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A major concern in common disease epigenomics is distinguishing causal from consequential epigenetic variation. One
means of addressing this issue is to identify the temporal origins of epigenetic variants via longitudinal analyses. However,
prospective birth-cohort studies are expensive and time consuming. Here, we report DNA methylomics of archived Guthrie
cards for the retrospective longitudinal analyses of in-utero-derived DNA methylation variation. We first validate two
methodologies for generating comprehensive DNA methylomes from Guthrie cards. Then, using an integrated epigenomic/
genomic analysis of Guthrie cards and follow-up samplings, we identify interindividual DNA methylation variation that is
present both at birth and 3 yr later. These findings suggest that disease-relevant epigenetic variation could be detected at
birth, i.e., before overt clinical disease. Guthrie card methylomics offers a potentially powerful and cost-effective strategy for
studying the dynamics of interindividual epigenomic variation in a range of common human diseases.

[Supplemental material is available for this article.]

There is increasing interest in exploring the possibility that in-

terindividual epigenetic variation plays a role in common human

disease etiology (for review, see Petronis 2010; Rakyan et al. 2011).

Consequently, epigenome-wide association studies (EWASs), anal-

ogous to genome-wide association studies (GWASs) for disease-

associated genetic variants (Rakyan et al. 2011), are currently

being conducted to systematically uncover epigenetic variants

for a range of different diseases (www.roadmapepigenomics.org/

participants lists some of the current NIH-funded EWASs). How-

ever, the disease process itself can also induce epigenetic changes.

Therefore, an EWAS design that just compares post-disease af-

fected with unaffected individuals will not distinguish causal

from consequential disease-associated epigenetic variation. The

inability to make this distinction will ultimately prove to be

a significant barrier to establishing the etiological role or medical

value for any disease-associated epigenetic variants.

One way of addressing this issue is to determine whether the

epigenetic variants are detectable before overt disease. Although

such variants could arise at any point during an individual’s life-

span (Fraga et al. 2005), in-utero development is considered to be

a period during which the epigenome is particularly susceptible to

stochastic and/or environmental factors such as infection, poor

diet, or stress (for review, see Warner and Ozanne 2010). A variety

of common diseases have been proposed to have a component of

in-utero origins including asthma, metabolic conditions including

type 2 diabetes, and autoimmune disorders like multiple sclerosis

(Heijmans et al. 2008; Warner and Ozanne 2010). Hence, being

able to determine epigenomic profiles at birth, and by implication

before overt disease, would be invaluable for elucidating the ori-

gins and potentially the etiological role of disease-associated epi-

genetic variants. In this regard, prospective birth-cohort studies are

very useful but, unfortunately, are expensive, time-consuming,

and difficult to establish.

In 1963, Robert Guthrie proposed spotting a small amount of

neonatal blood onto filter paper for the large-scale biochemical

screening of various diseases such as phenylketonuria (Guthrie and

Susi 1963). ‘‘Guthrie cards’’ are now routinely created by major

national health authorities; e.g., since 2000, over 90% of all neo-

nates in the United States had Guthrie cards made shortly after

birth (Pollitt 2009). Remarkably, in many cases Guthrie cards are

being stored indefinitely. This led us to consider genome-wide

DNA methylation profiling—DNA methylomics—of Guthrie cards

as a means of investigating the origins of disease-associated epi-

genetic variation. Crucially, this longitudinal investigation could

be done retrospectively at a fraction of the cost and time in-

vestment required for prospective studies.

Results
Our first objective was to confirm that Guthrie cards could be used

to generate high-quality DNA methylomes. We obtained Guthrie

cards from the Diabetes Prediction in Skåne (DiPiS) study (Larsson

et al. 2004). These cards were spotted with cord blood in September
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2000 (Methods). Of several different protocols, we found the

Gensolve kit provided the highest genomic DNA (gDNA) yields

from Guthrie cards (data not shown). A typical Guthrie card con-

sists of four ;6-mm diameter blood spots, and we routinely

obtained ;200 ng of gDNA per spot (Fig. 1). Although Guthrie card

gDNA was of a slightly lower molecular weight compared with

gDNA from freshly sampled cord blood, significant degradation

was minimal (Supplemental Fig. 1). We then validated two differ-

ent platforms for DNA methylomics, each offering different ad-

vantages: Illumina 450K arrays (Bibikova et al. 2011; Sandoval et al.

