorrhages and

microaneurysms in all four quadrants of the fundus, b) venous beading, which is more marked

in at least two quadrants, and c) intraretinal microvascular abnormalities, which are more

severe in at least one quadrant. The Early Treatment Diabetic Retinopathy Study subsequently

demonstrated PRP to be associated with maintenance of good long-term visual acuity in most

patients with S-NPDR or PDR.[6]

It has been proposed that PRP improves the oxygenation of ischemic inner retinal layers by

destroying some of the metabolically highly active photoreceptor cells, leading to a greater

flow of oxygen from the choriocapillaris to the inner layers of the retina.[7] Animal studies

have shown an increase in the oxygen delivered from the choriocapillaris to the inner retina

after photocoagulation.[8]

Destruction of the retinal pigment epithelium (RPE) and outer retinal tissue by photocoag-

ulation may influence the choroid’s circulation underneath. Many studies focusing on the

effects of PRP on ocular circulation have reported that PRP reduces retinal blood flow in

patients with diabetic retinopathy.[9–12] Measuring choroidal blood flow is particularly chal-

lenging because the choroidal vessels are three-dimentional and complex and are hidden from

view by the RPE, which results in choroidal blood flow not be directly evaluated.

Choroidal blood flow represents the major supply of oxygen and nutrients to the choroid

and outer retina. Accordingly, knowledge on choroidal blood flow is important for under-

standing pathological conditions.[13] Various techniques for measuring choroidal blood flow

have been developed, including computerized pneumotonometry,[14] indocyanine green

angiography,[15] and near-infrared Doppler flowmetry.[16] The clinical utility of available

methods is hampered by the time-consuming nature of the procedures, which are therefore

unsuitable for large-scale trials.

The choroid is mainly composed of vessels and stroma (extravascular tissue), lacking a

well-organized structure. Therefore, it is important to understand the variations in the choroi-

dal structure. However, it is difficult to differentiate the luminal area from the stromal area in

the choroid in vivo. Recently, Sonoda et al reported the use of a binarization method involving

optical coherence tomography (OCT) images, which can differentiate the choroidal luminal

area from the stromal area and quantify these areas using a software, Image-J, with a high

reproducibility.[17, 18]

Laser speckle flowgraphy (LSFG) (Softcare Co., Ltd., Fukutsu, Japan) is a non-invasive,

real-time method used to measure the relative blood flow in the choroid and optic nerve head

(ONH) for 4 s without the use of contrast agents.[19–21] LSFG can detect the speckle contrast

pattern produced by the interference of illuminating laser light that is scattered by the move-

ment of erythrocytes in the blood vessels and enables measurement of the relative blood flow
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in the vessels expressed as the mean blur rate (MBR).[19–21] LSFG values correlate well with

the actual blood flow values determined using hydrogen gas clearance and microsphere meth-

ods,[22, 23] meaning that variables determined with LSFG would be comparable between indi-

viduals. Aizawa et al reported that the coefficient of variation for MBR was 4.7 for the choroid

and 3.4 for the ONH.[24] Therefore, LSFG was considered to be suitable for measuring ONH

and choroidal blood flow in large-scale trials.

To the best of our knowledge, no reports have so far included data on the long-term evalua-

tion of retinal and choroid blood flow in individual patients with S-NPDR following PRP.

Thus, the purpose of this study was to assess the effect of PRP on ocular blood flow and its

potential correlation with variables such as the choroidal area determined by binarization in

patients with S-NPDR.

Methods

Ethics statement

In this retrospective, cross-sectional single-center study, the procedures used were approved

by the Ethics Committee of the Nagoya University Hospital (Nagoya, Japan). The study was

performed at the Nagoya University Hospital, and the study conformed to the tenets of the

Declaration of Helsinki. A written informed consent had been obtained from all of the patients

for the PRP after an explanation of the procedures to be performed and possible complica-

tions. Permission was also obtained to use the data collected for future research.

Subjects

Patients who had S-NPDR (type 2 DM) and had undergone PRP, did not have undergone

PRP, and normal subjects without ocular and systemic diseases were recruited and included in

the study at Nagoya University Hospital from April 2014 to April 2016. All subjects underwent

a comprehensive ophthalmic examination including the measurement e.g., slit-lamp examina-

tion, fundus examination.

