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A tantalizing question in evolutionary biology is whether evolution can be predicted from past

experiences. To address this question, we created a coherent compendium of more than

15,000 mutation events for the bacterium Escherichia coli under 178 distinct environmental

settings. Compendium analysis provides a comprehensive view of the explored environments,

mutation hotspots and mutation co-occurrence. While the mutations shared across all

replicates decrease with the number of replicates, our results argue that the pairwise over-

lapping ratio remains the same, regardless of the number of replicates. An ensemble of

predictors trained on the mutation compendium and tested in forward validation over 35

evolution replicates achieves a 49.2 ± 5.8% (mean ± std) precision and 34.5 ± 5.7% recall in

predicting mutation targets. This work demonstrates how integrated datasets can be har-

nessed to create predictive models of evolution at a gene level and elucidate the effect of

evolutionary processes in well-defined environments.
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It is well known that the result of evolutionary processes in a
population is not random for a given environment. However,
our understanding of how reproducible the fixated mutation

patterns are and at what degree they can be predicted is limited1–3.
Given the random and complex nature of evolutionary adaptation
that encompasses both local and global effects, it is unclear
whether individual mutation targets can be associated with con-
fidence to a particular environment. One such signal is the
mutation of a common group of genes that govern global reg-
ulation under a variety of environmental conditions4–6. While
evolution is a mixed result of deterministic and stochastic events,
there have been several studies that aim to predict the evolution
of a trait. Early on, in vitro evolution experiments were used to
predict the emergence of antibiotic resistance7, while engineered
Escherichia coli cells have demonstrated predicted fitness after
multiple rounds of evolution8.

Adaptive laboratory evolution (ALE) has been applied to elu-
cidate the genetic basis and potential of evolutionary
adaptation9,10. One of the preferred hosts for ALE experiments is
E. coli, due to its well-studied physiology and cellular organiza-
tion, short generation time (typically 8–10 generations per day),
small genome (5M bases) and high relevance to biotechnology
and health. Most of ALE experiments are performed under stress
conditions, such as ethanol11, antibiotics12–17 and high acidity9,
while the number of generations vary widely from a few dozens to
thousands. Inexpensive resequencing of the evolved clones by
next-generation sequencing has provided insights into the genetic
basis of acquired fitness in novel environments18–21 as well as the
variability of evolved cell populations during evolution22–24.

When it comes to prediction, machine learning has been suc-
cessfully applied in a variety of topics, from classification of the
binding activity of proteins25 and to DNA26 to guiding protein
design27. Data from genome-wide association studies have been

used in various studies including for calculation of the gene
mutation probability and the role of pleiotropy in adaptation. To
apply similar methods in this context, one has to integrate the
evolutionary data in a way that they can be mined, reveal patterns
and test hypotheses, similar to what is done for omics data28–30.
Mutation databases currently exist31–33, but they are not suitable
for training machine learning models due to lack of environ-
mental metadata, limited focus and size. If we aspire to predict
evolution at some degree, efforts need to be more systematic,
larger in size and focused on creating the necessary infrastructure
of well-integrated data and methods. Being able to make accurate
predictions about the number, type and position of mutations will
lead to an improved understanding of how organisms evolve and
will allow us to design better experiments. Conversely, we can use
the same datasets to build predictors of the environment in which
an organism lives or has evolved, given its mutation profile34.
Predicting genetic mutation targets accurately and reproducibly
will be a boon to research and industrial applications, as a critical
challenge is traversing the vast combinatorial space in the case of
strain engineering or fermentation settings for microbial bio-
technology. Most methods so far focus on descriptive analysis
versus techniques that produce predictive or prescriptive
insights3. In all cases, each additional dataset that will be inte-
grated to the current compendium will contribute towards the
accurate prediction of mutation targets in novel environments.

In this study, we curated the current scientific literature for
publications with E. coli whole-genome sequencing (WGS) data
and necessary metadata (Fig. 1a). We then analyzed this mutation
compendium of more than 15,000 events and we organized their
corresponding conditions and attributes so that it can be used as a
training set. Then we used it to train “evolution” predictors that
have the capacity to predict gene mutation targets, at gene (not
nucleotide) level, given a novel environmental setting (Fig. 1b).
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Fig. 1 Overview of predicting mutations in E. coli using a data-driven approach. a A compendium was constructed with mutation profiles across 178
conditions over 83 features that capture attributes related to the strain, medium and stress from experiments reported in 95 publications. b We built three
individual predictors, namely an Artificial Neural Network (ANN), Support Vector Machines (SVM) and a Naive Bayes (NB) model, which are integrated
under one Ensemble method. c Assessment of the predictions from all three individual predictors and the Ensemble method is performed through forward
validation over a novel experimental setting through the evolution and whole-genome resequencing of 35 cell lines
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As a forward validation step, we evolved 35 independent E. coli
lines for 500 generations, identified the mutations and then
compared the computational predictions with our experimental
findings (Fig. 1c). Compendium analysis provides a comprehen-
sive view of the explored environments, mutation hotspots and
mutation co-occurrence. Interestingly, our data show that fixation
rate follows a linear relationship that exhibits non-linearity as the
number of generations grow due to the emergence of hypermu-
tator cells. We find that a linear relationship exists between the
averaged frequency of all the mutations under a specific condition
and the number of biological replicates. While the mutations
shared across all replicates decrease with the number of replicates,
as expected, our results argue that the same ratio across any two
replicates remain the same, regardless of the number of replicates,
which is quite unexpected. We observe a higher likelihood to hit
DNA-related functions in hypermutators, which is analogous to
what has been observed recently in cancer cells with high
mutation rates. An ensemble of predictors trained on the muta-
tion compendium and tested in forward validation over 35 evo-
lution replicates achieves a 49.2 ± 5.8% precision and 34.5 ± 5.7%
recall in predicting mutation targets in the novel condition.