2011) and Methylated DNA Immunoprecipitation combined with

HTS (MeDIP-seq) (Weber et al. 2005; Down et al. 2008).

The Illumina450K array is a genome-scale platform that pro-

vides bisulfite conversion-based, single-base resolution methylation

measurements at ;450,000 different cytosines associated with a

range of genomic features such as promoters, enhancers, and CpG

islands (CGIs) (Sandoval et al. 2011). We generated biological du-

plicate Illumina450K profiles for Guthrie cards, freshly sampled

cord blood, and mature sperm, all from unrelated individuals

(Supplemental Table 1). Comparison of Illumina450K-based ‘‘fresh

blood vs. sperm’’ tissue-specific differentially methylated regions

(tDMRs) with ‘‘blood vs. sperm’’ tDMRs identified by bisulfite PCR

sequencing in the Human Epigenome Project (Eckhardt et al. 2006)

revealed a high correlation (R2 = 0.90, Pearson’s) (Fig. 2A). Impor-

tantly, a comparison between Illumina450K-based fresh blood and

Guthrie card profiles also revealed an excellent correlation (R2 =

0.99, Pearson’s) (Fig. 2B). However, in both cases, the correlation was

significantly weaker for tDMR methylation differences of <20% (R2

for <20% methylation differences = 0.50, Pearson’s), and thus we set

a conservative minimum threshold of $20% methylation differ-

ence for calling intersample DMRs in the analyses described below

(in the rest of the manuscript, when we state ‘‘% methylation dif-

ference,’’ we mean an absolute difference in the beta value 3 100).

To further confirm the quality of Guthrie card methylomes, we

compared canonical gene-associated DNA methylation profiles for

both CGI and non-CGI associated genes between Guthrie cards and

fresh blood and found the profiles to be virtually identical for the

two different types of samples (Supplemental Fig. 2).

In MeDIP-seq, immunoprecipitated methylated DNA frag-

ments are subjected to HTS, representing a cost-effective strategy

for generating whole-genome DNA methylomes at ;50 bp reso-

lution (Down et al. 2008). For Guthrie cards analysis, we developed

a MeDIP-seq protocol for 200 ng of gDNA (Methods). We also

generated standard MeDIP-seq libraries using 2 mg of DNA from

fresh cord blood and sperm (Supplemental Table 1). The MeDIP-

seq data were then compared with the Illumina450K-based profiles

described above (Fig. 2C). Because MeDIP enrichment of a geno-

mic region is dependent on the density of methylated CpG sites,

standard measures of correlation are not suitable, and instead we

calculated an ‘‘agreement’’ score: the percentage of Illumina450K-

based DMRs that show the same directional differences in MeDIP-

seq read counts between the two samples under consideration.

Very good agreement scores (75%–93%) were observed between

Illumina450K and MeDIP-seq data sets across a range of CpG

densities. A similar analysis using Guthrie card vs. sperm MeDIP-seq-

based tDMRs yielded equally strong agreement with Illumina450K

data (Fig. 2C).