All subjects were examined with a view to identifying the presence of any ocular disease.

Slit-lamp examination and indirect ophthalmoscopy were used to examine the anterior and

posterior segments of the eye, respectively. Furthermore, normal subjects were screened for

any medical condition that might influence the hemodynamics of the eye, such as diabetes,

hypertension, arrhythmia, and vascular diseases. The exclusion criteria for groups included

the presence of any macular abnormalities such as choroidal neovascularization or asymptom-

atic pigment epithelial detachment, a history of other ophthalmic disorders, incisional surgery

in the experimental eye, topical anti-glaucoma treatment, systemic hormonal medications, or

anti-VEGF therapy or steroid for diabetic macular edema at last 1 year before the measure-

ments, or AL > 26.5 mm.[25]

The relative blood flow was determined by LSFG-NAVI instrument (Softcare, Fukuoka,

Japan) as described below. Because alcohol [26] and caffeine [27] intake can influence IOP, all

participants were asked to abstain from alcoholic and caffeinated beverages from the evening

before and on the day of the study. Additionally, all participants were instructed to avoid food

consumption from 2 h before each experiment. All examinations were performed in the sitting

position and on the same day. Each subject rested for 10–15 min in a quiet room prior to the

tests, and each experimental session was completed within 15 min. The best-corrected visual

acuity (BCVA) was measured with a standard Japanese decimal VA chart and converted to the

logarithm of the minimum angle of resolution (logMAR) units. Axial lengths were measured

with a partial optical coherence interferometry (IOLMaster; Carl Zeiss Meditec, La Jolla, CA),

and intraocular pressure (IOP) was measured with a handheld tonometer (Icare; Tiolat Oy,
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Helsinki, Finland). Systolic blood pressure (SBP) and diastolic blood pressure (DBP) were

measured for the left brachial artery at the height of the heart in a sitting position with an

automatic sphygmomanometer (CH-483C; Citizen, Tokyo, Japan). The mean arterial blood

pressure (MAP) and mean ocular perfusion pressure (MOPP) were calculated as follows:

MAP = DBP + 1/3(SBP − DBP) and MOPP = 2/3MAP − IOP, respectively.[28]

PRP treatment

The criteria for performing PRP are that patients had non-perfusion retinal areas in three or

more quadrants in fluorescein fundus angiography. PRP was performed through a wide-field

contact lens using a slit-lamp adapted photocoagulator (Lumenis Novus Varia1; Lumenis

Ltd., Yokneam, Israel) with yellow color according to the Early Treatment Diabetic Retinopa-

thy Study protocol. [29] PRP for each eye was performed in 3–5 sessions with 2-week intervals

between sessions. For each session, photocoagulation was performed with 200-mm spot sizes

with pulse duration of 0.2 seconds. 400–600 spots were made for a total to 1,200–3,500 spots to

obtain a complete PRP. The power of the laser was individually adjusted to produce yellowish-

white coagulative spots and ranged between 100 and 200 mW.

Laser speckle flowgraphy

LSFG-NAVI was used to determine the relative ocular blood flow. The principles of LSFG

have been described in detail elsewhere.[30–32] Briefly, this instrument comprises a fundus

camera equipped with an 830-nm diode laser and a charge-coupled camera (750 width × 360

height pixels). After switching on the laser, a speckle pattern appears because of the interfer-

ence of the light scattered from the illuminated tissue. MBR is a measure of the relative blood

flow and is determined by examining the pattern of the speckle contrast produced by the inter-

ference of the laser light that is scattered by the movement of the blood cells in the ocular

blood vessels. MBR images are acquired at a rate of 30 frames/s over a 4-s period. The embed-

ded analysis software synchronizes all MBR images with each cardiac cycle, and the averaged

MBR of a heartbeat is displayed as a heartbeat map.

To evaluate the changes in ONH and choroidal blood flow, a circle was set surrounding the

ONH (Fig 1A), and a rectangle (250 × 250 pixels) was placed around the macula (Fig 1B). The

software in the instrument was able to track the eye movements during the measurement

period. LSFG was measured twice for each time point in all of the eyes. Average MBR values

were calculated for each circle or rectangle using the LSFG Analyzer software (v.3.1.59).

