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Abstract: In recent years, hyperspectral images (HSIs) have attained considerable attention in
computer vision (CV) due to their wide utility in remote sensing. Unlike images with three or
lesser channels, HSIs have a large number of spectral bands. Recent works demonstrate the use
of modern deep learning based CV techniques like convolutional neural networks (CNNs) for
analyzing HSI. CNNs have receptive fields (RFs) fueled by learnable weights, which are trained
to extract useful features from images. In this work, a novel multi-receptive CNN module called
GhoMR is proposed for HSI classification. GhoMR utilizes blocks containing several RFs, extracting
features in a residual fashion. Each RF extracts features which are used by other RFs to extract more
complex features in a hierarchical manner. However, the higher the number of RFs, the greater
the associated weights, thus heavier is the network. Most complex architectures suffer from this
shortcoming. To tackle this, the recently found Ghost module is used as the basic building unit.
Ghost modules address the feature redundancy in CNNs by extracting only limited features and
performing cheap transformations on them, thus reducing the overall parameters in the network.
To test the discriminative potential of GhoMR, a simple network called GhoMR-Net is constructed
using GhoMR modules, and experiments are performed on three public HSI data sets—Indian Pines,
University of Pavia, and Salinas Scene. The classification performance is measured using three
metrics—overall accuracy (OA), Kappa coefficient (Kappa), and average accuracy (AA). Comparisons
with ten state-of-the-art architectures are shown to demonstrate the effectiveness of the method
further. Although lightweight, the proposed GhoMR-Net provides comparable or better performance
than other networks. The PyTorch code for this study is made available at the iamarijit/GhoMR
GitHub repository.

Keywords: convolutional neural network; deep learning; feature extraction; hyperspectral image
classification; multi-receptive module; remote sensing

1. Introduction

Hyperspectral images (HSIs) are image cubes where each pixel is measured as one near-continuous
spectrum. Unlike RGB images, HSIs have hundreds of spectral bands, containing knowledge regarding
wavelengths beyond the visible spectrum. These cubes contain both spatial and spectral information,
which can be widely utilized in remote sensing for analyzing a scene of interest. Hyperspectral
imaging also finds its applications in agriculture [1], forestry [2,3], archaeology [4], medical analysis [5],
food quality control [6], military defense [7], forensics [8], and several other domains as well.
Thus, research in HSI processing and analysis is growing rapidly, and several studies have been
published in past years for the same. Often, the high spectral dimensionality of an HSI poses a
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challenge in the analysis due to noise and high computation costs. Earlier, algorithms like independent
component analysis (ICA) [9], principal component analysis (PCA) [10], and linear discriminant
analysis (LDA) [11] were used to deal with this. Recently, more advanced dimension reduction
techniques [12–14] and band selection methods [15–17] have been found to address the same. An HSI
is also subject to mixed pixels, i.e., a pixel can contain mixtures of spectra from different components
(also called endmembers). This occurs either due to the low spatial resolution of the sensors or due
to multiple scattering and intimate mixing effects. Thus, spectral unmixing is done, which involves
retrieving all or some of the endmembers and estimating their fractional abundances in each of the
mixed pixels. In recent years, several techniques [18–20] have been proposed, which have shown
satisfactory results in hyperspectral unmixing. Similarly, HSI classification is another widely-concerned
task in hyperspectral imaging, which this manuscript addresses. HSI classification is the process of
assigning a class for every pixel in an image, based on its spectral and spatial features. Early researches
on HSI classification mostly focused on utilizing shallow hand-crafted techniques [21,22]. Some of
these techniques [23] utilize local covariance matrix representation to extract the correlation between
the spectral bands, which are then used by machine learning algorithms, like support vector machine
(SVM) [24] for HSI classification. Along with spectral methods, spatial feature extraction techniques
like mathematical morphological transformations [25] and composite kernel learning [26,27] are also
used. 3D wavelets [28] and 3D Gabor filters [29] are also efficient methods for extracting spatial
features from HSIs. Other techniques [30–32] involving sparse representations are also developed to
exploit the spatial contextual knowledge in HSIs.

Although the methodologies discussed above have effectively addressed HSI classification, they
are capable of extracting only a limited set of features, deficient in useful information. This limitation
has inspired deep learning computer vision (CV) algorithms to replace these shallow hand-engineered
techniques. This evolution is discussed in details in a recently published comparative study [33]
between the shallow techniques and learning-based algorithms. Convolutional neural network (CNN)
is one of the widely used deep learning algorithms for HSI classification. A CNN is driven by receptive
fields (RFs), which use trainable filters to extract features from HSIs. These filters have randomly
initialized weights, which automatically update while training to extract necessary information.
This self-learning potential gives CNN robustness and superior discriminative ability than shallow
methods to distinguish between various HSI pixels. Besides HSI classification, CNN architectures
proposed in recent years have also revolutionized other domains of CV. AlexNet [34], proposed
in 2012, is one of the founding architectures for image classification on the ImageNet [35] dataset.
Several architectures like VGGNet [36], GoogleNet [37], ResNet [38], DenseNet [39] and SENet [40]
followed. Methods have been proposed to tackle other CV tasks—R-CNN [41], fast R-CNN [42], faster
R-CNN [43], YOLO [44] and SSD [45] for object detection, mask R-CNN [46], SegNet [47], FCN [48]
and U-Net [49] for image segmentation, RCCNet [50] for colon cancer classification, etc.