Our second objective was to determine the potential utility of

Guthrie cards for studying human interindividual epigenetic var-

iation. If in-utero-derived epigenomic perturbations can impact on

phenotypic outcomes in later life, then there must be some in-

terindividual epigenetic variants that are detectable at birth and

temporally stable. To obtain evidence for the existence of such

epigenetic variants, we conducted an integrated methylomic/

genomic analysis of Guthrie cards and follow-up samplings as

outlined in Figure 3A. We obtained Guthrie cards spotted with

cord-blood from three unrelated individuals (two females and one

male) from the DiPiS study and generated Illumina450K-based

DNA methylomes. For each of the three different pairwise com-

parisons, we found ;2000–3000 CpG sites that displayed in-

terindividual DNA methylation differences of >20% (Fig. 3B) (sex

chromosomes were excluded from all analyses). We then filtered

these lists to reduce the influence of artifactual methylation mea-

surements and interindividual genetic variation (Table 1). To this

end, we first generated genome-wide single nucleotide poly-

morphism (SNP) profiles for all three individuals using their

Guthrie card DNA. SNP profiling was done using the Illumina

Omni2.5S array that contains ;2.5 million SNPs with a minor

allele frequency of down to 1%. Using these data, we applied three

main filters to each of the three different pairwise lists of in-

terindividual single CpG methylation differences: (1) excluded

those CpGs that overlapped single nucleotide polymorphisms

(SNPs) or were located within a copy number variant (CNV). This

eliminates artifactual measurements that are not methylation

differences, but rather due to the creation/destruction of CpGs or

differences in copy number, an issue rarely addressed in complex

disease epigenomics. (2) As the biological relevance of methylation

differences limited to single CpG sites is presently unclear, for the

second filter we specified that the CpG must exist as part of a dif-

ferentially methylated region (DMR), i.e., neighboring CpGs

within a 250-bp window of the index CpG site must also display

>20% methylation differences in the same direction. (3) Recently,

Bell and colleagues identified 180 different CpGs in the human

genome whose methylation state in lymphoblastoid cells is

influenced by genetic variation (Bell et al. 2011). Crucially, in the

vast majority of cases they found the genetic influence to act in cis

and <5 kb from the CpG site of interest. Therefore, for the third

filter, we retained only those DMRs that are located within a $10-kb

window that does not contain any SNP differences, as measured

by the Illumina Omni2.5S SNP array in the pairwise comparison

under consideration. This reduces the likelihood of interindividual

genetic differences being the sole drivers of the DMRs (although in

a few cases rare genetic variants missing from the SNP arrays would

be overlooked). Overall, application of the filters resulted in a final
Figure 1. An example of the type of Guthrie cards used in our study
(image from Ake Lernmark).

Genome Research 2139
www.genome.org

Guthrie card methylomics



Figure 2. Array and sequencing-based DNA methylomics of Guthrie cards. (A) Comparison of Illumina450K-based ‘‘fresh cord blood vs. sperm’’ tDMRs
with ‘‘blood vs. sperm’’ tDMRs identified in the Human Epigenome Project (HEP) (Eckhardt et al. 2006). Plotted are 468 genomic regions (;200–300 bp in
length) common between the HEP and the Illumina450K data sets. Illumina450K-based ‘‘fresh cord blood vs. sperm’’ tDMRs that display <20% meth-
ylation differences are shown in gray. R2 = 0.90 (overall), R2 = 0.50 (<20% methylation), both Pearson’s. (B) A comparison of fresh cord blood and Guthrie
card Illumina450K profiles with HEP data. Shown is methylation data for regions called ‘‘blood vs. sperm’’ tDMRs in the HEP. Each column represents
profiles from a separate individual, and 106 different tDMRs are shown. (SP) Sperm. (C ) Normalized MeDIP-seq read counts for the ‘‘blood vs. sperm’’
tDMRs identified by the use of Illumina450K-based fresh blood (top) or Guthrie cards (bottom) across a range of CpG densities. Only >20% tDMR
methylation differences are shown. The percentage agreement is indicated in each panel. Number of different CpGs represented in each panel: Low CpG,
n = 6404; mid-CpG, n = 28,384; high CpG, n = 18,135. Note the numbers are the same for the ‘‘Fresh blood’’ and ‘‘Guthrie card’’ data sets as the
differentially methylated CpG sites were called on the Illumina450K arrays.
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Figure 3. Identification at birth of temporally stable individual-specific DNA methylation variants. (A) Experimental strategy schematic: (1) Guthrie card
Illumina450K profiles were generated and >20% interindividual pairwise methylation differences called (sex chromosome data were excluded from all analyses);
(2) SNP data were also generated from Guthrie card DNA; (3) a variety of filters (detailed in Table 1) were applied to the Illumina450K profiles, and then validation
was performed using MeDIP-seq profiles of blood sampled when the individuals were 3 yr old. (B) Identification of temporally stable interindividual DMRs that exist
at birth. (Gray points) Single CpG interindividual differences of >20%; (red points) the filtered set. The number of CpGs remaining after each filter is indicated in the
adjoining tables. The final sets of CpGs (red points in the figure) were grouped into ‘‘DMRs’’—differentially methylated regions. Binomial P-values (calculated at
a per-DMR level) for the ‘‘Agreement scores’’ between Illumina450K and MeDIP-seq data are: F1 vs. F2: P = 0.01, F1 vs. M: P = 0.11, F2 vs. M: P = 0.0003.



set of 10–13 different interindividual DMRs per pairwise comparison

(Fig. 3B; Table 2). Given the stringency of our filters, this is almost

certainly an underestimate of the level of interindividual DNA

methylation variation that exists between any two unrelated human

individuals.