Results
The mutation database of E. coli. A total of 95 papers containing
ALE experiments were analyzed to extract the adaptive mutations
published in evolutionary E. coli studies (Supplementary Data 1).
Out of these 95 papers, 41 had available sequencing data that
were compiled in a database of 15,402 mutation events grouped
in 3819 genomic sites across 574 evolved genomes (Supplemen-
tary Data 2). The data have been collected across 178 culture
conditions with the number of replicates ranging from 1 to 115.
Each evolution condition was defined by three attributes: strain,
medium and stress (Fig. 2a). For each mutation event, we
recorded its genome position with respect to a reference genome
and the mutation event type. Among the 15,402 mutations, 8759
were single-nucleotide polymorphisms (SNPs; 57%), 3994 were
deletions (26%), 1342 were insertions (9%), 1303 were amplifi-
cations (8%) and 4 were inversions (0.02%) (Fig. 2b). In terms of
spatial location, the 15,403 mutation events hit 3819 mutation
sites, with 3065 (80.3%) and 754 (19.7%) of them in coding and
intergenic regions, respectively.

Mutation hotspots and key targets across the E. coli genetic
landscape. Next, we mapped the frequency and position of
mutation hotspots in the E. coli genome. The mutation frequency
for each locus in the 178 unique conditions follows a power law
distribution with a long tail, having the top 0.5% genome sites
accounting for the 5% of all mutations (Fig. 2c, Supplementary
Data 3). Gene ontology (GO) enrichment showed that 12 out of
the top 20 genes most likely to be hit by a mutation are involved
in carbohydrate transport and metabolism, an adaptation to the
carbon source in the media (Supplementary Fig. 1). The most
frequently mutated site found is the RNA polymerase subunit
rpoB which is detected in 30.9% of the conditions present in this
study. rpoB hits are ubiquitous in evolution experiments, such as
the evolution of antibiotic resistance. Interestingly, recent studies
report that antibiotic-resistant clones based on rpoB mutations
emerge early in the evolution, even in the absence of antibiotics in
the environment35, and also confer increased evolvavility36. Other
sigma factors like rpoS and rpoC are also mutation targets4,37, as a
single mutation in the transcription machinery can lead to sub-
stantially different metabolic products38. The other two of the top
three genes are pyrE-rph (49/178) and pykF (37/178) that have
been associated with adaptation to media and adverse conditions,
such as the presence of antibiotics and oxidative stress39.

We used a 5 kb sliding window along the E. coli MG1655
genome to find regions that were most or least likely to be hit by a
mutation. The distribution of mutation counts has a long tail that
we fit with a gamma distribution. Hotspots were identified as the
top 5% regions with respect to mutations (Fig. 2d). Similarly, the
genomic areas that were never hit by a mutation were flagged as
depletion spots (Fig. 2e, Supplementary Data 3). Functional
analysis of the top five hotspots argues that metabolic genes and
genes related to transport are more prone to mutations: the top
five GO terms are carbohydrate catabolic process, magnesium ion
binding and nucleotidyltransferases (Supplementary Fig. 2). In
contrast, depletion spots mostly contain genes associated with
critical structural and biosynthesis processes, such as organelle
proteins, membrane, cell wall and amino acid synthesis
(Supplementary Fig. 3).

In our previous analysis, we did not take into account the 36
hypermutator strains, strains with a mutation rate larger than 0.1
mutations per genome duplication that have been identified as
such. Hypermutators are generally expected to follow a different
trajectory during evolution, but it is unclear if their mutation
signature overlaps with that of other mutated strains. We found
that the mutation frequencies of the most frequently hit genes in
hypermutator strains are higher than in other strains (52.9% vs
29.8% in Table 1). Nucleotide binding is still the most prominent
function of the target genes in hypermutator strains, but at lower
frequency (6 vs 10 out of 20), while rpoB continues to be a
popular mutation target. Interestingly, the DNA gyrase subunit B
that negatively supercoils DNA to maintain it in an underwound
state is the most common genomic site harboring a mutation40,41.
We observe a higher likelihood to hit DNA-related functions in
hypermutators, which is analogous to what has been observed
recently in cancer cells with high mutation rates42 (among the 36
hypermutators, 100% have at least one DNA-related gene
mutated. In contrast, the percentage is 51% for normal evolved
replicates; Supplementary Data 4).