Measurement of Subfoveal choroidal thickness (SFCT)

Choroidal images were obtained by spectral-domain OCT (SD-OCT; Spectralis OCT, Heidel-

berg Engineering, Heidelberg, Germany). SD-OCT was placed close enough to the eye to

obtain inverted images as previously described.[33] The subfoveal choroidal thickness (SFCT)

was measured as the distance from the hyper-reflective RPE line to the choroid–sclera border

with a caliper tool on SD-OCT by two experienced clinicians who were blinded to other study

parameters.

Differentiation of luminal and stromal areas

Binarization of the choroidal area in EDI-OCT images was performed by the modified

Niblack’s method as previously reported.[17] EDI-OCT images were analyzed using the

ImageJ software (ImageJ version 1.47, NIH, Bethesda, MD, USA). The examined area was

1,500 μm wide in the subfoveal choroid, extending vertically from the RPE to the chorioscleral
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border (Fig 2). This choroidal area was selected using the ImageJ ROI Manager. Next, the

image was converted into 8 bits. The vitreous cavity in front of the macular area was selected

by the Oval Selection Tool on the ImageJ tool bar, and the maximum reflectivity of these areas

was determined. The maximum brightness was set at the minimum value to minimize noise in

the OCT image. After adjusting by the Niblack Auto Local Threshold, the luminal area was

determined using the threshold tool. The light pixels were defined as the stromal areas, and the

dark pixels were defined as the luminal areas. After adding the data of the distance of each

pixel, the luminal and stromal areas were automatically calculated. Two clinicians blinded to

the other findings measured the area.

Statistical analyses

The value of each parameter was presented as the mean ± standard deviation. For comparisons

of categorical data, the chi-square test was used, whereas quantitative data were compared

using Kruskal–Wallis tests. Analysis of variance with post-hoc Bonferroni correction was used

to evaluate data pertaining to blood flow parameters and choroidal areas. Spearman’s rank cor-

relation coefficient tests were used to determine the correlation coefficients between the vari-

ables. Multiple stepwise regression analysis was used to determine the association between

blood flow parameters and other variables. All statistical analyses were performed using IBM

SPSS Statistics for Windows, v.23 (IBM Corp., Armonk, NY). The significance level was set at

a probability (p) value< 0.05.

Fig 1. Representative composite color maps reflecting the mean blur rate (MBR) as measured by laser

speckle flowgraphy (LSFG). Red color indicates a high MBR, and blue color indicates a low MBR. To

measure the MBR of the optic nerve head (ONH) blood flow and choroidal blood, a circle was set around the

ONH (left) and the center of a rectangle was set at the fovea (250 × 250 pixels, degree: 6.31˚ × 6.31˚) (right).

Eyes of i) normal subjects (A, B), ii) severe non-proliferative diabetic retinopathy (S-NPDR) patients without

panretinal photocoagulation (PRP) (C, D), and iii) S-NPDR patients with PRP (E, F) are demonstrated. The

blue color is dominant in the ONH and choroid in S-NPDR patient eyes with PRP (E, F).

https://doi.org/10.1371/journal.pone.0174427.g001
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Results

Demographics of subjects

Seventy-six eyes of 76 patients with S-NPDR who underwent PRP, 39 eyes of 39 patients who

did not undergo PRP, and 71 eyes of 71 normal subjects were enrolled in this study. Demo-

graphic data on all subjects are shown in Table 1. No significant differences were observed in

terms of gender, IOP, axial length, DBP, MOPP, or HR among the groups, while there were

significant differences in age (p< 0.001), BCVA (p< 0.001), SFCT (p< 0.001), and SBP

(p = 0.005) among the groups.

Comparison of ocular blood flow between eyes with diabetic retinopathy

and normal subjects

The ONH MBR in the vessel area was 29.1 ± 9.0 (arbitrary unit, AU) in the S-NPDR with PRP

group and was significantly lower than that of the S-NPDR without PRP and the normal sub-

jects groups, which was 40.7 ± 7.7 AU and 41.5 ± 8.3 AU, respectively (p< 0.001) (Fig 3). The

ONH MBR in the tissue area was 9.0 ± 2.7 AU in the S-NPDR with PRP group and was signifi-

cantly lower than that in the S-NPDR without PRP and the normal subjects groups, which was

10.8 ± 2.4 AU and 11.4 ± 2.8 AU, respectively (p< 0.001, p< 0.001). The choroidal MBR was

6.4 ± 3.7 AU in the S-NPDR with PRP group and was significantly lower than that in the

S-NPDR without PRP and the normal subjects groups, which was 7.8 ± 2.0 AU and 9.2 ± 3.7

AU, respectively (p = 0.028, p< 0.001). There were no significant differences in the ONH and

choroidal MBR between the S-NPDR without PRP and the normal subjects groups.

