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Abstract

Cancer affects millions of individuals worldwide. One shortcoming of traditional cancer clas-

sification systems is that, even for tumors affecting a single organ, there is significant molec-

ular heterogeneity. Precise molecular classification of tumors could be beneficial in

personalizing patients’ therapy and predicting prognosis. To this end, here we propose to

use molecular signatures to further refine cancer classification. Molecular signatures are

collections of genes characterizing particular cell types, tissues or disease. Signatures can

be used to interpret expression profiles from heterogeneous samples. Large collections of

gene signatures have previously been cataloged in the MSigDB database. We have devel-

oped a web-based Signature Visualization Tool (SaVanT) to display signature scores in

user-generated expression data. Here we have undertaken a systematic analysis of correla-

tions between inflammatory signatures and cancer samples, to test whether inflammation

can differentiate cancer types. Inflammatory response signatures were obtained from

MsigDB and SaVanT and a signature score was computed for samples associated with 7

different cancer types. We first identified types of cancers that had high inflammation levels

as measured by these signatures. The correlation between signature scores and metadata

of these patients (sex, age at initial cancer diagnosis, cancer stage, and vital status) was

then computed. We sought to evaluate correlations between inflammation with other clinical

parameters and identified four cancer types that had statistically significant association (p-

value < 0.05) with at least one clinical characteristic: pancreas adenocarcinoma (PAAD),

cholangiocarcinoma (CHOL), kidney chromophobe (KICH), and uveal melanoma (UVM).

These results may allow future studies to use these approaches to further refine cancer sub-

typing and ultimately treatment.
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Introduction

Many cancers are found when there is already local invasion or even distant metastatic disease.

Among the issues complicating treatment options are the fact that there are many tumor

types, whose response to therapy may differ depending on site of origin and cellular composi-

tion [1]. Even within the same organ, there are heterogeneous tumor types with different

responses to therapies.

As a result, precise tumor classification is crucial; depending on the categorization of a

tumor, the clinical course, prognosis, and treatment can vary dramatically [2]. The traditional

histology-based method to classify cancer is based on observing the site of origin, degree of

spread and cellular morphology [3–5]. However, because tumors are heterogeneous and fre-

quently contain abundant somatic mutations, traditional approaches for classifying tumor

subtypes are often insufficient.

By contrast, molecular classification is based on the analysis of tumor genomes as well as

gene expression [6]. Successful molecular subdivision of tumors originating from the same tis-

sue may result in different treatments targeting a specific tumor type, as is found in the case of

ERBB2-amplified breast cancer and EGFR mutant lung carcinoma [7,8]. Furthermore, molec-

ular signatures may also be utilized to inform biological interpretations. Molecular signatures

are collections of genes with associated biological processes that can identify genes upregulated

in specific sample subsets when compared to broader groups [9]. Signatures can be composed

of genes associated with specific diseases; for instance, breast cancer molecular signatures have

identified subphenotypes indistinguishable by traditional histologic analysis [9,10]. Molecular

signatures may be further curated to develop a ‘hallmark’ gene set conveying a specific biologi-

cal state. One such example is the hallmark inflammatory response gene set that includes 200

genes commonly expressed in the setting of inflammation. [11]

Inflammation is of importance in the setting of cancer because chronic inflammation has

been shown to increase cancer risk [12,13] by causing tumor initiation, promotion, and meta-

static progression [14]. Many environmental causes of cancer are related to chronic inflamma-

tion. As many as 20% of cancers are associated with chronic infection, 30% with tobacco

smoking and inhaled pollutants such as asbestos, and 35% with dietary factors [15–18].

Chronic disease exposing patients to inflammation are also associated with increased cancer

risk; inflammatory bowel disease (i.e. ulcerative colitis and Crohn’s disease) is associated with

an increased risk of colon adenocarcinoma [19], chronic pancreatitis is a significant risk factor

for pancreatic cancer [20], and chronic gastritis secondary to Helicobacter pylori infection is

associated with the majority of gastric cancer cases [21].