Co-occurring mutations. To investigate any significant overlap or
dependencies among mutations, we performed an analysis of the
pairwise association in mutation events using a spectral clustering
approach. Interestingly, we consistently detected six clusters, each
with a distinct functional signature (Fig. 3a, Supplementary Data 5).
We analyzed the enriched molecular function GO terms in each
cluster (Fig. 3c, a p value of less than 0.1 was used as a cut-off for
GO enrichment). In the case of GO cellular components (Supple-
mentary Fig. 4), clusters 2, 3, 4 and 6 posses a high number of
membrane proteins (11/24, 33/76, 20/63 and 31/163 respectively).
Moreover, 6 of the 33 membrane proteins in cluster 3 are involved
in the transport. The only pathway enriched in any of the clusters is
the two-component system, which is present in 9 genes in cluster 1
and 8 in cluster 4. Two-component systems sense the environ-
mental conditions and activate specific pathways in the bacteria,
which are clear targets for adaptation under selection pressure. The
top co-occurring mutation pairs are not inside any cluster and have
two genes involved, gntU and yhjN, a low-affinity gluconate
transporter and biofilm formation precursor respectively (Supple-
mentary Data 6). Mutations in these genes are a general response to
improve carbon acquisition and leads to a reduced ability of biofilm
formation43. Other genes present in these pairs are involved in
transcription and transport of nutrients. We also performed a
network enrichment analysis by building a network of mutation
associations for the five most popular stresses in our database: heat,
anaerobic growth, acid, presence of antibiotics and butanol (Sup-
plementary Fig. 5). The analysis depicts patterns that are both
environment specific (e.g., we found that mutations linked to
anaerobic growth are prone to be found in other stresses too) and
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gene specific (e.g., rph mutations exist in three stress environments
and it is not related to media adaptation).

Fixation rate and number of generations. To understand the
relationship of the fixed mutation rates and number of generations,
we plotted the number of fixed mutations found in each evolved
clone against the generations elapsed with and without hypermu-
tator clones (Fig. 3b). Our analysis shows that mutation rate is
linear without hypermutations, and exponential if hypermutations
are included. To account for other possible factors, such as strain,
medium and stress, we used analysis of variance (ANOVA) (Sup-
plementary Information and Supplementary Fig. 6a). We found
that with hypermutators this significant difference in fixation rates
between long and intermediate/short-term evolution runs (cut-off
at 30,000 generations) exists, even when variation (or lack of) for
strain, medium or stress was taken into account (p value= 1.28 ×
10−3). For the four categories of mutations, synonymous SNP, non-
synonymous SNP, insertion and deletion among the non-
hypermutator clones, the fixation rate is also linear (Supplemen-
tary Fig. 7). For hypermutators, mutation rate ranges from 0.035 to
1.5 with a mean of 0.26 per generation. The number of mutations
increased linearly with the generation elapsed. For normal clones,
the mutation rate varies from 0.0018 to 0.3 with a median of 0.0068
per generation per genome, in accordance and in confirmation of
Drake’s landmark observation to a mean value around 0.003344.

Although a linear trend was observed among normal clones, the
fixation rate is not constant. In order to investigate the difference in
fixation rate among the normal clones, we split all the normal
clones into two groups, one group with a fixation rate higher (102
evolution runs) than the mean fixation rate and the other group
(436 evolution runs). Results show that the former group is enri-
ched with mutations in genes governing DNA repair, DNA
supercoiling or DNA assembling or encoding DNA polymerase,
DNA gyrase, DNA glycosylase, DNA repair proteins and DNA-
binding proteins (33% vs 17%; p value: 0.00058, Supplementary
Data 4). As expected, all strains are not equal, with BW25113 and
W3110 having the highest/lowest mutation rates (Supplementary
Data 7), while ANOVA analysis indicates that other factors
including stress, medium and generation also contribute to the
higher/lower mutation rate (Supplementary Fig. 6. b and c;
Supplementary Information).

Mutation-based clustering is informative of the action
mechanism. Based on the mutation profiles, we grouped all the
evolution runs which had the same strain and medium, resulting
in 4 groups with 22 (antibiotics), 9 (antibiotics), 5 (butanol,
osmotic, H2O2, acidic) and 3 (antibiotics) stresses in each. As
expected, the mutation-based clustering has information about
the mechanism of action (Supplementary Tables 1 and 2). In
Fig. 3d, the dendrogram from the hierarchical clustering of the
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first group (22 antibiotics) is shown, which follows the mechan-
ism of action, except in the case sulfamethaxozole and sulfamo-
nomethoxine. Interestingly, these two antibiotics also cluster
together when mutation frequency is taken into account (Sup-
plementary Fig. 8).