Then, to establish the temporal stability of the DMRs found

using Guthrie cards (i.e., at birth), we generated MeDIP-seq profiles

of whole blood sampled from the same individuals when they were

3 yr old (all individuals were disease-free at the time of sampling).

Since we did not have access to 500 ng of gDNA required to perform

450K analysis on the follow-up samples, we used the MeDIP-seq

method for 200 ng of gDNA as described above. Given the differ-

ences in platform-specific biases, the eventual results would, if

anything, be an underestimate of the number of temporally stable

epialleles that exist in the individuals under study. MeDIP-seq se-

quencing statistics are provided in the Supplemental section.

Comparison between the final set of ‘‘at birth’’ Illumina450K-based

interindividual DMRs with MeDIP-seq profiles of the same indi-

viduals at 3 yr old yielded agreement scores ranging from 70% to

91% (Fig. 3B). This demonstrates, for the first time, the existence of

temporally stable interindividual epigenetic variation that is present

at birth. These DMRs were found across the genome associated with

a variety of genomic elements, including promoters and CGIs, but

also intergenic regions (Table 2). Interestingly, a few DMRs were

located within genes associated with human diseases, e.g., FZD1

expression is down-regulated in ulcerative colitis (Hughes et al.

2011) and NFIA has been associated with celiac disease (Dubois et al.

2010). It is also worth noting the large difference in agreement

scores between the unfiltered (52%–55% i.e., marginally better than

random) and post-filtered data (70%–91%). This suggests that future

epigenomic investigations should integrate epigenetic and genetic

variation data to optimize the biological relevance and reduce false-

positive ‘‘epigenetic’’ discoveries.

Discussion
A significant challenge in EWASs will be distinguishing causal from

consequential epigenetic variation, and using solely ‘‘case vs.

control’’ study designs will not help to address this issue. Rather, as

has been recently discussed (Rakyan et al. 2011), effective EWASs

will need to combine different types of cohorts, among which

longitudinal cohorts in particular will be invaluable. Guthrie card

DNA methylomics therefore has the potential to become a valu-

able component of EWASs for a range of common diseases.

Guthrie cards could offer several advantages over large-

scale prospective studies. First, in most cases they are created and

stored by national health authorities, e.g.,

www.newbornbloodspot.screening.nhs.uk.

Second, if Guthrie cards are combined

with an initial post-disease profiling of

cases vs. controls, then only affected in-

dividuals and a suitable number of controls

need to be included in the retrospective

longitudinal analyses, whereas in pro-

spective cohorts it is very difficult to

predict which individuals will develop

the disease of interest, necessitating very

large sample numbers. Third, although

at present Guthrie cards are available for

individuals <20 yr old, this already rep-

resents millions of individuals, many of

whom have developed a disease (e.g., both

type 1 diabetes and asthma represent childhood-onset diseases),

and these numbers will only increase. In terms of potential limi-

tations, Guthrie cards are restricted to whole blood that represents

a heterogeneous population of cells. But this is also typically the

case in large-scale prospective studies in which, for logistical rea-

sons, it is only possible to sample tissues such as whole blood or

buccals. However, since in-utero events are thought to impact on

more than one tissue, Guthrie cards are likely to be informative for

the epigenetics of a range of diseases that affect multiple blood

subtypes and possibly even non-blood tissues. Although one could

argue that prospective studies are likely to obtain more detailed

information about life-style factors, Guthrie cards could still be

used to establish whether disease-associated DNA methylation

variants are present at birth, providing a crucial starting point for

further research, including investigating the possibility of using

epigenetic variants, in combination with genetics, as predictive

markers. Finally, the vast numbers of Guthrie cards that currently

exist provide a pool of material to study a large range of diseases. It

is also worth noting that spotting blood on filter paper is not

limited to neonatal screening, but could also be more widely ap-

plied in home/field-based settings.