Several large consortia, such as The Cancer Genome Atlas (TCGA), provide tools and data

to study the molecular basis of cancer [6,22]. The purpose of our study is to understand molec-

ular patterns related to inflammation. Although TCGA started out by collecting only three

cancer types–glioblastoma multiforme, lung, and ovarian cancers–it expanded rapidly; by

2014, genomic characterization and sequence analysis had been completed for 33 cancer types

with data for over 12,000 individuals [22].

Signature visualization of individual samples allows identification of patient subcategories a

priori on the basis of well-defined molecular signatures [9]. As such, data from TCGA could

potentially be utilized to obtain and evaluate molecular signatures. To overcome limitations of

existing tools to evaluate molecular signatures, the Signature Visualization Tool (SaVanT) was

previously developed as a web-based tool to visualize signatures in user-generated expression

profiles [9]. SaVanT has been utilized to distinguish signature scores in patients with various

conditions such as infections and leukemia, providing insight into immune response of vari-

ous skin diseases [9]. By visualizing molecular signatures, SaVanT allows users to efficiently

PLOS ONE Molecular signatures for inflammation vary across cancer types

PLOS ONE | https://doi.org/10.1371/journal.pone.0221545 April 24, 2020 2 / 11

Gilead Pharmaceuticals. Gilead Pharmaceuticals

provided support in the form of salary for author

DL, but did not have any additional role in the study

design, data collection and analysis, decision to

publish, or preparation of the manuscript. The

specific role of this author is articulated in the

‘author contributions’ section.”

Competing interests: We have the following

interests: David Lopez is employed by Gilead

Pharmaceuticals. There are no patents, products in

development or marketed products to declare. This

does not alter our adherence to all the PLOS ONE

policies on sharing data and materials.

https://doi.org/10.1371/journal.pone.0221545


leverage pre-existing biological knowledge (such as from TCGA) to interpret transcriptomic

experiments [9].

To our knowledge, no systematic study utilizing gene signatures to evaluate tumor inflam-

mation in TCGA has been carried out. Therefore, in this study, we aimed to use SaVanT to

evaluate molecular signatures obtained from TCGA to evaluate the relationship between clini-

cal status and inflammatory responses across multiple cancer types.

Materials and methods

Data collection

In order to examine the role of inflammation in different cancer types, we sought to utilize a

large-scale, systematically-processed dataset. We chose to analyze data from TCGA. All of the

data has been processed with a uniform analysis pipeline, allowing for robust comparison

across samples and tumor types. Gene expression data was retrieved from TCGA using their

web-accessible data portal. In order to ensure that the data was normalized, we used their Har-

monized Data Portal to access the data and did not include any datasets processed indepen-

dently from the harmonized data. For all TCGA projects, we downloaded RNAseq data as

normalized counts for all patients. Individual files (one per patient) were combined into a sin-

gle matrix per primary site. In order to focus the evaluation of our methods, seven different

tumor primary types were chosen to be utilized for analysis with clinical metadata–pancreatic

adenocarcinoma (PAAD), glioblastoma multiforme (GBM), cholangiocarcinoma (CHOL),

kidney renal papillary cell carcinoma (KIRP), kidney chromophobe (KICH), adrenocortical

carcinoma (ACC), and uveal melanoma (UVM). We chose these seven out of the thirty-four

tumor primary sites on TCGA, to obtain a range of inflammatory states estimated based on

our analyses described below. Four types of metadata were retrieved for each sample: sex, age

at initial cancer diagnosis, cancer stage, and vital status.

Quality control

All data retrieved from TCGA was inspected for consistency by making sure that all profiles

contained the same number of genes and that patient data was not redundant or duplicated.

Furthermore, the distribution of normalized counts was analyzed at both the patient level as

well as primary tumor site to identify any outliers or issues with normalization. Patient-level

data was averaged to determine a single value for all genes per primary site.

Comparison to molecular signatures

Molecular signatures were taken from the repository MSigDB [11] and SaVanT [9]. Described

in more detail in a prior publication [9], SaVanT is a web-based tool that facilitates the sam-

ple-level visualization of molecular signatures in gene expression profiles. SaVanT combines

scripts implemented in Python and R. Python scripts process the user-submitted expression

matrix and compute signature scores, while R scripts perform ANOVA analyses and cluster

the signature-sample matrix. After computing the signature-sample matrix and clustering,

Python scripts generate the HTML output and render an interactive heatmap [9]. Several stud-

ies and efforts have sought to identify genes involved in inflammatory pathways [11,23–25].