Evolutionary signatures increase linearly with replicate
experiments. The degree to which convergence and contingency
impacts evolutionary outcomes remains a subject of debate in
evolutionary biology45–48. Both convergence, the notion that
independent species will end up with similar adaptations49,50, and
contingency, i.e., that trait evolution is not predetermined but a
result of chance with alternative end points being possible51, are
present during evolution. The level of convergence is expected to
shed light on the predictability of evolution. To address how
predictable evolution is from the perspective of genetic mutations,
we evaluated the frequency of mutations within multiple repli-
cates under the same condition. We found a linear relationship
between the averaged frequency of all the mutations under a
specific condition and the reciprocal of the number of biological
replicates: F= 1.49/N+ 0.018, where F is the averaged frequency
and N is the number of replicates (Fig. 4a). Interestingly, the
variability of the result decreases with frequency. Our results
show that when replicates are few, patterns are more similar,
while alternative patterns emerge when the number of replicates
increases.

A pattern of shared mutations across replicates. We then
quantified the level of convergence by two distinct ratios: the

global overlapping ratio that corresponds to the percentage of
shared mutations among all clones and the pairwise overlapping
ratio, which is the percentage of shared mutations between any
two clones, given a specific condition. When counting shared
mutations, the difference in the mutation type was not con-
sidered. We calculated the two ratios as a function of the number
of biological replicates for the 73 different culture conditions in
our database that have two or more replicates. As expected, the
global overlapping ratio is decreasing proportionally to the
inverse of the number of replicates, reaching 3% at experiments
with 114 replicates, given by G= 1.5/N+ 0.015, where G is the
global overlap ratio and N is the number of replicates. (Fig. 4b).
This trend is in line with the curve in Fig. 4a, as the average
frequency of each mutation is expected to be similar to the
overlap of a mutation profile with all the profiles in a given
condition. The difference between the global overlap ration and
the null model, i.e., each mutation present in exactly one replicate
(dotted line in Fig. 4a), represents the common mutations shared
across replicates under any given condition. Interestingly, how-
ever, if we examine each pair of replicates together, their overlap
ratio decreased slightly across the whole range of replicates per
experiment (Fig. 4c). This pattern holds across medium, strain
and stress differences. Concomitantly, we observe higher con-
vergence (pairwise overlap ratio) at adverse conditions, such as
comparing minimal vs rich media (p value < 10−4) and antibiotic
vs no stress (p value < 10−9, Fig. 4d).

Predicting evolution through data integration. Given the
repeatability in mutation targets in an environmental setting,

Table 1 The hotspot genes in non-mutator and mutator strains

Non-mutator strains Mutator strains

Gene Function Frequency P
value

Gene Function Frequency P
value

rpoB RNA polymerase sigma 24 29.8% −99 gyrB DNA gyrase 52.9% −22
pykF Pyruvate kinase I 20.2% −85 rpoB RNA polymerase sigma 24 41.2% −18
rph RNase PH 15.5% −47 chiA Endochitinase 41.2% −19
malT MalT-maltotriose-ATP DNA-binding

transcriptional activator
14.8% −42 rpoC RNA polymerase sigma 24 35.3% −14

ybaL Putative transport protein, monovalent cation:
proton antiporter-2 (CPA2) family

14.3% −38 bcsZ Endo-1,4-D-glucanase 35.3% −15

rbsK Ribokinase 14.3% −40 adhE Aldehyde alcohol dehydrogenase 35.3% −13
rbsA Ribose ABC transporter 14.3% −41 mreC Membrane protein required for maintenance of

rod shape
29.4% −12

spoT Guanosine 3r- diphosphate 5r- triphosphate 3r-
diphosphatase

13.7% −26 secA Protein translocation ATPase 29.4% −13

topA DNA topoisomerase I 13.1% −35 ycaL Predicted peptidase with chaperone function 29.4% −11
nadR NadR DNA-binding transcriptional repressor and

NMN adenylyl transferase
13.1% −36 eptB Kdo2-lipid A phospho-ethanolamine7-

transferase
29.4% −10

rbsD Ribose pyranase 13.1% −38 elfC Predicted outer membrane usher protein 29.4% −10
rbsB Ribose ABC transporter 13.1% −39 fepE Obactin (enterochelin) transport 29.4% −11
rbsR RbsR-ribose 13.1% −36 ravA Regulatory 29.4% −9
fis Fis DNA-binding transcriptional dual regulator 13.1% −32 yeaH Conserved protein 29.4% −11
hslU HslVU protease 12.5% −35 glnE Glutamine synthetase adenylyl transferase

glutamine synthetase deadenylase
29.4% −12

envZ EnvZ sensory histidine kinase 12.5% −35 rhsC RhsC protein in rhs element 29.4% −9
hsrA Putative transport protein, major facilitator

superfamily (MFS)
11.9% −30 ybjL Inner membrane protein YbjL 29.4% −8

metL Aspartate kinase/ homoserinede-hydrogenase 11.3% −27 ymfD e14 prophage; predicted SAM-dependent
methyltransferase