Using Guthrie cards, we were able to identify temporally

stable epialleles that are present at birth in humans, demonstrating

a key application of Guthrie card methylomics. The identified DMRs

described above must have been present in-utero since they were

identified at birth. Given the filters we applied to the data, the DMRs

are more likely due to environmental or stochastic interindividual

differences within the in utero milieu (e.g., differences in maternal

diet) rather than solely genetic differences. Indeed, even though

;95% of the CpGs assayed by Illumina27K arrays are also repre-

sented on the Illumina450K array (Bell et al. 2011), none of the

CpGs they identified, at which the methylation state is influenced

by cis-genetic variation, overlap our final filtered list of DMRs.

However, to unequivocally rule out genetic differences, extensive

resequencing of the DMRs would be required, which was not fea-

sible for our proof-of-principle study, but should be performed in

future larger-scale EWASs. Although in this study we focused on

identifying epigenetic alterations that are less likely to be due to

genetic heterogeneity, Guthrie card methylomics will also be useful

for studying genotype–epigenotype interactions. Recently, it has

been shown that genetic influences on epigenetic states in the hu-

man genome can be probabilistic, i.e., there isn’t a strict one-to-one

relationship between genotype and epigenotype, but rather a cer-

tain probability at which a given epigenetic state will arise (Feinberg

and Irizarry 2010). Such regions have been termed ‘‘variably

methylated regions’’ or VMRs (Feinberg and Irizarry 2010). VMRs

Table 1. Filters applied to the DMRs

chrX and Y probes To exclude sex-specific DNA methylation differences

CpG SNPs These would create/destroy CpG sites and hence would lead to artifactual
interindividual methylation differences.

CNVs These would also lead to artifactual methylation differences measured by
the arrays (e.g., increased copy number would show up as increased
methylation).

Comethylation All CpGs within a 250-bp window must display >20% methylation differences
in the same direction. The window must have at least 2 CpGs. This will
eliminate single CpG differences that are either likely to be artifactual and/or
have minimal functional impact.

Genetic identity No interindividual SNP differences for at least 5 kb upstream of and
downstream from the DMR. Furthermore, there must be data from
at least 5 SNPs on the array in this region.

Beyan et al.
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show similar properties to ‘‘metastable epialleles’’ previously de-

scribed in mice (Morgan et al. 1999; Rakyan et al. 2003) and humans

(Waterland et al. 2010), at which the establishment of the epigenetic

state occurs during early development in a probabilistic manner.

Therefore, if genetically influenced probabilistic establishment of

epigenetic state occurs during embryogenesis, then knowing the

epigenetic state at birth would be invaluable for understanding the

biological impact and predicting the phenotypic outcomes of such

genetic variants.

In summary, Guthrie cards will allow retrospective in-

vestigations into the temporal origins of epigenetic variants and

potentially help elucidate their etiological role. Robert Guthrie

envisaged that such cards would eventually find many uses for

understanding and ultimately preventing human diseases; the

application to complex disease epigenomics would be a novel and

powerful use of this remarkable resource.

Methods

Samples
Guthrie card and fresh cord blood samples were obtained from
the DiPiS (Diabetes Prediction in Skåne) study (Supplemental
Table 1). The cord blood-spot cards used in this study were created

Table 2. Genomic characteristics of the interindividual DMRs

F1 vs. F2

Chr Start End CpGo/e CpGs
Distance to

nearest gene Gene name Location

Illumina450K MeDIP-seq Genetic identity

F1 F2 F1 F2 No. of SNPs Length (bp)

2 130,617,902 130,618,144 0.59 2 0 CCDC74B Promoter 41 13 5 1 15 132,212
5 1,647,282 1,647,676 0.84 4 38,174 Q7Z6L2_HUMAN Intergenic 6 34 0 2 66 98,161
6 236,687 236,909 0.58 4 144 DUSP22 Promoter 54 11 9 5 9 21,713
6 32,597,779 32,597,941 0.77 2 0 HLA-DRB5 Exonic 55 77 9 5 9 50,611
6 32,633,783 32,634,238 0.49 7 20,286 HLA-DRB1 Intergenic 53 82 9 19 7 27,586
7 90,734,508 90,734,637 0.80 2 0 FZD1 Exonic 53 30 31 13 5 16,568
10 3,588,486 3,588,627 0.96 2 219,561 KLF6 Intergenic 57 78 7 19 53 62,081
12 31,163,381 31,163,386 0.55 2 0 NP_001073971.1 Exonic 37 13 9 2 11 43,211
16 87,935,749 87,935,904 0.51 4 0 ANKRD11 Intronic 78 56 17 8 22 30,772
17 76,189,287 76,189,311 0.49 2 0 RPTOR_HUMAN Intronic 96 47 11 13 7 17,748