Many of these projects have produced inflammatory signatures, which catalog the genes most

important in several inflammatory states. In order to determine the role of inflammation

across the 7 cancer types in our analysis, we utilized the ‘hallmark inflammation’ signature

from MsigDB [11], a repository of molecular signatures. This signature includes 200 genes
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associated with acute and chronic inflammation responses, as well as elements of the TGF-β
signaling cascade [26].

Data and statistical analysis

Averaged gene expression data from TCGA for each primary site was correlated with the hall-

mark inflammatory response signature through SaVant. Seven primary tumor sites were cho-

sen as aforementioned. For each primary tumor site, each patient’s clinical metadata was

compared with the corresponding p-value of correlation between their gene expression and

hallmark inflammatory response. Metadata and corresponding statistical tests were utilized as

follows–Age (Pearson correlation), Cancer Stage (Anova Single Value), Sex (Anova Single

Value), and Patient Vital Status (Anova Single Value). Statistical significance was set at

p< 0.05. Utilizing this data, box-whisker plots were created for metadata and inflammatory

response correlations that had significant P-values. Box and whisker plots show distribution of

p-values from correlation of individual patient data with hallmark inflammatory response.

Results

Tumor types

Hierarchical clustering was performed to group cancer subtypes by inflammatory signature

scores, and the three subgroups were determined by the dendrogram structure resulting from

the hierarchical clustering (Fig 1). Of the tumor types evaluated in our study, we found that

tumors in areas exposed to airways or gastrointestinal tracts, including pancreatic, lung and

esophageal cancer, tended to be more inflammatory. Based on these results we selected seven

tumor types with varying levels of inflammation for further analysis (Fig 2). Of the 7 tumors

chosen for analysis, the levels of inflammation in descending order are summarized in Table 1

along with the number of individuals’ genetic data analyzed.

Correlation of metadata with hallmark inflammatory response signature

correlation

The full list of the 200 genes composing the Hallmark Inflammatory Response Signature,

along with the hallmark annotations are published in full online [26]. Furthermore, the website

provides the original gene sets utilized to generate this hallmark [26]. Based on a statistical

analysis of the metadata and its association with the hallmark inflammatory signature score,

we were able to determine significant associations between inflammation and other clinical

characteristics across specific primary cancers. Out of the 7 primary cancers, 4 had statistically

significant association (p-value < 0.05) with at least one of the clinical values that we tested

(sex, vital status, age at initial diagnosis, and tumor stage) as follows: pancreatic adenocarci-

noma (PAAD), cholangiocarcinoma (CHOL), kidney chromophobe (KICH), and uveal mela-

noma (UVM).

Pancreas adenocarcinoma (PAAD)

After associating the metadata of 181 patients with the hallmark inflammatory response signa-

ture in pancreatic adenocarcinoma samples, we found a significant association of the hallmark

inflammatory response signature with sex (p = 0.0313) and tumor stage (p = 0.0054) (Fig 3).

There was a slightly higher level of inflammation in females than males. Of all tumor stages,

stage II showed the highest level of the Hallmark Inflammatory Response, and stage I the

lowest.
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Cholangiocarcinoma (CHOL)

We found a significant p-value of 0.0496 (Fig 4) for the association of cholangiocarcinoma

inflammatory score in 45 patients with the vital status of patients, a clinical data element cate-

gorized under diagnosis on TCGA. Patients who were alive at the time of last update in data

collection had higher levels of inflammation than patients whose biopsy was collected post

mortem.

Kidney chromophobe (KICH)

Using the signatures and metadata of 89 patients, we found a significant p-value = 0.0172 (Fig

5) between tumor stage and the hallmark inflammatory response. Stage IV tumors showed the

highest levels of inflammation, compared to the other 3 stages.

Uveal melanoma (UVM)

After associating the vital status with the hallmark inflammatory response signature correla-

tion of 80 patients, we found a significant p-value of 0.0033 (Fig 6). Overall, samples from

patients who were listed as dead at the time of last data collection had higher levels of inflam-

mation compared to those collected from patients who were alive at time of last data

collection.