Fig 2. Representative binarization image of a choroidal area in an enhanced depth imaging (EDI) optical coherence tomography (OCT) image.

The eyes with normal subject (A), severe non-proliferative diabetic retinopathy (S-NPDR) patients with panretinal photocoagulation (PRP) (B), and S-NPDR

patients without PRP (C) are demonstrated. The area of interest of the choroid is demarcated (top). The EDI-OCT image was converted to a binary image

using ImageJ software. The rectangle surrounded by the red line was excised, and the dark areas were traced by the modified Niblack method (middle). The

binarized image and the margin of the traced area were merged, demonstrating that the traced area represented the luminal area, being consistent with the

dark areas of the choroidal areas observed in the OCT image (bottom). The choroidal and luminal areas in the eyes of S-NPDR patients with PRP were

smaller than those in the eyes of normal subjects or S-NPDR patients without PRP.

https://doi.org/10.1371/journal.pone.0174427.g002
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Comparison of choroidal morphology between eyes with diabetic

retinopathy and normal subjects

In the normal subjects group, the choroidal area, the luminal area, and the stromal area were

0.407 ± 0.145, 0.265 ± 0.098, and 0.138 ± 0.052 mm2, respectively (Fig 4). In the S-NPDR with

PRP group, those were 0.289 ± 0.126, 0.189 ± 0.082, and 0.105 ± 0.046 mm2, respectively. In

the S-NPDR without PRP group, those were 0.429 ± 0.087, 0.284 ± 0.061, and 0.145 ± 0.034

mm2, respectively. The areas determined by binarization in the S-NPDR with PRP group were

significantly smaller than that in the S-NPDR without PRP and the normal subjects groups

(p< 0.001, p< 0.001, p< 0.001, respectively). The luminal/stromal ratio in the S-NPDR with

PRP group were significantly smaller than that in the S-NPDR without PRP and the normal

subjects groups (p< 0.001, p< 0.001, respectively).

Correlation of ocular blood flow with other parameters

The results of single linear regression analyses are displayed in the S-NPDR with PRP group

in Tables 2 and 3. The ONH MBR in the vessel correlated with choroidal MBR (r = 0.295,

p = 0.009), BCVA (r = −0.386, p< 0.001), number of PC shots (r = 0.345, p = 0.002), and dura-

tion of post-photocoagulation (r = −0.379, p< 0.001). The ONH MBR in the tissue correlated

with choroidal MBR (r = 0.428, p< 0.001), gender (r = 0.256, p = 0.026), BCVA (r = −0.348,

p< 0.001), luminal area (r = 0.243, p = 0.038), and duration of post-photocoagulation (r =

−0.381, p< 0.001). The choroidal MBR correlated with BCVA (r = −0.339, p = 0.002).

Fig 5 demonstrates the correlation between the ONH and choroidal MBR and LogMAR

BCVA. The LogMAR BCVA had a significant negative correlation with ONH MBR in the ves-

sel (r = −0.386, p< 0.001), in the tissue (r = −0.348, p< 0.001), and choroidal MBR (r =

−0.339, p = 0.002).

Stepwise multiple regression analysis demonstrated that BCVA and the post-photocoagula-

tion period were independent factors associated with ONH MBR in the vessel (Table 4)

BCVA, the post-photocoagulation period, and gender were independent factors associated

with ONH MBR in the tissue (Table 5)

Table 1. Clinical characteristics of subjects.