F1 vs. M

Chr Start End CpGo/e CpGs
Distance to

nearest gene Gene name Location

Illumina450K MeDIP-seq Genetic identity

F1 M F1 M No. of SNPs Length (bp)

1 16,898,845 16,898,993 0.85 2 0 ESPNP Exonic 11 41 0 15 7 46,758
2 132,002,900 132,003,135 0.62 2 0 CCDC74A Promoter 42 18 2 1 51 88,079
6 30,003,095 30,003,239 0.59 6 0 HLA-G Intronic 64 38 2 0 8 15,991
6 32,659,927 32,660,130 0.78 10 0 HLA-DRB1 Exonic 62 78 25 22 17 24,352
10 3,588,486 3,588,627 0.96 2 219,561 KLF6 Intergenic 57 81 7 31 14 12,280
10 123,234,526 123,234,581 0.42 2 0 FGFR2 Intronic 74 42 8 5 47 36,679
14 105,163,026 105,163,196 0.37 2 23,240 LOC649910 Exonic 78 51 4 8 24 226,280
17 68,873,489 68,873,496 0.38 2 0 SDK2 Intronic 71 43 18 12 19 18,353
19 42,452,423 42,452,434 0.65 2 26,017 ZNF383 Intergenic 86 54 2 0 5 49,176

F2 vs. M

Chr Start End CpGo/e CpGs
Distance to

nearest gene Gene name Location

Illumina450K MeDIP-seq Genetic identity

F2 M F2 M No. of SNPs Length (bp)

1 16,898,845 16,898,993 0.85 2 0 ESPNP Exonic 13 41 2 15 40 244,262
1 61,290,395 61,290,464 0.68 2 0 NFIA Intronic 21 47 8 15 29 35,909
1 91,784,996 91,785,203 0.60 3 21,087 CDC7 Intergenic 80 54 29 20 13 14,588
3 198,190,026 198,190,139 0.69 2 9,925 PIGZ Intergenic 44 13 5 1 16 17,087
4 75,066,510 75,066,693 0.59 7 0 PF4 Promoter 58 36 11 5 80 113,719
6 237,329 237,596 0.92 4 0 DUSP22 Promoter 8 43 2 15 14 36,281
6 32,598,399 32,598,422 0.32 2 0 HLA-DRB5 Intronic 42 83 1 9 9 50,611
6 139,054,553 139,054,685 0.50 2 615 Null Promoter 78 43 6 5 8 11,476
7 90,734,508 90,734,637 0.80 2 0 FZD1 Exonic 30 55 13 37 75 108,395
11 36,379,031 36,379,191 0.46 3 0 NP_079117.2 Promoter 63 41 3 1 22 16,131
12 6,528,425 6,528,639 0.47 2 0 NP_542768.1 Intronic 64 41 13 8 52 46,668
14 105,163,026 105,163,196 0.37 2 23,240 LOC649910 Exonic 79 51 3 8 19 111,196
19 42,452,423 42,452,434 0.65 2 26,017 ZNF383 Intergenic 89 54 6 0 5 49,176

The ‘‘Illumina450K’’ and ‘‘MeDIP-seq’’ columns show %methylation and normalized read counts, respectively. In the ‘‘Genetic identity’’ columns, the
extent of the genetic identity (in kilobase and number of SNPs) for the region containing the DMR is reported.