For HSI analysis, several CNN-driven architectures are proposed in recent years. Some simple
networks use 2D-CNN [51] and 3D-CNN [52]. Other networks like deformable CNN [53],
super-resolution-aided CNN [54] and Two-CNN [55] use variations of 2D-CNN, while multi-scale
3D-CNN (M3D-CNN) [56], 3D-LWNet [57] and spectral-spatial residual network (SSRN) [58] use
3D-CNN-based approaches. HybridSN [59], another state-of-the-art architecture, uses a sequential
fusion of both 2D and 3D CNNs to extract joint spectral-spatial information. Dual-path network
(DPNet) [60], convolutional feature fusion network [61] and deep feature fusion network [62] are
other fusion-based strategies for HSI classification. FuSENet [63], which uses squeeze-and-excitation
modules [40], applies fusion within a single residual block. Unlike SENet, which uses global average
pooling (GAP) for squeeze operation, FuSENet uses a fusion of GAP and global max-pooling (GMP) for
the same. Although these methods have excelled tremendously in HSI classification, they have fairly
heavy architectures, owing to a large number of trainable parameters. Since CNNs are significantly
machine-dependent, these architectures require expensive GPUs and hardware to train and store them.
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The above shortcoming in earlier works inspired us to propose the multi-receptive lightweight
residual block called GhoMR. A singular GhoMR uses a complex strategy inspired by Res2Net [64]
to extract information from HSI data. Each module contains multiple RFs, where each RF extracts
features in a hierarchical fashion using information from other RFs in the same module. These RFs
are connected with residual-like connections. However, with an increase in complexity, the number
of learnable weights increases. Thus, to ensure a lightweight architecture, the Ghost module (GM) is
used as the basic building unit. A single receptive layer of a CNN has multiple convolutional kernels
which generate several feature maps. Research has shown [65] that many of these feature maps are
similar and can be easily constructed by transforming other features. GMs take advantage of this
feature redundancy in CNNs. Inside a GM, a very limited number of features are extracted from the
input using a convolutional layer. Then, more features are generated from the existing ones using
cheap linear operations on them. This strategy reduces the number of parameters, giving rise to a
lightweight feature extraction module. The GM was first used in GhostNet [65], published in CVPR
2020, and later it became a backbone for many methods. Recently, an architecture based on GM called
Improved GhostNet [66] was used for remote sensing classification as well. However, the proposed
GhoMR is the first to use GM on HSIs. Stacking four such GhoMR modules, a classification network
called GhoMR-Net is constructed, which is tested on three benchmark datasets and compared with
state-of-the-art architectures.

The main contributions of this research can be summarized as follows:

1. A novel lightweight multi-receptive feature extraction module called GhoMR is proposed for
HSI classification,

2. A GhoMR utilizes complex feature extraction strategy using several internal RFs, connected in a
residual fashion,

3. To reduce the number of trainable parameters, Ghost modules are used, which uses low-cost
transformations to address feature redundancy in CNNs,

4. An architecture called GhoMR-Net is designed using multiple GhoMR blocks to perform
experiments on three public HSI datasets,

5. Comparisons are shown, which verifies that the proposed GhoMR gives better or comparable
results than state-of-the-art techniques.

The rest of the paper is organized as follows. Section 2 describes the proposed methodology,
Section 3 describes the datasets used and discusses the experiments, comparisons, and visualizations
performed on them, while Section 4 concludes our research.

2. Methodology

2.1. Brief Description of Ghost Modules

CNNs are driven by receptive kernels or filters having randomly initialized weights. These kernels
traverse an input (image or feature maps) and perform element-wise multiplication with underlying
pixels, followed by summation to extract features. This operation is termed as convolution. During
training, sufficient examples are fed, and along with many iterations, these weights are updated
using backpropagation, as the network learns to generalize over unseen examples. However,
CNN architectures use several kernels to extract a wide variety of feature maps. This increases the
cardinality of trainable weights, thus demanding heavy computational costs and expensive hardware
to train and store them.