Characteristics S-NPDR with PRP (n = 76) S-NPDR without PRP (n = 39) Normal subjects (n = 71) p—value

Age (years) 62.9 ±11.9 55.6 ±11.4 60.3 ± 11.1 < 0.001

Gender (male: female) 46: 30 24: 15 32: 39 0.111

HbA1c (%) 7.3 ± 1.3 8.8 ± 2.1 - < 0.001

Duration of diabetes (years) 19.4 ± 9.4 11.8 ± 7.8 - < 0.001

Insulin: oral hypoglycemic agents 38: 38 20: 19 - 0.897

Duration after photocoagulation (year) 8.4 ± 5.6 - - -

Best corrected visual acuity (Log MAR) 0.29 ± 0.29 0.09 ± 0.11 -0.00 ± 0.05 < 0.001

Intraocular pressure (mmHg) 14.1 ± 2.8 15.1 ± 2.8 13.8 ± 2.7 0.685

Axial length (mm) 23.80 ± 1.18 23.84 ± 1.01 24.17 ± 1.38 0.163

Subfoveal choroidal thickness (μm) 222.3 ± 85.9 292.3 ± 48.3 256.9 ± 70.9 < 0.001

Systolic blood pressure (mmHg) 136.3 ± 24.4 131.4 ± 29.7 127.2 ± 13.7 0.048

Diastolic blood pressure (mmHg) 78.6 ± 15.4 77.6 ± 16.1 78.2 ± 9.4 0.925

Ocular perfusion pressure (mmHg) 51.2 ± 11.9 48.6 ± 13.2 49.2 ± 7.4 0.379

Heart rate (bpm) 76.9 ± 11.9 77.3 ± 9.5 73.5 ± 10.6 0.096

S-NPDR = severe non-proliferative diabetic retinopathy.

https://doi.org/10.1371/journal.pone.0174427.t001
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In addition, BCVA, number of photocoagulation, HR, and age were independent factors

associated with choroidal MBR (Table 6).

Discussion

Our results showed that ONH and choroidal MBR were reduced in the PRP on eyes with

S-NPDR but were not reduced in untreated eyes with S-NPDR. In addition, PRP on eyes with

S-NPDR significantly reduced the SFCT and choroidal area as determined by binarization

compared with untreated eyes with S-NPDR and normal eyes. Multiple stepwise regression

analysis revealed that BCVA was a common independent factor associated with ONH and

choroidal MBR in PRP on eyes with S-NPDR.

It has been reported that photocoagulation essentially eliminated the choriocapillaris, when

assessed by either laser scanning ophthalmoscopy indocyanine green angiography or counts of

microspheres in the choroid.[34] Histologic damage to the choriocapillaris in humans have

also been reported for such lesions.[35, 36] Morphological studies have reported that the outer

nuclear layer, the high oxygen-consuming photoreceptor cells, and RPE were absent following

PRP along with obliteration of the choriocapillaris,[35–37] suggesting that the ocular blood

flow in the photocoagulated area decreases after PRP. Our OCT and OCT angiography map

clearly demonstrates the long-term disruption of photoreceptor cells, RPE, and choriocapil-

laris in burn regions following PRP (Fig 6), corroborating these histologic findings.[37]

Accordingly, these findings can be interpreted as a result of the large number of photocoagula-

tion shots, which cause a wide, disrupted area in these tissues, resulting in reduced retinal and

choroidal blood flow in the lesion.

ONH MBR was reduced on S-NPDR eyes with PRP but was not reduced in untreated eyes

with S-NPDR, and single linear regression analysis showed that the ONH MBR exhibited a sig-

nificant negative correlation with the number of PC shots in the present study. Grunwald et al

[9, 10] and Patel et al [38] showed a decrease in retinal blood flow in diabetic patients following

complete fundus PRP; some other experimental reports also corroborate these findings. [39,

40] Fujio et al [11] reported that regional laser treatment produces a regional reduction in

Fig 3. Differences between the eyes of normal subjects and those of patients with severe non-proliferative diabetic retinopathy (S-NPDR) in

terms of mean blur rate (MBR) as determined by laser speckle flowgraphy (LSFG). The MBR of the optic nerve head (ONH) in the vessel and the tissue

in the S-NPDR with panretinal photocoagulation (PRP) group was significantly lower than that in the S-NPDR without PRP and normal subjects groups (A)

(B) (p < 0.001, p < 0.001, respectively). The choroidal MBR in the S-NPDR with PRP group was significantly lower than that in the S-NPDR without PRP and

the normal subjects groups (p = 0.028, p < 0.001).

https://doi.org/10.1371/journal.pone.0174427.g003
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retinal blood flow ranging from 60% to 78%, consistent with measurements of preretinal and

intraretinal oxygen tension, which have indicated increases in oxygen over photocoagulated

regions. These reports are in good agreement with our results.