Discussion

Utilizing the TCGA database allows us to leverage the systematic profiling of thousands of

tumors from individuals with different types of cancer. The first aim in our study was to evalu-

ate levels of inflammation across tumor types utilizing appropriate signature scores. We used

inflammation signatures to analyze the gene expression data (“hallmark inflammation”)

[11,23–25]. These signatures allow us to classify the cancer subtypes at an immunological level,

which is not possible with traditional classification schemes relying on histological data. Such a

Fig 1. Using 6 inflammation signatures, we clustered cancer types into low, high and mixed inflammatory response.

https://doi.org/10.1371/journal.pone.0221545.g001
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classification technique allows us to examine individual pathways and signaling cascades, par-

ticularly those important in inflammatory responses.

Once we compared the patient data to the inflammatory signatures, we found three distinct

groups of cancers: (1) those with high inflammation, (2) those with low inflammation, and (3)

those with both high and low levels of inflammation. We found PAAD to be a member of the

high inflammation group. This grouping is supported by multiple studies associating pancre-

atic inflammation (pancreatitis) with the development of pancreatic cancer [20,27]. One of the

cancers we found to be in the low inflammation group was UVM. Melanomas are associated

with environmental insults, such as exposure to ultraviolet light. As such, we expect that

Fig 2. The seven chosen cancer types display heterogeneity in hallmark inflammatory response signatures. Cancer types are displayed in descending order

based on the p-values of the correlation of hallmark inflammatory response with the average genetic data for each cancer type.

https://doi.org/10.1371/journal.pone.0221545.g002

Table 1. The seven cancer types and number of individuals whose genetic data were analyzed are displayed in descending order with respect to the correlation with

hallmark inflammation.

PAAD GBM CHOL KIRP KICH ACC UVM

Primary Site Pancreas Brain Bileduct Kidney Kidney Adrenal Gland Eye

Correlation with Hallmark Inflammatory Signature 0.8910 0.7956 0.7667 0.7365 0.6579 0.6114 0.4828

# of patients/data from TCGA 181 174 45 321 89 79 80

https://doi.org/10.1371/journal.pone.0221545.t001
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Fig 3. Box and whisker distribution of p-values from correlation of individual patient data with hallmark inflammatory response;

values divided by cancer stage and sex. Pancreatic adenocarcinoma correlation of cancer stage with hallmark inflammatory response,

p-value of 0.0054. Pancreatic adenocarcinoma correlation of sex with hallmark inflammatory response, p-value of 0.0313.

https://doi.org/10.1371/journal.pone.0221545.g003

Fig 4. Box and whisker distribution of p-values from correlation of individual patient data with hallmark

inflammatory response; values divided by vital status. Cholangiocarcinoma correlation of vital status with hallmark

inflammatory response, p-value of 0.0496.

https://doi.org/10.1371/journal.pone.0221545.g004
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Fig 5. Box and whisker distribution of p-values from correlation of individual patient data with hallmark

inflammatory response; values divided by cancer stage. Kidney chromophobe correlation of cancer stage with

hallmark inflammatory response, p-value of 0.0172.

https://doi.org/10.1371/journal.pone.0221545.g005

Fig 6. Box and whisker distribution of p-values from correlation of individual patient data with hallmark

inflammatory response; values divided by vital status. Uveal melanoma correlation of vital status with hallmark

inflammatory response, p-value of 0.0033.

https://doi.org/10.1371/journal.pone.0221545.g006

PLOS ONE Molecular signatures for inflammation vary across cancer types

PLOS ONE | https://doi.org/10.1371/journal.pone.0221545 April 24, 2020 8 / 11

https://doi.org/10.1371/journal.pone.0221545.g005
https://doi.org/10.1371/journal.pone.0221545.g006
https://doi.org/10.1371/journal.pone.0221545


inflammation is not necessarily involved in the mechanism responsible for the development of

melanoma.

We believe that the gene expression data for these tumor types is heterogeneous across indi-

viduals, with multiple subgroups of patients per type. As such, the inflammatory signature pre-

sented in this first analysis is averaged across individuals, and that within these broad

categories there may be subgroups of patients with high inflammation and others with low

inflammation. This suggests that patients with these cancers could potentially benefit from fur-

ther molecular subclassification.