Let I ∈ RW×H×C be the input to a single convolutional block, where W and H are the spatial
dimensions, while C is the number of channels. To extract a unique feature map yi from I, a kernel
ki ∈ Rs×s×C is used to perform the convolution, where s < W and s < H. The convolution operation
can be represented as

yi = Convs×s(I) (1)
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Similarly, a set of C′ kernels {k1, k2, k3, ..., kC′} is used to generate different feature maps, which are
stacked to produce a feature block Y ∈ RW ′×H′×C′ , which becomes the input for another set of kernels.
This total operation involves s× s× C× C′ number of parameters, which can be as large as hundreds
or thousands, owing to large values of C and C′. Thus, to reduce parameters, the number of kernels,
C′ must be optimized (assuming that C is constant). Prior research has shown that many feature maps
derived by these kernels are similar to each other. So, these can be generated by mutating the existing
ones, rather than using separate kernels. To exploit this redundancy, the Ghost module (GM) [65] was
recently invented.

A GM reduces the cardinality of kernels while keeping a minimal loss of information at the same
time. Feature extraction in a GM is done in two steps:

1. The first step involves simple convolutional operations as described above. Keeping all
hyper-parameters constant, C′′ kernels are used to generate a set of intrinsic feature maps
Y′ = {y′1, y′2, y′3, ..., y′C′′}, where C′′ << C′. As a result, the total number of parameters in the
network reduces to s× s× C× C′′.

2. The reduction of parameters leads to the loss of significant information. To make up for the
remaining C′ − C′′ features, new feature maps are derived from each of the existing features by
performing T low-cost operations (Ghost transformations) on them. These derived features are
called Ghost features. This equation can be represented as

yg
ij = θij(y′i), (2)

where y′i is the ith feature map in Y′ and θij is the jth linear operation deriving a Ghost feature
yg

ij from y′i. Thus, 1 ≤ i ≤ C′′ and 1 ≤ j ≤ T. Among the T Ghost transformations applied on y′i,
one operation θi1 is kept as identity operation to retain the original feature map. The remaining
T− 1 operations generates the ghost features. Thus, now a total of C′′ × T features are generated,
such that C′′ × T ∼ C′.

Figure 1 shows a simple illustration of the Ghost module. For the transformation function θ,
convolutional filters of size KT × KT are used instead of hand-crafted low-cost linear operations.
These filters are called Ghost filters. This is done to utilize the learning capability of convolution
operation to perform the most appropriate transformations. Moreover, it gives the flexibility to
experiment with different values for KT , since the kernels of different spatial dimensions extract
different types of features. Note that the computational complexity of θ is much less than ordinary
convolution, a detailed analysis of which is given in the founding manuscript [65].

Figure 1. An illustration of the Ghost module.
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2.2. GhoMR—Proposed Multi-Receptive Module for HSI Classification

Figure 2 shows the diagram of a single GhoMR module, which is the proposed backbone for
HSI classification. A GhoMR uses multiple internal GMs to extract features in a residual hierarchical
fashion. This strategy is inspired by Res2Net [64] and is useful for extracting complex details from the
HSI cube. Let the input for an arbitrary GhoMR module be I ∈ RW×H×C, where W, H, and C are the
width, height, and channels respectively. Feature extraction from this cube is done in three steps:

Figure 2. Proposed GhoMR module.

1. At first, a GM using 1× 1 kernels is used to extract the feature block Y1 ∈ RW×H×C.

Y1 = GM1×1(I) (3)

Note, these 1× 1 kernels are not the Ghost filters, but are used to generate the original feature
maps. For the Ghost filters, experiments with different sizes (KT) are performed, which is
discussed in Section 3.

2. In the next step, the N feature maps of Y1 are split into four subsets, denoted by ni,
where 1 ≤ i ≤ 4. Except n1, each subset is passed through a 3 × 3 GM. The output of the
previous GM, oi−1 is fused hierarchically using element-wise summation with the current subset
ni, to produce the set of features oi. The equations supporting this operation are

oi =


ni for i = 1

GM3×3(ni) for i = 2

GM3×3(ni + oi−1) for i = 3, 4

, (4)

where + refers to element-wise summation. Note, the GM for the first split n1 is omitted in order
to reuse features and reduce parameters in the module.
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3. Finally, the output maps o1, o2, o3 and o4, are concatenated on their depth to form a singular
feature block containing all the information. This is further passed through a 1× 1 GM and
fused with input I through a residual connection to produce the final output O. This operation is
expressed as

O = GM1×1(o1 ⊕ o2 ⊕ o3 ⊕ o4) + I, (5)

where ⊕ refers to concatenation and + denotes element-wise summation.

3. Experiments and Discussion

3.1. Datasets

The proposed methodology is evaluated on three public HSI datasets (http://www.ehu.eus/
ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes). The description of these datasets are
given as follows:

1. Indian Pines (IP)—The images in this dataset were collected in 1992, over the Indian Pines test site
in north-western Indiana using the AVIRIS [67] sensor. The HSI cube has a spatial dimension of
145× 145 pixels with 224 spectral bands in the wavelength range of 400 to 2500 nm, among which
24 bands corresponding to regions of water absorption were eliminated. Among the 21,025 pixels,
10,249 are annotated with ground truth from a set of 16 different vegetation classes.