Fig 4. Differences between the eyes of normal subjects and those of patients with severe non-proliferative diabetic retinopathy (S-NPDR) with

regard to subfoveal choroidal area as determined by binarization. The choroidal (A), luminal (B), and stromal area (C) in the S-NPDR with panretinal

photocoagulation (PRP) group were significantly smaller than that in the S-NPDR without PRP and the normal subjects groups (p < 0.001, p < 0.001,

p < 0.001, respectively). The luminal/stromal ratio in the S-NPDR with PRP group was significantly smaller than that in the S-NPDR without PRP and the

normal subjects groups (p < 0.001, p < 0.001, respectively).

https://doi.org/10.1371/journal.pone.0174427.g004

Table 2. Result of Spearman’s rank correlation coefficient between the choroidal MBR and clinical parameters in patients with severe non-prolifer-

ative diabetic retinopathy.

Parameter Choroid Age Gender HbA1c Duration BCVA AL SFCT

MBR of DM

MBR

ONH vessel 0.295b -0.081 0.025 0.167 0.005 -0.386a -0.119 0.177

tissue 0.428a -0.026 0.256c 0.151 0.009 -0.348a -0.100 0.214

Choroid - -0.069 0.091 -0.068 -0.013 -0.339b -0.006 0.067

MBR = mean blur rate; ONH = optic nerve head; DM = diabetes mellitus; BCVA = best corrected visual acuity; AL = axial length; SFCT = subfoveal choroidal

thickness, ap < 0.001, bp <0.01, cp < 0.05.

https://doi.org/10.1371/journal.pone.0174427.t002
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Data on choroidal blood flow at the macula area following PRP varies among previous

reports. Flower et al [41] reported that the effect of coagulating the peripheral retinal area

Table 3. Result of Spearman’s rank correlation coefficient between the choroidal MBR and clinical parameters in patients with severe non-prolifer-

ative diabetic retinopathy.

Parameter IOP Choroidal Luminal Stromal MOPP HR Number of Duration

Area Area Area PC shots after PC

MBR

ONH vessel -0.041 0.142 0.145 0.123 -0.025 -0.064 -0.345b -0.379a

tissue 0.060 0.227 0.243c 0.177 0.131 0.100 -0.195 -0.381a

Choroid 0.047 0.054 0.059 0.040 0.113 0.167 -0.027 -0.105

MBR = mean blur rate; ONH = optic nerve head; IOP = intraocular pressure; MOPP = mean ocular perfusion pressure; HR = heart rate;

PC = photocoagulation, ap < 0.001, bp <0.01, cp < 0.05.

https://doi.org/10.1371/journal.pone.0174427.t003

Fig 5. Relationship between best-corrected visual acuity (BCVA), optic nerve head (ONH), and choroid mean blur rate (MBR). The BCVA correlated

with ONH MBR in the vessel (r = −0.386, p < 0.001), in the tissue (r = −0.348, p < 0.001), and choroidal MBR (r = −0.339, p = 0.002). AU = arbitrary units.

https://doi.org/10.1371/journal.pone.0174427.g005
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markedly increased the choriocapillaris blood flow in the central area of the fundus relative to

that in the periphery in monkey eyes as evidenced by indocyanine green angiography. Using a

reflection spectra method, Augsten et al [42] also reported that peripheral retinal photocoagu-

lation improved choroidal circulation in the macular area in patients with S-NPDR. Foveal

choroidal blood flow measured using laser Doppler flowmetry was reported to increase one

month following PRP. [43] On the other hand, it has been reported that the choroidal blood

Table 4. Results of multiple stepwise regression analysis for independence of factors contributing to ONH MBR.