Guthrie card methylomics
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in September 2000 and stored in the dark at ambient temperature
(20–21°C) in individual page protectors. Umbilical cord blood was
collected by venopuncture into BD Vacutainer EDTA tubes (BD),
spotted onto filters grade 2992 (Schleicher & Schuell), and air-dried
before storage. Fresh cord blood samples (from September, 2010)
were collected into EDTA tubes at Malmö University Hospital,
Lund University, and processed within 24 h. For the samplings of
the 3-yr-old children, venous EDTA blood sample was obtained at
a Community Health Center. The EDTA blood was immediately
added to the Guthrie card in three droplets and allowed to dry
before being mailed overnight in a page protector to the laboratory
in Malmö, Sweden. The Guthrie cards were stored in the dark at
room temperature before analysis within a month. The DNA from
fresh cord blood was prepared using QIAamp DNA Blood Midi kit
(Qiagen) according to the manufacturer’s protocol. The Lund
University Research Ethics Committee approved the study and
written informed consent was obtained from participating mothers
(DiPiS ethics approval no. Dnr 2009/244).

Isolation of genomic DNA from Guthrie cards

Guthrie card gDNA was extracted using the GenSolve kit as per the
manufacturer’s instructions (www.genvault.com/html/products).
Following extraction, the samples were further purified using the
Qiagen QiaAmp mini columns and eluted in 100 mL of elution
buffer. DNA concentration was determined using a Qubit in-
strument (Invitrogen).

Generation and analysis of array- and HTS-based data

Illumina450K arrays were processed according to the manufac-
turer’s instructions using 500 ng of DNA. The data were quantile
normalized and resulting beta values were used in downstream
analyses. MeDIP-seq libraries were prepared using a modified ver-
sion of the protocol described in Reference 13 and sequenced on an
Illumina GAIIx instrument (v4 chemistry). One lane of 36-bp
paired-end sequencing was performed for each MeDIP-seq library.
A detailed description is provided in the Supplemental Methods.
MeDIP-seq reads were aligned and processed using bwa 0.5.9 (Li
et al. 2009), samtools 0.1.7 (Li and Durbin 2009), and custom
scripts (available upon request). After alignment and deduplica-
tion, we selected all read pairs with a mapping score $10. Within
each group of samples (Guthrie cards and fresh blood) we calcu-
lated histograms of read-pair spacings (insert sizes), then randomly
discarded some reads from each library in order to perfectly match
the insert-size distributions within the group. We then counted
numbers of read pairs overlapping 500-bp windows centered
around the target CpG site of each probe on the Illumina450K
array. It is worth noting that we did not perform DMR calling per se
on the MeDIP-seq data, but rather asked whether the difference
between read counts in the two samples was positive or negative.
So, read/tag depth only affects agreement score to the extent that
signal/noise ratio will tend to be higher in a region with high read
depths. Since MeDIP enrichment efficiency depends on the
number of meCpGs per fragment, this will tend to be higher when
methylation occurs in the context of CpG dense regions. Illumina
Omni2.5S arrays (www.illumina.com) were processed according to
the manufacturer’s instructions using 200 ng of Guthrie card DNA.

Statistical analyses

For all correlation analyses among the different methylomic data
sets, Pearson’s correlation coefficient was selected as it is a familiar
descriptive measure of the similarity between two quantitative

data sets and has been previously used in the context of DNA
methylomics (Down et al. 2008).

Processing of HEP data

HEP bisulfite data for sperm, CD4+, and CD8+ T-cells were down-
loaded from the website. This includes amplicon coordinates
(NCBI34) and methylation ratios for each CpG covered by each bi-
sulfite PCR sequencing read of the HEP data set. Since some ampli-
cons have low coverage, we selected only those amplicons which, for
each of CD4+, CD8+, and Sperm, have at least two reads of data, and
have coverage for at least five separate CpG sites. Also, to avoid double
counting (i.e., where two HEP amplicons overlapped in our data set)
we excluded the smaller of the overlapping amplicons from further
analyses. For each amplicon that fulfilled these criteria, we took the
mean of all CpG methylation ratios for each cell type. As an addi-
tional quality control measure (and also to exclude some HEP
amplicons that are highly variable between different blood cell types)
we discarded amplicons with a >10% methylation difference between
CD4+ and CD8+ cells. We then took the mean of the CD4+ and CD8+

methylation ratios to give a combined ‘‘Blood’’ methylation value.

Additional methods

Detailed methodology is described in the Supplemental Methods.

Data access
The raw array and sequencing data from this study have been de-
posited in the NCBI Gene Expression Omnibus (GEO) (http://
www.ncbi.nlm.nih.gov/geo/) under accession no. GSE38128.
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