2. University of Pavia (UP)—This dataset was acquired in 2001, over the university campus at
Pavia, Northern Italy, using the ROSIS sensor. It has a spatial dimension of 610× 340 pixels
and 103 spectral bands in wavelength between 430 to 860 nm. The ground truth is a set of
9 urban land-cover classes, and approx. 20% of the total 207,400 pixels are annotated with
this information.

3. Salinas Scene (SA)—This dataset was collected over Salinas Valley, California, in 1998 using the
AVRIS sensor. The spatial dimension is 512× 217 pixels and the spectral information is encoded
in 224 bands with a wavelength in the range of 360 to 2500 nm. Similar to IP, 20 spectral bands due
to water absorption are discarded. The ground truth contains 16 different classes from vegetables,
bare soils, and vineyard fields.

3.2. Experimental Protocols

Using several GhoMRs, a network called GhoMR-Net is proposed as shown in Figure 3. At first,
the input is fed to a simple convolutional layer of 24 kernels. The output is then passed through
a series of four GhoMR modules, which produces 24, 36, 48, and 60 feature maps, respectively.
Inside each GhoMR, the first 1× 1 GM generates 48 feature maps from the input, which is split into
four parts, having 12 features each. The 3× 3 GMs operating on each split (ni) extract 12 feature maps,
which are concatenated again into a single block of size 48. This block is fed to the final 1× 1 GM,
which outputs the set of features for the next GhoMR block. To increase the efficiency, after every GM
batch-normalization [68] and ReLU activation is used. On the extracted features from the final GhoMR,
global average pooling (GAP) [69] is performed and the resulting vector is fed to a fully-connected (FC)
layer to output the class probabilities. The class with the maximum probability is the predicted class.

The above architecture is trained to classify each pixel of an HSI cube CH . This 3D image cube has
hundreds of spectral channels, containing redundant information. This makes classification difficult
and increases computational costs. Thus, principal component analysis (PCA) is performed along the
spectral axis. This PCA-reduced cube CP retains the spatial information and reduces the channels to S,
where S is 30 for IP, and 15 for SA and UP respectively. Now, CP is divided into spatially overlapping
3D patches D ∈ RW×W×S, where W is the spatial dimension of a patch. The ground-truth YT ∈ RNC×1

assigned to each patch is the same as that of the central pixel in the patch. These 3D patches are fed to
the proposed GhoMR-Net, which outputs a vector YP ∈ RNC×1, where NC is the number of classes.

http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes
http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes


Sensors 2020, 20, 6823 7 of 19

The cross-entropy loss is then calculated between YT and YP and the network is trained to minimize
this loss.

Figure 3. GhoMR-Net−Proposed HSI classification network.

As discussed in Section 2, the GMs used in the GhoMR blocks have two
hyperparameters—number of Ghost transformations (T) and spatial size of ghost filters (KT).
With an increase in T, less raw features are extracted from the input, and more are derived using
Ghost operations, thus reducing the number of parameters. While a larger value of KT means a
greater filter dimension, thus increasing trainable parameters in the network. Performance with
different combinations of T and KT are discussed in the next subsection. Experiments with different
spatial sizes (W) of input patches and different training ratios are also discussed. All the experiments
are done using PyTorch 1.6.0 with CUDA 10.1 in the GPU environment of Google Colaboratory.
The architecture is trained using Adam [70] optimizer for 100 epochs, keeping a batch size of 100 and a
learning rate of 0.001. The code for this research is available at https://github.com/iamarijit/GhoMR.

To measure the performance, three standard evaluation metrics are used—overall accuracy (OA),
average accuracy (AA), and Kappa coefficient. OA measures the total number of samples correctly
classified in the test set, AA calculates the average of the class-wise accuracies and Kappa measures
the degree of agreement between the ground-truth and predicted classification map. The OA, AA,
and Kappa for each experiment are calculated five times and are written as mean± std. Based on these
metrics and the above-mentioned hyperparameters, five sets of analysis are carried out to demonstrate
the classification potential and lightweight nature of the proposed GhoMR-Net:

https://github.com/iamarijit/GhoMR


Sensors 2020, 20, 6823 8 of 19

1. First experiment calculates the class-wise accuracies, OA, AA, and Kappa for IP, UP, and SA
datasets using 10% and 20% training data. The 3D spectral-spatial inputs have spatial dimensions
15× 15 for all three datasets. The value of T and KT are kept 2 and 3 respectively.

2. In the second experiment, OA, AA, and Kappa are measured on the three datasets for different
values of T and KT , such that T ∈ {2, 4} and KT ∈ {3, 5, 7}. A comparative study between all the
six combinations of T and KT is performed. This experiment is conducted on 10% training data
with 3D input cubes of spatial dimension 15× 15.

3. In the third experiment, the proposed architecture is compared with the following state-of-the-art
techniques—SVM [24], 2D-CNN [51], 3D-CNN [52], M3D-CNN [56], Two-CNN [55], SSRN [58],
HybridSN [59], SENet [63] (with global average pooling and max pooling) and FuSENet [63].
Comparisons are shown for both 10% and 20% training data, keeping input spatial dimension of
15× 15.