Variable

Dependent Independent β p—value

ONH MBR (vessel) Duration after PC -0.406 < 0.001

BCVA -0.355 < 0.001

Axial length -0.137 0.184

Age 0.131 0.208

HbA1c 0.121 0.249

Number of PC 0.128 0.288

Stromal area 0.107 0.323

Luminal area 0.098 0.353

Heart rate -0.067 0.514

Gender 0.056 0.590

SBP 0.028 0.784

DBP -0.020 0.844

IOP -0.020 0.872

MOPP 0.010 0.920

ONH = optic nerve head; MBR = mean blur rate; PC = photocoagulation; BCVA = best corrected visual acuity; SBP = Systolic blood pressure;

DBP = diastolic blood pressure; IOP = intraocular pressure; MOPP = mean ocular perfusion pressure.

https://doi.org/10.1371/journal.pone.0174427.t004

Table 5. Results of multiple stepwise regression analysis for independence of factors contributing to ONH MBR.

Variable

Dependent Independent β p—value

ONH MBR (tissue) Duration after PC -0.385 < 0.001

BCVA -0.327 0.001

Gender 0.261 0.011

SBP 0.174 0.086

Age 0.136 0.198

Axial length -0.091 0.390

Luminal area 0.065 0.560

Stromal area 0.056 0.613

DBP -0.109 0.666

MOPP -0.135 0.666

HbA1c 0.042 0.681

IOP 0.007 0.715

Heart rate -0.026 0.809

Number of PC 0.007 0.952

ONH = optic nerve head; MBR = mean blur rate; PC = photocoagulation; BCVA = best corrected visual acuity; SBP = Systolic blood pressure;

DBP = diastolic blood pressure; MOPP = mean ocular perfusion pressure; IOP = intraocular pressure.

https://doi.org/10.1371/journal.pone.0174427.t005
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flow was significantly lower in PRP-treated eyes compared with that in untreated eyes as mea-

sured using laser interferometry and Color Doppler imaging. [44–46]

One possible explanation for this variety is that choroid blood flow at the macula area fol-

lowing PRP might be associated with PRP-induced inflammation and the measurement

period. In most studies, blood flow was measured relatively early, such as 1 to 3 months follow-

ing PRP, and it cannot be denied that the inflammation induced by photocoagulation had not

resolved at the time of measuring. In addition, in the short term following PRP e.g. 1 week, it

might be responsible for choroidal swelling, probably due to a shifting of blood vessels from

the peripheral choroid to the foveal area. [47] Furthermore, the measuring methods, instru-

ments, measured regions, and disease processes were different in each study, and this may con-

tribute to the variability of the results. However, few reports are available describing post-PRP

long-term choroidal blood flow at the macula area upon complete resolution of inflammation.

The mean post-photocoagulation period is approximately 9 years in the present study, and the

choroid blood flow at the macula was significantly decreased in S-NPDR patients, especially

with impaired vision.

Earlier studies reported a significant thinner choroid following PRP on eyes with S-NPDR

relative to untreated eyes with S-NPDR. [48–51] These results are in good agreement with our

results, showing that PRP on eyes with S-NPDR significantly reduced SFCT and the stromal

and luminal areas as determined by binarization, and compared with that in untreated eyes

with S-NPDR and normal eyes. It has been reported that choroidal blood flow determined by

LSFG significantly positively correlated with SFCT in a larger number of normal eyes. [52] We

did not compare choroidal blood flow before and after PRP: however, there was no difference

in choroidal blood flow between untreated eyes with S-NPDR and normal eyes. Accordingly,

it is most likely that PRP treatment is related with the significantly reduced choroidal blood

flow and decreased SFCT in PRP-treated S-NPDR eyes.

The present study demonstrated that the ONH MBR and the choroidal MBR significantly

correlated with BCVA in PRP on eyes with S-NPDR patients, and BCVA in PRP-treated eyes

Table 6. Results of multiple stepwise regression analysis for independence of factors contributing to choroidal MBR.