29.4% −11

mrdB Rod shape-determining membrane protein;
sensitivity and drug

10.7% −30 yrfF Inner membrane protein inhibits the Rcs
signaling pathway

29.4% −10

iclR IclR-glyox 10.1% −28 glyQ Glycyl-tRNA synthetase 29.4% −12

The p value is in log10 scale
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we used the evolutionary histories to train an Ensemble pre-
dictor of which genes are likely to have mutations given a novel
environment. In this case, the Ensemble predictor calculates the
probability of such event by combining the outputs of an
Artificial Neural Network (ANN), a Support Vector Machine
(SVM) and a Naive Bayes (NB) classifier. Ensemble predictors
have shown to be robust to a wide variety of prediction tasks
from the prediction of molecular targets to biological network
inference52. Here, we use the medium, strain, generation and
stress information as features to predict whether a genome site
is mutated (Fig. 5a). A bottom-up wrapper method was used for
feature selection on all 1990 genome sites (Supplementary
Data 8). The top 10 most frequently selected features were
found to be antibiotics and temperature. The features related to
strain are all less likely to be selected, compared to features
related to stress and medium.

As shown in Fig. 5b, c, the prediction performance of each
individual predictor was well above the baseline (area under the
curve/area under the precision–recall curve (AUC/AUPRC) for

the different predictors: ANN, 0.93/0.32; SVM, 0.85/0.13; NB,
0.92/0.18; baseline, 0.69/0.04), with the Ensemble predictor
achieving surprisingly high performance under leave-one-
condition-out cross-validation (AUC 0.96; AUPRC 0.37). All
performance data, confusion matrices and intersection among
mutations are included in Supplementary Data 9. To address the
class imbalance we used oversampling (see Methods), although
the performance of the Ensemble predictor was improved only
slightly (Supplementary Table 3). The performance of the
Ensemble predictor varies when predicting mutations at different
genome sites (Supplementary Fig. 9, AUC: 0.95 ± 0.06, AUPRC:
0.37 ± 0.19). Not surprisingly, the performance is proportional to
the frequency of a genome site being mutated across various
culture conditions. We investigated how the performance changes
for more challenging separations by performing a 10-fold cross-
validation, where we found a moderate reduction to AUPRC
(0.28 vs 0.37) and almost no change to AUC (0.92 vs. 0.95). The
distribution of AUC and AUPRC for the ensemble predictor and
each individual predictor is shown in Supplementary Fig. 9c and
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9d, with the ANN outperforming other individual predictors
(Supplementary Table 4). The intersection of the predictions
among the three individual predictors is shown in Supplementary
Fig. 10.

To further validate the prediction power of the Ensemble
predictor, we applied the method in a novel condition (strain
MG1655 in M9 salt media under osmotic NaCl stress). We then
performed the experiment by evolving 35 cell lines and then re-
sequenced their genomes to identify 23 mutations with varying
frequencies (Table 2, Supplementary Data 10). The number of
mutations observed in our experiments after 500 generations is
close to the average number of mutations in our database, which
is 36 for 500 generations. After bootstrapping, the ensemble
predictor was able to predict 34.5 ± 5.7% of the mutation targets
(recall) at a 49.2 ± 5.8% precision in forward validation (AUC:
0.69 ± 0.08, AUPRC: 0.17 ± 0.03).

Discussion
In this work, we constructed the first E. coli evolution database
with a focus on training predictive models of mutation targets.
The database enables the user to compare results and obtain
statistics, hence addressing important issues in evolutionary
biology and extracting knowledge regarding microbial evolution.
Most of the mutations acquired during evolution are point
mutations (57%) in coding regions (80.3%). Since the E. coli
genome has about the same ratio of coding regions (e.g., the
MG1655 strain has 86% of its DNA in coding regions), the

position of the fixated mutations is not biased towards either
intergenic or genic regions. Transcription-related genes such as
rpoB are among the top genes detected in our study, in agreement
with previous work36. A single mutation in one of these genes can
change cell metabolism or the expression of hundreds of genes
with clear fitness implications advantages. Hypermutator phe-
notypes were attributed to mutations in genes related to DNA
replication and DNA repair functions53 and mismatch repair
genes54. As expected, the gene gyrB which encodes for a subunit
of the DNA gyrase is mutated in half of the mutator strains. This
is similar to the malfunction in mismatch repair system that was
found to contribute to the evolution of cancer cells in mammalian
systems55–59.