4. The fourth experiment measures the OA, AA, and Kappa on lesser training data (5% and 3%)
and smaller spatial dimensions (13× 13 and 11× 11) of input patches. The parameters T and KT
are kept 2 and 3 respectively.

5. The final experiment demonstrates the effectiveness of GhoMR-Net using t-SNE visualization [71]
and confusion matrices. Moreover, the number of trainable parameters in the network is
compared with other state-of-the-art architectures.

3.3. Classification Results and Visualizations

The first experiment was conducted to calculate the class-wise accuracies for the three datasets,
using hyperspectral inputs of spatial dimension 15× 15. The results are shown in Tables 1 and 2
for 20% and 10% training data, respectively. For each dataset, the first three columns contain class
labels and data distribution (training and test samples), while the fourth column shows the accuracy
(in percent %) for each class. The last four rows of the table represent the overall accuracy (OA),
Kappa coefficient, average accuracy (AA), and training time for each experiment. For 20% training
data, the OAs obtained are 99.54%, 99.90% and 99.99%, while on 10% data, it is 98.64%, 99.75% and
99.98% for IP, UP and SA, respectively. On IP, the proposed GhoMR-Net performs worse than SA and
UP, which can be explained by fewer training examples and significant imbalance among the classes.
To better understand the results, the ground-truth and predicted classification maps for IP, UP and SA
are shown in Figures 4–6, respectively.

(a) (b) (c) (d)

Figure 4. Classification maps for IP (a) False color image (b) Ground-Truth (c,d) Predicted maps for
10% and 20% training data, respectively.
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(a) (b) (c) (d)

Figure 5. Classification maps for UP (a) False color image (b) Ground-Truth (c,d) Predicted maps for
10% and 20% training data, respectively.

(a) (b) (c) (d)

Figure 6. Classification maps for SA (a) False color image (b) Ground-Truth (c,d) Predicted maps for
10% and 20% training data, respectively.

Table 1. Data distribution along with class-wise accuracies, OAs, Kappas, AAs and training time on IP,
UP and SA datasets, respectively, for 20% training data.

IP UP SA

Name Training Test Accuracy Name Training Test Accuracy Name Training Test Accuracy

Alfalfa 9 37 100± 0.0 Asphalt 1326 5305 100± 0.0 Brocoli_green_weeds_1 402 1607 100± 0.0
Corn-notill 285 1143 98.81± 0.3 Meadows 3730 14,919 100± 0.0 Brocoli_green_weeds_2 745 2981 100± 0.0

Corn-mintill 166 664 99.70± 0.2 Gravel 420 1679 99.96± 0.0 Fallow 395 1581 100± 0.0
Corn 47 190 100± 0.0 Trees 613 2451 99.00± 0.2 Fallow_rough_plow 279 1115 99.98± 0.0

Grass-pasture 97 386 99.79± 0.2 Painted metal sheets 269 1076 99.93± 0.1 Fallow_smooth 536 2142 99.86± 0.2
Grass-trees 146 584 99.66± 0.1 Bare Soil 1006 4023 100± 0.0 Stubble 792 3167 100± 0.0

Grass-pasture-mowed 6 22 100± 0.0 Bitumen 266 1064 100± 0.0 Celery 716 2863 100± 0.0
Hay-windrowed 96 382 100± 0.0 Self-Blocking Bricks 736 2946 99.72± 0.1 Grapes_untrained 2254 9017 100± 0.0

Oats 4 16 97.50± 3.1 Shadows 189 758 99.82± 0.1 Soil_vinyard_develop 1240 4963 100± 0.0
Soybean-notill 194 778 99.54± 0.2 Corn_senesced_green_weeds 656 2622 100± 0.0

Soybean-mintill 491 1964 99.80± 0.1 Lettuce_romaine_4wk 214 854 100± 0.0
Soybean-clean 118 475 98.27± 0.5 Lettuce_romaine_5wk 385 1542 100± 0.0

Wheat 41 164 99.88± 0.2 Lettuce_romaine_6wk 183 733 100± 0.0
Woods 253 1012 100± 0.0 Lettuce_romaine_7wk 214 856 100± 0.0

Buildings-Grass-Trees-Drives 77 309 99.94± 0.1 Vinyard_untrained 1453 5815 100± 0.0
Stone-Steel-Towers 19 74 95.95± 0.0 Vinyard_vertical_trellis 361 1446 100± 0.0

OA 2049 8200 99.54± 0.0 OA 8555 34,221 99.90± 0.0 OA 10,825 43,304 99.99± 0.0
Kappa 99.47± 0.0 Kappa 99.86± 0.0 Kappa 99.99± 0.0

AA 99.30± 0.2 AA 99.82± 0.0 AA 99.99± 0.0

Training time 3 min 34 s Training time 13 min 50 s Training time 17 min 52 s
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Table 2. Data distribution along with class-wise accuracies, OAs, Kappas, AAs and training time on IP,
UP and SA datasets respectively for 10% training data.

