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Abstract: This study presents a system for assessing the freshness of meat with electrical impedance
spectroscopy (EIS) in the frequency range of 125 Hz to 128 kHz combined with an image classifier
for non-destructive and low-cost applications. The freshness standard is established by measuring
the aerobic plate count (APC), 2-thiobarbituric acid reactive substances (TBARS), and composition
analysis (crude fat, crude protein, and moisture) values of the microbiological detection to represent
the correlation between EIS and meat freshness. The EIS and images of meat are combined to predict
the freshness with the Adaboost classification and gradient boosting regression algorithms. As a
result, when the elapsed time of beef storage for 48 h is classified into three classes, the time prediction
accuracy is up to 85% compared to prediction accuracy of 56.7% when only images are used without
EIS information. Significantly, the relative standard deviation (RSD) of APC and TBARS value
predictions with EIS and images datum achieves 0.890 and 0.678, respectively.

Keywords: freshness evaluation; electrical impedance spectroscopy (EIS); machine learning

1. Introduction

Nowadays, customers pay more attention to the quality attributes of meat products,
such as appearance, flavor, and nutrients, since there is wide variability in raw meat quality
in commercial end products. Additionally, meat is highly susceptible to spoilage and
contamination during the storage period, with freshness degradation caused by microbial
spoilage and biochemical reactions. Therefore, there has been strong demand to assess the
quality and freshness of meat to obtain reliable information about it and circumvent any
possible food poisoning from spoilage [1–3].

Traditionally, human sensory evaluation was used to evaluate freshness by inves-
tigating the color, morphological features, and surfaces of meat. However, accuracy is
vulnerable to the assessor’s bias and fatigue. Chemical substances detection and microbio-
logical detection [4,5] using volatile basic nitrogen (VBN) [6,7], pH [8], 2-thiobarbituric acid
reactive substances (TBARS) [9–11], and aerobic plate count (APC) [12] analysis methods
have also been widely used to assess the freshness of meat due to their reliable, precise
results. Nevertheless, these methods are destructive, time-consuming, complicated for
experiments, and require skilled operators. Other alternatives to acquire early, low-cost, on-
line, and non-destructive assessment, such as the electronic nose [13–16], image classifica-
tion [17], torrymeter [18], and electrical impedance spectroscopy (EIS) technologies [19–22]
have been actively studied. However, electric nose technology requires specific gas sen-
sors and environmental conditions, and image classification suffers from low accuracy.
Compared with torrymeter measurement, which indicates electrical impedance at a single
frequency, EIS exploits multiple frequencies to characterize whether the biological object’s
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cell membranes are maintained to accurately determine the freshness of meat. In particular,
EIS has shown a high correlation with meat aging [19,20], intramuscular fat (IMF) [21],
and pH variation [22]. In addition, the moisture content was predicted by measuring the
impedance of the meat [23].

Given that EIS and image classification technologies show outstanding advantages
of using inexpensive measurements, and the accuracy of image classification can be com-
pensated by combining it with another type of data set [17], in this paper, we propose an
image classifier and EIS use method for non-invasive and accurate assessment of meat
freshness. EIS (125 Hz—128 kHz) is measured according to the storage period (0, 8, 16,
24, 36, and 48 h) with meat images. The freshness standard is simultaneously established
by measuring the APC and TBARS values to represent the correlation between EIS and
meat freshness. We have primarily constituted the database with vector forms, including
information of EIS and images adopted in the machine learning algorithms, which results
in the non-invasive freshness assessment system with low cost and high precision.

2. Materials and Methods
2.1. Sample Preparation

Quality grade 1+ and grade 1 beef loins and rounds were obtained from a local meat
shop (Chuncheon, Korea). Each piece of beef was cut into 30 pieces (1 cm thick) using a
sterile knife, placed on a Styrofoam tray and wrapped with low-density polyethylene film.
A total of 120 samples was stored at 23 ± 2 ◦C to accelerate the degradation of freshness
under a stress condition. As shown Figure 1, five pieces were randomly selected at each 0, 8,
16, 24, 36, and 48 h of storage. The EIS, APC values, TBARS values, proximate composition,
and meat photos were acquired to analyze the correlation between freshness and EIS. Every
measurement was performed five times with five different samples to average out any
possible measurement errors.

Figure 1. Images of beef loins over the elapsed storage period.

2.2. EIS Measurement

The electrical properties of meat can be evaluated by the mobility of ions in
metabolism [24,25]. The dielectric constant is related to the material’s conductivity, and the
current follows the cell in the extracellular fluid. Electrical impedance consists of the tissue
components, intracellular fluids, and extracellular fluid of membranes. Na+ and Cl- ions
exist in extracellular fluid, and the major anions of intracellular fluid are phosphate and
proteins. Thus, extracellular and intracellular fluid can be regarded as electrolytes. Addi-
tionally, cell membranes can be modeled as capacitance; therefore, the impedance varies
according to the frequency. The membrane’s capacitance and resistance of extracellular
fluid and intracellular fluids are each considered as passive components C, Re, and Ri, as
shown in Figure 2a [26–30]. As shown in Figure 2b, most currents cannot penetrate the cell
membrane at a low frequency due to high resistance, whereas current at a high frequency
flows through extracellular and intracellular spaces [31–33]. Therefore, impedance mag-
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nitude decreases as the frequency increases, as shown in Figure 2c, which means that in
the case of impedance spectroscopy, impedance magnitudes according to the frequencies
include the corresponding phase information of the cell membranes’ capacitance.