In addition to correlating levels of inflammation with specific cancer types, we compared

clinical metadata from individuals with 7 different types of distinct tumors with molecular sig-

natures derived from the web-based tool SaVanT. Molecular signatures are gene collections

with associated biological interpretations that can identify genes upregulated in specific sample

subsets compared to broader groups [9]. Signatures can be composed of genes associated with

specific diseases. By performing a comparison of metadata with molecular signatures, we

sought to evaluate if there was significant correlation between these values.

We found that four of the cancer types we evaluated (PAAD, CHOL, KICH, and UVM)

had statistically significant associations between hallmark inflammatory response and at least

one clinical variable. PAAD and KICH had a significant association with the patients’ cancer

stage at time of diagnosis, and CHOL and UVM had an association with vital status. Addition-

ally, PAAD was significantly associated with sex. On average, females and individuals with

stage II PAAD had the highest correlation between the clinical variable and hallmark inflam-

matory response. While for KICH, the highest average correlation was for individuals with

stage IV cancer. Within each cancer type, living individuals (at time of last data collection)

with CHOL and dead patients (at time of last data collection) with UVM had the highest aver-

age correlation with hallmark inflammatory response. However, the correlation for both living

and dead vital status individuals was higher for CHOL than UVM.

By correlating inflammatory response hallmarks with patient metadata, our results indicate

that there are statistically significant associations as detailed above. Our results from our pre-

liminary investigation indicate a potential linkage between certain molecular subtypes of can-

cer and patients of different sex. Furthermore, the statistically significant linkage between

hallmark inflammatory response and cancer stage for PAAD and KICH are suggestive of a

linkage between certain tumor subtypes and aggressiveness of disease. The linkage between

hallmark inflammatory response and vital status for CHOL and UVM was statistically signifi-

cant. However, it is possible that certain subtypes of cancers could be associated with mortality

rates of different time frames. Thus at a minimum, our results from our preliminary investiga-

tion indicate a potential linkage between the molecular composition of tumors and the clinical

characteristics of the corresponding patients.

The signatures provided by SaVanT supplement MSigDB utilize the depth and specificity

of large expression studies to describe the biology pertaining to various cancers and cell types.

The availability of this information for patients with cancer diagnoses could potentially facili-

tate a deeper understanding of a patient’s clinical status. Furthermore, as there is marked het-

erogeneity even amongst specific organ-based tumors (Fig 2), molecular signatures could

provide valuable information regarding the patient’s specific subtype of tumor. While our

results are interesting and potentially provide further insight into the behavior of these tumors,

we believe that subsequent more comprehensive analyses are required to draw more conclu-

sive results as well as to enhance the clinical utility of these analyses. This information could be

of particular clinical relevance in assisting the selection of a potential targeted therapy (while

avoiding treatments that may have less efficacy for a patient’s tumor subtype).
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In order to expand upon our preliminary results, in future studies we aim to further evalu-

ate the role of inflammation in cancer. Future studies should evaluate the relationship between

additional tumor types with an expanded set of clinical variables. While we have shown three

distinct groups of cancer types relative to inflammation levels, we also believe these results can

be further honed and expanded. For example, limiting the number of genes in the signatures

or creating a cancer-specific inflammatory response panel of genes could produce a more cost-

effective diagnostic test to ultimately translate to the clinical setting.

In addition, although many cancer types fall into the high or low inflammation classifica-

tions, there are others with a mixed inflammation signal. The ambiguity in this group of cancer

subtypes could arise from several sources and correcting for these sources may allow us to

place these cancers into either the high- or low-inflammation group. For example, the mixed

signal could be due to the need to subclassify patients even further for a particular cancer type.

It is possible that some primary sites contain several populations of samples–such as those

from a different biopsy type (i.e., blood or tumor sample). Determining these subgroups

within the primary types would allow them to be treated independently.

In summary, our study evaluated the association between inflammation signatures for vari-

ous different tumor types. We found associations between levels of inflammation and tumor

types, and also found statistically significant relationships between patient metadata and

inflammation for four tumor types. We believe our results demonstrate the potential clinical

utility in the continued establishment of personalized medicine and care for cancer patients,

while further establishing the utility of SaVanT as a clinical tool.
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