In terms of mutation frequency, the most frequent mutation
target is rpoB, which encodes the β-subunit of bacterial RNA
polymerase, mutated in 10 out of the 33 stresses. There are
mutations that are specific to the media: for instance, mutation in
satP, a succinate transporter, is specific to M+Glycerol media and
has appeared in 12 out of the 178 respective samples. We mea-
sured the number of stresses and media in which each mutation
appears (Supplementary Data 11 and Supplementary Fig. 11) and
found that although mutations that are common in the majority
of stresses/media exist, they are the exception rather than the rule.
Indeed, only 1.8 and 21% of the mutations appear in more than
10% of the stresses and media, respectively. These mutations,
although more general than others, are associated with specific
stresses and media and hence have predictive value as long as the
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input embedding to the machine learning methods allows for
such associations to take place.

Cross-stress protection is the phenomenon where adaptation in
one stress confers a fitness advantage to a second stress9. We have
found numerous such cases in our analysis, some of them
described before and some novel (Supplementary Fig. 5). For
instance, the adhE gene that was hit in both anaerobic and
butanol stresses is known to increase yield in butanol-related
fermentation processes. Among the five stresses (heat, anaerobic
growth, acid, presence of antibiotics and butanol), we found that
mutations linked to anaerobic growth are more prone to also be
mutation targets of other stresses. Anaerobic respiration is
upregulated at cell repair at the cost of adenosine triphosphate
(ATP) production60, and thus this may be one of the reasons that
anaerobic respiration genes tend to be targeted by mutations
under other stresses too.

Evolution is a dynamic process, with some significant muta-
tions in terms of fitness advantage not appearing until later in the
evolutionary trajectory61,62. Due to negative pleiotropic effects,
the supply of higher fitness mutations initially is fairly limited63.
As such, the global overlapping ratio decreases as a function of
the number of replicates and the pairwise overlapping stabilizes
around 0.53, suggesting an interplay between deterministic and
stochastic factors. The degree of convergence reflects the level of
repeatability of evolution, which might cast light on its predict-
ability64. We noted that presence of antibiotic in the media
triggers a remarkably more convergent evolution than the exis-
tence of a less dire selection pressures. This can be attributed to
the limitation of pathways involved in antibiotic resistance or
other environmental limitations65. The stress an organism is
exposed to creates an imprint on its genome66, and similar to our

analysis, mutation signatures have been found in ultraviolet light-
exposed melanoma67 and tobacco-exposed and arsenic-exposed68

lung cancer. Due to less complexity and more target trajectories
of microbial populations under adaptive laboratory evolution, this
dissection of the mechanistic insights is possible.

We have found that evolution can largely be predicted for
conditions that are closely related or are combinations of con-
ditions that are present in the database. We expect the accuracy of
the predictions and ability to call out gene targets in environ-
ments that are combinations of the strains, media and stresses in
the database will continue to increase as we continue to enrich the
mutation database. We found that at this stage, an Ensemble
predictor that takes integrates different single predictors (Naïve
Bayes, Feed-forward Neural networks and Support Vector
Machines here) has a superior performance overall with
impressive precision and recall, given the task.

There are several areas of improvement. First, new experi-
ments are published each month and a standardization of
mutation reported and an automated integration process with
the database is important to sustain a consistent mutation
registry. In our analysis, we did not take into account a plethora
of genomic features (supercoiling states, genetic elements, such
as promoters, binding sites, among others) that can be co-
analyzed and provide insights into how their presence or
absence influence the distribution of mutations. A more
extensive investigation of what gene groups (biological pro-
cesses, molecular functions) are hit under each condition as
well as more mechanistic insights can bring more clarity on the
molecular basis of these statistical observations. In terms of
predictive modeling, there are a number of improvements that
are likely to provide superior results as the database size
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increases. In the current study, mutations are considered as
independent to each other, which is a first-order approxima-
tion. Employing techniques that can overcome this limitation,
from graphical models to different artificial neural network
architectures, are likely to capture these dependencies and
result in increased performance. Concurrent mutations are
known to be important and dependencies are present in the
compendium here (the distribution of the number of dependent
genome sites is in Supplementary Fig. 12). Additionally, it
would be interesting to investigate whether the order of
mutation, captured in time series experiments, can be predicted
as well, an investigation that we could no’t perform due to the
scarcity of time series samples. Another extension would be to
predict mutations in environments that have additional
dimensions (e.g., presence of more than one species or con-
sortia) at a functional group level considering the interplay
between convergence and contingence. Ultimately, methods
that integrate statistical analysis similar to the one presented
here and mechanistic models have the potential to revolutionize
the field as they can predict at a higher resolution (nucleotide
level) and provide a causal relationship between the emergence
of a mutation and its effect. Until then, the integration of such
secondary effects in mixture-of-expert models, such as the one
that we constructed here, has the potential to increase our
ability to predict evolution and generalize more accurately in
novel environments.