Figure 2. (a) Fricke model; (b) cell penetration at low and high frequencies; (c) impedance magnitude plot in frequency domain.

Figure 3 shows dispersions of the biological system [34]. The α-dispersion is caused
by polarization in the range of Hz to kHz, and β-dispersion in the range of kHz to MHz is
mainly due to the Maxwell–Wagner effect, which is related to the interface polarization
occurring in the system between two materials with different currents. In general, the
α-dispersion and β-dispersion are more relevant to the cells states and are commonly
used in impedance measurements for biological tissue studies. Especially, β-dispersion
is related to the genetic properties of the cell membrane and the interaction between the
cell membrane and the extracellular or intracellular electrolytes. This is directly associated
with cell membranes’ behavior. It can be used in meat aging studies based on membrane
integrity, because the oxidation of the phospholipid membrane layers and lysis occurring
during aging makes the membrane porous and reduces the membrane’s insulating prop-
erties. As the meat ages, the impedance magnitude gradually tends to decrease, since
the cell membranes are permeable. Therefore, we measure the freshness of meat through
impedance measurements from 100 Hz to 1 MHz to discriminate the b-dispersion region.

Figure 3. Dispersions of biological system.

A tetrapolar electrode interface was adopted to measure the EIS values to mitigate the
effects of contact impedance between the electrode and meat [19]. A MAX30001 chipset
was provided as a portable and low-cost impedance magnitude measurement method with
electrode interface. It was controlled the frequency of 125–128 kHz at 1.1 V supply voltage
(see datasheet MAX30001 [35]). We used needle electrodes made of stainless steel. The
thickness of the electrode is 0.76 mm, and the length is 36 mm. The distance between the
inner electrodes is fixed at 8.1 and 12.9 cm for the outer electrodes. The electrodes were
inserted to a depth of 0.5 cm on the meat, as shown in Figure 4. Impedance is obtained for
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each measurement at seven frequencies of 125 Hz, 250 Hz, 500 Hz, 2 kHz, 8 kHz, 80 kHz,
and 128 kHz at 8 µA injection AC current magnitude.

Figure 4. (a) The settings for the measurement. (b) Schematic diagrams of tetrapolar electrode.

As the previous study results [36,37] measured the impedance spectroscopy (40 Hz
to 110 MHz) on beef with storage time from one day to 14 days, there were no significant
differences in impedance value at the frequency more than 100 kHz. Furthermore, the
impedance value is almost constant at a frequency of more than 2 MHz (outside of the β-
dispersion region). Since the target application is for a portable, rapid, and straightforward
assessment with battery-powered instrumentation, we determined that measuring up to
a frequency around 100 kHz would be enough to obtain the assessment information. In
addition, we obtained the magnitude information from the real and imaginary parts of the
measured impedance for the compactness of the portable system.

2.3. APC Measurement

First, 90 mL of saline was added to 10 g of the sample and homogenized for 40 s using
a stomacher (Bag Mixer 400, Interscience, France). The homogenate was diluted by each
dilution factor using saline. One mL of homogenate was dispensed onto 3 M Petrifilm
(aerobic count plate, 3 M, Maplewood, MN, USA) according to the manufacturer’s method
and cultured at 37 ◦C for 48 h to count colonies.

2.4. TBARS Measurement

Then, 50 µL 7.2% BHA was added to 5 g of sample, 15 mL of distilled water was
added, and a homogenizer was used for homogenization [38], and 2 mL of a 20 mM TBA
(15% TCA dissolution) reagent was added to 1 mL of the homogenate. After mixing, the
mixture was heated at 90◦ C for 15 min. After heating, it was cooled in cold water and
centrifuged for 10 min at a rate of 2000× g. After that, the supernatant was measured at
531 nm using a UV/VIS spectrophotometer (Molecular Device, M2e, Sunnyvale, CA, USA).
A blank sample was measured in the same manner by adding distilled water instead of the
sample. The following calculation formula (1) was used for the TBARS value in the sample.

TBARS(mg malondialdehyde/kg)
= (absorbance of the sample − absorbance of the blank) × 5.88

(1)

2.5. Proximate Composition Measurement

The moisture content was determined by oven drying at 105 ◦C, and the crude protein
content was determined by the Kjeldahl method. The crude fat content was assessed by
solvent extraction, and the crude ash was analyzed by burning the samples in a furnace at
550 ◦C [39].
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2.6. Statistical Analysis

One-way ANOVA was performed on all the experiment results using the SAS v9.4
(SAS Institute Inc., Cary, NC, USA). The significance of the mean values was verified at the
5% level by the Tukey method. The correlation between impedance and freshness over the
storage period was analyzed by Pearson’s correlation coefficient (r) using an SAS program.
The SPSS program (IBM, Armonk, NY, USA) was used for the principal component analysis
(PCA) of the composition and impedance measurement method.