Variable

Dependent Independent β p—value

Choroidal MBR BCVA -0.537 < 0.001

Number of PC -0.344 0.008

Heart rate 0.311 0.010

Age -0.264 0.029

Duration after PC —0.180 0.094

HbA1c -0.165 0.172

Gender 0.138 0.203

SBP 0.112 0.334

MOPP 0.104 0.373

DBP 0.107 0.382

IOP 0.074 0.497

Stromal area 0.073 0.513

Luminal area 0.057 0.600

Axial length -0.042 0.719

MBR = mean blur rate; BCVA = best corrected visual acuity; PC = photocoagulation; SBP = Systolic blood pressure; MOPP = mean ocular perfusion

pressure; IOP = intraocular pressure; DBP = diastolic blood pressure.

https://doi.org/10.1371/journal.pone.0174427.t006
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with S-NPDR was worse than that in untreated eyes with S-NPDR. There are several possible

explanations for this. First, the retina and ONH in PRP-treated eyes with S-NPDR with good

vision would have smaller areas of non-perfusion prior to PRP and would need only little

photocoagulation, with a relatively high blood flow remaining. Second, the ocular blood flow

in S-NPDR patient eyes with impaired vision would already have been reduced prior to PRP.

Third, eyes which require a larger number of photocoagulation would be predisposed to cause

macular edema and the disruption of outer retinal layer e.g. ellipsoid zone, resulting in lower

vision, because BCVA in untreated eyes with S-NPDR did not decrease compared with normal

eyes, implying that PRP itself may decrease vision. Fourth, a high ocular blood flow is needed

to maintain a good vision. Oxygen required by photoreceptors in the fovea is supplied from

Fig 6. Optical coherence tomography angiography showing an eye with S-NPDR following PRP. Fundus photograph (A) and fluorescence

angiography (B) taken with the Optomap® camera showing an eye with S-NPDR following PRP. Optical coherence tomography (OCT) angiography of the

photocoagulated area showing choroidal major vessel because of the defect of RPE and choriocapillaris (C). An SD-OCT Spectralis® image was taken at

the red line of the angiography (D). Photocoagulated regions (red arrow head) indicates absence of the outer nuclear layer and photoreceptor cells with the

inner retinal layers lying in close apposition to Bruch’s membrane and disruption of RPE layer and choriocapillaris.

https://doi.org/10.1371/journal.pone.0174427.g006
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the choroid. Ooto et al [53] used an adaptive optics scanning laser ophthalmoscope to deter-

mine cone photoreceptor density, compared their findings with microstructures determined

by a commercially available SD-OCT, and suggested that cone density in the foveal area corre-

lates with BCVA. A large number of photoreceptors would require a higher choroidal blood

flow for photoreceptor survival.

The post-photocoagulation period negatively correlated with ONH MBR in our multiple

regression analysis. The photocoagulation effect was not limited to the lesioned area, but

extended outside of the area by at least 1 to 2 mm.[34] Reportedly, 70% of laser scars increase

in size on serial examinations performed over periods ranging from 2 to 81 months.[54] With

photocoagulation for diabetic retinopathy, there is usually some damage to the underlying

choroid and temporary closure of the choriocapillaris on the irradiated area. If the damage is

sufficient to destroy a lobule in the choriocapillaris, the RPE overlying this lobule adjacent to

the treatment site could later on become atrophic and contribute to this RPE atrophic creep.

[54] The expanding atrophic creep would be related to decreasing retinal blood flow. On the

other hand, there was no correlation between the post-photocoagulation period and the cho-

roidal MBR. Although the reason is unclear, we evaluated only macular choroidal blood flow;

changes in choroidal blood flow in other areas remain unknown, which might result in no cor-

relation between the factors.

There are several limitations to this study. First, our study is cross-sectional, i.e., parameters

may vary among the individual. Accordingly, the investigation of the relationship between

changes in ocular blood flow with the post-photocoagulation period requires longitudinal

study data. Second, we used a rectangle at the fovea to measure the MBR of choroidal blood

flow, and the area binarized included 1,500 μm surrounding the fovea, meaning that choroid

measurements were performed only in the center, not in the lesioned area or in the entire cho-

roid. Third, we did not evaluate the situation before and after PRP with regard to VEGF con-

centration in the vitreous. Therefore, the relationship between the BCVA and VEGF remains

unclear. Further longitudinal studies using a larger number of subjects will be necessary for

clarification.

In conclusion, the ONH and choroidal MBR in addition to choroidal component, including

the luminal area, was significantly lower in eyes of patients with S-NPDR after PRP compared

with normal subjects. This could suggest that the significantly reduced ocular blood flow in

PRP-treated S-NPDR eyes correlated with long-term decreased post-PRP luminal area and

visual acuity.
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