IP UP SA

Name Training Test Accuracy Name Training Test Accuracy Name Training Test Accuracy

Alfalfa 5 41 98.54± 2.0 Asphalt 663 5968 100± 0.0 Brocoli_green_weeds_1 201 1808 100± 0.0
Corn-notill 143 1285 96.45± 0.8 Meadows 1865 16,784 100± 0.0 Brocoli_green_weeds_2 372 3354 100± 0.0

Corn-mintill 83 747 99.46± 0.4 Gravel 210 1889 99.63± 0.2 Fallow 197 1779 100± 0.0
Corn 24 213 99.53± 0.3 Trees 306 2758 98.61± 0.2 Fallow_rough_plow 139 1255 99.97± 0.1

Grass-pasture 48 435 99.54± 0.3 Painted metal sheets 134 1211 99.9± 0.1 Fallow_smooth 268 2410 99.85± 0.2
Grass-trees 73 657 99.24± 0.4 Bare Soil 503 4526 100± 0.0 Stubble 396 3563 99.99± 0.0

Grass-pasture-mowed 3 25 100± 0.0 Bitumen 133 1197 100± 0.0 Celery 358 3221 99.93± 0.1
Hay-windrowed 48 430 100± 0.0 Self-Blocking Bricks 368 3314 99.47± 0.2 Grapes_untrained 1127 10,144 100± 0.0

Oats 2 18 90.00± 12.4 Shadows 95 852 96.38± 0.6 Soil_vinyard_develop 620 5583 100± 0.0
Soybean-notill 97 875 98.08± 0.8 Corn_senesced_green_weeds 328 2950 100± 0.0

Soybean-mintill 245 2210 99.28± 0.2 Lettuce_romaine_4wk 107 961 100± 0.0
Soybean-clean 59 534 95.73± 3.0 Lettuce_romaine_5wk 193 1734 100± 0.0

Wheat 20 185 99.46± 0.5 Lettuce_romaine_6wk 91 825 100± 0.0
Woods 126 1139 100± 0.0 Lettuce_romaine_7wk 107 963 100± 0.0

Buildings-Grass-Trees-Drives 39 347 98.90± 0.9 Vinyard_untrained 727 6541 100± 0.0
Stone-Steel-Towers 9 84 93.81± 5.5 Vinyard_vertical_trellis 181 1626 100± 0.0

OA 1024 9225 98.64± 0.2 OA 4277 38,499 99.75± 0.0 OA 5412 48,717 99.98± 0.0
Kappa 98.45± 0.3 Kappa 99.67± 0.0 Kappa 99.98± 0.0

AA 98.00± 0.8 AA 99.33± 0.1 AA 99.98± 0.0

Training time 2 min 58 s Training time 11 min 20 s Training time 14 min 20 s

In the second set of experiments, the dependence on the hyperparameters T and KT is explored.
The OAs, Kappas, and AAs for different combinations of T and KT are given in Table 3. On IP
and SA, the model performs best when T = 2 and KT = 3, i.e., 2 ghost operations are used using
3× 3 filters. Unlike IP and SA, the performance on UP increases when KT is increased. When KT is
increased, the number of parameters increases. Since IP and SA have more classes (16) and fewer
training samples per class (on an average), the tendency of overfitting increases with increasing KT .
Thus, performance on the test set decreases. Fixing the value of T and KT to 2 and 3 respectively,
GhoMR-Net is compared with ten state-of-the-art techniques, using 10% and 20% training samples.
The spatial window dimensions of the input are kept the same as the prior experiments. For IP,
the method outperforms FuSENet, SSRN, and HybridSN with an increase in OA by 0.53%, 0.31%,
and 0.07% respectively, on 20% training data. Improvements or comparable results are obtained on SA
and UP as well, which is reported in Table 4. In spite of having very few parameters, the satisfactory
classification results of GhoMR-Net can be explained by the multi-receptive feature extraction strategy
of GhoMR modules.

Table 3. OAs, Kappas and AAs obtained for different values of T (no. of Ghost transformations) and
KT (Ghost filter size) on IP, UP and SA datasets respectively (for 10% training data).