Methods
Literature curation and DB construction. A literature-based approach was taken
to construct the database (DB). The publications around E. coli without whole-
genome sequencing was not included due to the lack of a complete screening of
possible mutations. The information of experimental setup and mutation spectra
was distributed in the body and supplemental material of each publication and
reported in different forms. We unified the coding of a culture condition by a
binary vector of three categories of attributes: strain, medium and stress. Among
the binary variables related to strain and medium, only one can be true and
multiple variables related to stress can be true. The duration of each evolutionary
experiment was represented by 7 attributes corresponding to 7 time intervals:

(0,500], (500,1000], (1000,5000], (5000,10000], (10000, 20000], (20000, 30000],
(30000,40000]. A parenthesis and a square bracket means exclusive and inclusive,
respectively.

When constructing the DB, it was noted that the taxonomy for each gene varies
in different publications since most genes of E. coli have one or more synonyms. To
unify the name of all the genome sites hit by a mutation, we replaced all the
synonyms for each gene with the gene name adopted in the Ecocyc database. An
intergenic region is denoted by the two flanking genes separated by a dash. If an
insertion sequence (IS) element is involved in the mutation, the IS element was
appended to gene name to distinguish from mutation without an IS element. In
some publications only the two flanking genes were reported if a chuck of genome
was deleted. In this case, we filled out the in-between genes by looking up to the
ancestral genome. Additionally, some evolved strains demonstrated an elevated
mutation rate and were classified as mutators in the original publications. The
emergence of mutators represented an important and distinct evolutionary
behavior from normal adaption evolution in that mutators exhibited advantages
over normal evolved strains69 and are more likely to acquire antibiotic resistance70.
Thus, evolution runs with a mutator emerging were included and flagged in our
database for potential study in the future. In the analysis and prediction in this
study, mutator strains were excluded without further explanation except when we
compared the mutation spectra of mutators and normal evolutionary strains.

Evaluating the statistical significance of the hotspot genes. When calculating
the p value for an observed frequency given a gene, the null hypothesis was that the
genome is subject to a mutation with equal chance on any sites if the selective
factor does not play a role. First, under this hypothesis, the probability of a gene
bearing a mutation was computed according to its length. During an evolution run
where multiple genes were mutated, the probability of a particular gene being hit
was modeled using a binomial distribution. The probability of a gene being hit by a
mutation once within multiple evolution runs was modeled by a hypergeometric
distribution. Finally, we computed the p value of observing k times of mutation to a
particular gene within all the normal/mutator conditions by sampling 100,000
combinations and calculating the average.

Specifications of spectral clustering. Spectral clustering approach was applied to
detect gene clusters during evolution. First, all the evolution runs that used the
same strain, medium and stress were merged, resulting in a binary vector indicating
which genome site was hit by a mutation given such an experimental setting.
Mutations hitting different positions of a gene were treated with no discrimination.
Then, the pairwise correlation between different genome sites was evaluated by the
mutual information between every two mutations. Finally, spectral clustering
analysis was conducted on the mutual information matrix. The number of clusters
is a hyperparameter of spectral clustering algorithm. We tested different

Table 2 Mutations discovered in 35 E. coli isolates under osmotic pressure

Gene Mutation type Frequency Product

fepA-fes SNP 34
yjcO-gltP Insertion 34
rph Deletion 27 RNase PH
pyrE-rph Deletion 13
sufB SNP 4 SufBCD Fe-S cluster scaffold complex
pykF SNP 3 Pyruvate kinase I
yeaJ Insertion 3 Predicted diguanylate cyclase
sufS Deletion 3 L-cysteine desulfurase
prok SNP 2 Glycine betaine/proline ABC transporter
rpoB SNP 2 RNA polymerase sigma 24
sufD SNP 2 SufBC2D Fe-S cluster scaffold complex
spoT SNP 1 Guanosine 3-diphosphate 5-triphosphate 3-diphosphatase (multifunctional)
nusA Deletion 1 Transcription termination/antitermination L factor
hns-tdk Insertion 1
pykF-ydhZ SNP 1
acpP-fabG SNP 1
ybbD Deletion 1 Predicted protein
ybbG SNP 1 Mechanosensitive channel of miniconductance YbdG
trg SNP 1 Chemotaxis signaling complex–ribose/galactose/glucose sensing
sufC SNP 1 SufBC2D Fe-S cluster scaffold complex
ydjJ SNP 1 Predicted oxidoreductase, Zn-dependent and NAD(P)-binding
prfB SNP 1 Peptide chain release factor RF2
nikA SNP 1 Nickel ABC transporter

The product of each mutated gene was annotated according to http://ecocyc.org/; the product of intergenic region was left blank. The bold genome sites are predicted to be mutated for more than 5
times among 10 times of bootstrapping
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hyperparameter settings and Fig. 3a was plotted with the hyperparameter of 19.
When implementing spectral clustering, we excluded the genome sites which were
mutated only under one condition. The GO term enrichment analysis was con-
ducted using DAVID (Database for Annotation, Visualization and Integrated
Discovery)71.