T KT
IP UP SA

OA Kappa AA OA Kappa AA OA Kappa AA

3 98.64± 0.2 98.45± 0.3 98.00± 0.8 99.75± 0.0 99.67± 0.0 99.33± 0.1 99.98± 0.0 99.98± 0.0 99.98± 0.0
2 5 98.51± 0.2 98.30± 0.2 98.26± 0.2 99.77± 0.0 99.70± 0.0 99.42± 0.1 99.97± 0.0 99.97± 0.0 99.96± 0.0

7 98.50± 0.2 98.29± 0.2 98.17± 0.5 99.78± 0.0 99.71± 0.0 99.40± 0.1 99.96± 0.0 99.96± 0.0 99.95± 0.0

3 98.19± 0.3 97.94± 0.3 97.67± 0.9 99.72± 0.1 99.64± 0.1 99.26± 0.1 99.98± 0.0 99.97± 0.0 99.97± 0.0
4 5 98.12± 0.4 97.86± 0.5 96.80± 0.8 99.80± 0.0 99.74± 0.0 99.47± 0.1 99.97± 0.0 99.97± 0.0 99.97± 0.0

7 98.17± 0.1 97.91± 0.1 97.32± 0.7 99.83± 0.0 99.77± 0.0 99.56± 0.1 99.96± 0.0 99.96± 0.0 99.96± 0.0

In the next experiment, the robustness of the approach and the influence of input spatial
dimensions are explored. This is performed on lesser training samples, i.e., 5% and 3%, using inputs
of spatial size 13× 13 and 11× 11. The OAs, AAs, and Kappas given in Table 5 show that performance
deteriorates for all three datasets, which is expected. The classification maps for IP given in Figure 7
further verify it. It is observed, on increasing spatial size, the performance for IP and SA improves,
since more spatial context is captured. However, in UP, as shown in Figure 5, the patches are
short and discontinuous, unlike IP and SA. Thus, increasing spatial dimensions capture more noise,
which reduces the classification accuracies.
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(a) (b) (c) (d)

Figure 7. Predicted classification maps for IP with 11× 11 and 13× 13 input spatial size for (a,b) 5%
training data and (c,d) 3% training data, respectively.

Table 4. OAs, Kappas, and AAs using the proposed GhoMR-Net and other state-of-the-art methods on
10% and 20% training samples.

Training Methods
IP UP SA

OA Kappa AA OA Kappa AA OA Kappa AA

10%

SVM 81.67± 0.6 78.76± 0.8 79.84± 3.4 90.58± 0.5 87.21± 0.7 92.99± 0.4 94.46± 0.1 93.13± 0.3 93.01± 0.6
2D-CNN 80.27± 1.2 78.26± 2.1 68.32± 4.1 96.63± 0.2 95.53± 1.0 94.84± 1.4 96.34± 0.3 95.93± 0.9 94.36± 0.5
3D-CNN 82.62± 0.1 79.25± 0.3 76.51± 0.1 96.34± 0.2 94.90± 1.2 97.03± 0.6 85.00± 0.1 83.20± 0.7 89.63± 0.2

M3D-CNN 81.39± 2.6 81.20± 2.0 75.22± 0.7 95.95± 0.6 93.40± 0.4 97.52± 1.0 94.20± 0.8 93.61± 0.3 96.66± 0.5
Two-CNN 96.71± 0.1 96.10± 0.1 96.16± 0.1 97.71± 0.1 97.62± 0.1 97.45± 0.2 97.12± 0.3 96.98± 0.2 97.00± 0.2

SENet (GMP) 97.48± 0.3 97.84± 0.2 97.91± 0.3 97.56± 0.5 97.41± 0.4 97.47± 0.4 98.88± 0.1 98.93± 0.2 99.01± 0.1
SENet (GAP) 97.62± 0.3 97.91± 0.2 97.88± 0.3 97.53± 0.6 97.48± 0.5 97.52± 0.5 99.11± 0.2 98.89± 0.2 99.06± 0.2

FuSENet 98.11± 0.2 98.25± 0.2 98.32± 0.2 97.65± 0.3 97.69± 0.3 97.68± 0.4 99.23± 0.1 98.97± 0.2 99.16± 0.1
SSRN 98.45± 0.2 98.23± 0.3 86.19± 1.3 99.62± 0.0 99.50± 0.0 99.49± 0.0 99.64± 0.0 99.60± 0.0 99.76± 0.0

HybridSN 98.39± 0.4 98.16± 0.5 98.01± 0.5 99.72± 0.1 99.64± 0.2 99.20± 0.2 99.98± 0.0 99.98± 0.0 99.98± 0.0
GhoMR-Net 98.64± 0.2 98.45± 0.3 98.00± 0.8 99.75± 0.0 99.67± 0.0 99.33± 0.1 99.98± 0.0 99.98± 0.0 99.98± 0.0

20%

SVM 86.24± 0.4 84.27± 0.5 83.15± 1.1 95.20± 0.1 93.63± 0.2 93.60± 0.1 94.15± 0.1 93.48± 0.1 97.23± 0.1
2D-CNN 86.90± 1.3 85.01± 1.6 82.70± 1.0 96.02± 0.4 96.04± 0.3 95.10± 0.1 96.15± 0.6 95.71± 0.7 98.27± 0.2
3D-CNN 89.23± 0.2 87.70± 0.3 87.87± 0.1 97.30± 0.3 96.22± 0.1 97.02± 0.1 94.54± 0.5 93.81± 0.3 96.79± 0.6