Clustering stresses according to mutation profiles. We partitioned the 574
evolution runs into different groups, within which the same strain and medium was
used. A binary mutation profile was generated for each stress in the first group by
merging the replicates under a unique stress. We clustered the stresses according to
mutation profiles using the built in function “hclust” in R. Different criteria were
tried and the criterion taken in Fig. 3d is ward.D2.

Specifications of each individual predictor. When training the Naive Bayesian
model, we applied Laplace smoothing to prevent getting zeros for the parameters of
the model. The Support Vector Machine was trained with a grid search of the c and
sigma values, which govern the penalty of misclassification in training set and the
width of the Gaussian kernel, respectively (the explored values for c and sigma are
[0.001, 0.01, 0.1, 1, 10] and [0.001, 0.01, 0.1, 1] respectively. Keras with Tensorflow
as the backend was used to train a feedforward neural network with various
architectures, from which one optimal one was selected to capture the relationship
between a combination of culture condition and genotype and mutation. The
architecture was optimized by a three-step procedure for each genome site. First,
the activation function for the hidden layer and optimization method for training a
neural network were optimized based on recommendation in literature72 and our
experimental results on part of data. Then, the number of nodes in hidden layer
and number of layers were optimized by the random search73. Finally, the selected
activation function and optimization method were optimized again. When training
the model, we chose the log likelihood of the parameters given the training dataset
as the objective function rather than least square error because the latter objective
led to a vanishing gradient. For the optimal setting, tanh activation function was
selected for the hidden layer and Adam optimizer with an initial learning rate of
0.01 was used to train an ANN. The optimal number of nodes and layers varies for
different genome site. The most common setting among the 32 settings (Supple-
mentary Table 5) is two hidden layers with 57 nodes and 37 nodes in each layer
respectively, and dropout rate being 0.4 (such a setting was selected when pre-
dicting mutations on 257 out of the 1990 genome sites). The results for optimizing
the architecture in step 1 and step 3 are in Supplementary Table 6 and Supple-
mentary Table 7, respectively.

Feature selection for each individual predictor. In order to select the optimal
feature subset from the 83 attributes that represent a culture condition and gen-
otype, we applied a stepwise backward feature selection approach. Specifically, we
started with all the features and iteratively removed the feature, which led to the
best improvement in classification performance, one by one. The iteration was
terminated when removal of a feature from the left subset would decrease the
performance. The prediction performance was quantified by the area under the
receiver operator characteristic (ROC) curve.

Ensemble predictor. Previous empirical and theoretical studies have demonstrated
that ensemble learning approach yielded more accurate and robust prediction
results52. This approach is suitable for tackling biological problems because an
ensemble composed of a set of models captures multiple aspects of the biological
problem of interest, whereas it is often challenging to develop one single model to
account for all the aspects of the biological problem. We constructed an ensemble
of three machine learning models, an ANN, a SVM and a NB model, to predict the
occurrence of mutation to a gene given a culture condition and a starting genotype.
The three models vary in complexity. ANN and SVM are discriminative models,
whereas NB classifier is a generative model. They have been successfully applied in
various contexts. The final prediction, the probability of the occurrence, is an
average of the predictions of the three models with equal weight for each model.
Since not all attributes defining a culture condition and genotype were equally
informative, we conducted feature selection when building each individual model.
For each genome site harboring a mutation under more than two conditions, we
build an ensemble predictor without considering additional mutation details. The
prediction performance of the ensemble predictor was evaluated using a leave-one-
condition-out cross-validation. To tackle the variation in the number of replicates
for different culture conditions, all the replicates for one culture condition was
merged to one binary mutation profile. When cross-validation was conducted, a
condition but not a replicate was left out as testing. Since the ROC curve can be
optimistic on the performance if the dataset is highly skewed, a precision–recall
curve was used to assess the classification performance. The baseline for evaluating
the performance of the ensemble predictor is based on the frequency of a mutation
across different culture conditions in the database. The minority class (mutation
target) in the dataset is heavily skewed and to address the class imbalance we used
oversampling, while we have evaluated other techniques such as ADASYN74 and
SMOTE75 with similar results.

Experimental evolution and mutation validation. E. coli MG1655 was used for
the laboratory evolution. Adaptive evolution was performed by daily serial dilu-
tions in Minimal M9 medium with 0.3 M NaCl and 0.4% glucose as carbon source
at 37 °C. Every 24 h, growing bacteria of 35 independent lines were diluted 1:500 in
fresh medium yielding ∼7–9 generations per day. To ensure the count of gen-
eration elapsed, bacteria were plated on LB agar. Evolution was continued for a
total of 500 generations. DNA of the selected clones was extracted using Wizard
Genomic DNA Purification Kit (Promega) and sequenced as described in Sup-
plementary Methods (Supplementary table 8).

Data availability
The E. coli mutation database (MutationDB), code and predictive models are available at
http://www.mutationdb.com. The DNA sequencing data of the lab evolution experiments
are in Sequence Read Archive under the ID SRP149905.
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