M3D-CNN 93.67± 0.1 92.70± 0.3 93.60± 0.6 97.41± 0.2 96.05± 0.6 98.22± 0.1 94.92± 0.3 94.40± 0.1 97.28± 0.2
Two-CNN 98.73± 0.2 98.71± 0.2 98.73± 0.2 98.72± 0.3 98.40± 0.2 98.45± 0.2 98.13± 0.4 98.01± 0.2 98.10± 0.2

SENet (GMP) 98.53± 0.6 98.27± 0.8 97.91± 1.5 99.05± 0.2 98.81± 0.2 98.86± 0.2 99.07± 0.3 99.19± 0.2 99.13± 0.2
SENet (GAP) 98.76± 0.5 98.43± 0.7 98.20± 1.0 99.36± 0.1 99.20± 0.1 99.30± 0.1 99.50± 0.1 99.55± 0.1 99.40± 0.1

FuSENet 99.01± 0.1 98.60± 0.1 98.64± 0.1 99.42± 0.2 99.21± 0.3 99.33± 0.2 99.68± 0.2 99.74± 0.1 99.69± 0.1
SSRN 99.23± 0.1 99.12± 0.1 92.52± 0.1 99.77± 0.1 99.69± 0.2 99.71± 0.1 99.88± 0.0 99.87± 0.0 99.84± 0.0

HybridSN 99.47± 0.1 99.40± 0.1 99.38± 0.1 99.86± 0.1 99.82± 0.0 99.71± 0.1 100± 0.0 100± 0.0 100± 0.0
GhoMR-Net 99.54± 0.0 99.47± 0.0 99.30± 0.2 99.90± 0.0 99.86± 0.0 99.82± 0.0 99.99± 0.0 99.99± 0.0 99.99± 0.0

Table 5. OAs, Kappas and AAs with lesser training samples (in %) and smaller spatial size of input
data on IP, UP and SA datasets respectively.

Training Samples Spatial Size
IP UP SA

OA Kappa AA OA Kappa AA OA Kappa AA

5% 13 × 13 95.42± 0.9 94.77± 1.0 84.68± 5.1 99.58± 0.1 99.44± 0.1 99.18± 0.1 99.77± 0.1 99.74± 0.1 99.81± 0.1
11 × 11 94.23± 0.1 93.42± 0.1 84.72± 2.1 99.61± 0.0 99.49± 0.1 99.28± 0.1 99.62± 0.1 99.58± 0.1 99.73± 0.0

3% 13 × 13 89.48± 1.7 87.96± 2.0 73.48± 2.4 99.34± 0.1 99.13± 0.1 98.76± 0.2 99.85± 0.0 99.83± 0.0 99.85± 0.1
11 × 11 87.95± 1.2 86.23± 1.4 72.75± 3.6 99.41± 0.1 99.22± 0.1 99.00± 0.1 99.57± 0.2 99.52± 0.2 99.71± 0.1

Finally, a set of visualizations are performed to demonstrate the discriminative power of
GhoMR-Net. The higher-dimensional features from the GAP layer of the network are extracted for each
sample in the test set and are reduced to two-dimensional coordinates via t-SNE. These coordinates
are plotted and shown in Figure 8 for the three datasets. It is clearly observed, that the features
representing pixels having the same ground-truths form nearby clusters, which are represented
by similar colors. Moreover, the confusion matrices are obtained on 90% test data and are given
in Figure 9. Furthermore, the total number of trainable parameters is compared with seven
above-mentioned architectures-3D-CNN [52], M3D-CNN [56], Two-CNN [55], HybridSN [59],
SENet [63], FuSENet [63], and SSRN [58]. As shown in Figure 10, the proposed network has
only 32,704 trainable parameters, which is much lesser than HybridSN, SSRN, and FuSENet having
5,122,176, 500,384, and 128,848 parameters, respectively.
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(a)

(b)

Figure 8. Cont.
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(c)

Figure 8. Visualization of extracted features via t-SNE where the 2D coordinates denotes the samples
and the different colors represent different classes for the (a) IP, (b) UP, and (c) SA dataset.

(a)

Figure 9. Cont.
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(b)

(c)

Figure 9. Confusion matrices obtained on 90% test samples for the (a) IP, (b) UP, and (c) SA dataset.
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Figure 10. Number of trainable parameters in the proposed GhoMR-Net and other state-of-the
art architectures.

4. Conclusions

In this study, a lightweight multi-receptive module called GhoMR is proposed for hyperspectral
image (HSI) classification. It contains several internally connected receptive fields (RFs) to extract
complex features from HSIs in a hierarchical approach. Unlike other approaches using convolutional
layers, recently invented Ghost modules are used as RFs, which extracts hand-full features from the
input and derives the remaining from existing ones. Using GhoMR blocks, a simple lightweight
architecture called GhoMR-Net is designed to perform experiments on three standard datasets.
The classification results are measured using three metrics and compared with other state-of-the-art
techniques. Experiments with lesser training data and smaller input spatial sizes are also performed
along with several visualizations and plots to understand the discriminative potential of the
architecture better.
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