3. Results and Discussion
3.1. EIS Results

The impedance results of beef loin (grade 1+, grade 1) and round (grade 1+, grade 1)
are shown in Figure 5. The impedance value tends to decrease with increasing storage
period. This is because the insulating cell membranes become permeable by membrane
destruction as the storage time increases, which lowers the impedance. In addition, as
the frequency increases, the movement of ions in the extracellular tends to gradually
penetrate the intracellular along insulating membranes, which makes the impedance
decrease. Figure 6 compares the measured results by type of quality grade, and loin/round
cut at frequencies of 80 kHz and 500 Hz. Figure 6a shows differences between quality
grades. Overall, the impedance of quality grade 1 was higher than grade 1+. However,
it is difficult to correlate the grade with impedance measurements, because the grade of
beef is determined by combinations of various factors, such as marbling, meat color, fat
color, texture, and maturity (Ministry of Agriculture, Food and Rural Affairs, 2018). It
is challenging to infer all these values by impedance measurement. Figure 6b shows the
differences between meat cuts (loin and round). The impedance is significantly higher
in loin than round, since loin contains more fat components than round, given that fat
component has less moisture and has larger impedance [40].

Figure 5. EIS of (a) beef loin (quality grade 1+), (b) beef loin (quality grade 1), (c) beef round (quality
grade 1+), and (d) beef round (quality grade 1) measured over the storage periods.
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Figure 6. Impedance over the storage periods showing differences between (a) quality grade 1+ and
1, and (b) loin and round.

3.2. APC and TBARS Results

Figures 7 and 8 shows APC and TBARS values over the storage period. Initially, the
APC in the beef was 2.70–3.16 Log CFU/g, determined to be fresh. However, as the storage
period increased, the APC and TBARS increased in all treatments (p < 0.05). When APC in
meat is in the range of 6–8 Log CFU/g, the meat starts to decay, and an off odor and viscous
substances increase [41]. In addition, beef having 6.7 Log CFU/g (5 × 106 CFU/g) or less
of the APC should be distributed to meat shop following the Recommended Criteria for
Microbial Testing in Meat (Ministry of Food and Drug Safety, 2018) in Korea [42]. Starting
from 36 h of storage, all treatment exceeded the recommended APC level and showed
more than 7 Log CFU/g, which is considered to be spoiled. The TBARS values in all
treatment were 0.46–1.07 mg MDA/kg, and the 1+ grade loin with high fat content showed
the highest TBARS value.

Figure 7. The APC level of (a) beef loin (quality grade 1+), (b) beef loin (quality grade 1), (c) beef round (quality grade 1+),
and (d) beef round (quality grade 1) over the storage periods at room temperature (23 ◦C). a–e Different superscript letters
above bars indicate a significant difference at p < 0.05.

Figure 8. The TBARS value of (a) beef loin (quality grade 1+), (b) beef loin (quality grade 1), (c) beef round (quality grade
1+), and (d) beef round (quality grade 1) over the storage periods at room temperature (23 ◦C). a–f Different superscript
letters above bars indicate a significant difference at p < 0.05.
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The TBARS value, which indicates the degree of rancidity of meat maintenance, is
a measure of the intensity of the red color produced by the reaction of malondialdehyde
(MDA) and thiobarbituric acid (TBA) generated by the oxidation of fat [43]. The range of
TBARS in which the rancid off-odor that occurs in beef can be sensed varies from 0.6 to
2.0 mg MDA/kg [44]. The maximum allowable rancid off-odor in beef was 2 mg MDA/kg,
and a value of more than 1.2 mg MDA/kg means it is completely spoiled [45,46].

3.3. Correlation Between EIS and Microbiological Detection

Table 1 shows correlations between EIS and microbiological detection values. There was
a negative correlation between impedance and the APC and TBARS values. However, in the
case of beef round, there was a significant correlation. The interface (−0.629 ≤ r ≤ −0.850,
p < 0.01) showed a higher correlation for 1+ grade beef loin. In addition, as the frequency
increases, the correlation increases, and the TBARS value is highly correlated at 128 kHz
(r = −0.850, p < 0.01) and 80 kHz (r = −0.852, p < 0.01). There is a more significant
correlation at frequencies above kHz, which corresponds to the β-dispersion region directly
related to meat aging. On the other hand, the correlation between APC and TBARS tends
to increase as the frequency of grade 1 loin decreases, and in particular, the TBARS showed
the highest correlation (r = −0.610, p < 0.01) with 500 Hz. In the 1+ grade beef round, the
128 K frequency showed the highest correlation (r = −0.445, p < 0.05), and the grade 1 beef
round showed the highest correlation with the 128 K frequency with APC (r = −0.736,
p < 0.01).

Table 1. Correlation coefficients between each impedance at different frequencies and freshness of beef.

Meat Freshness
Frequency (Hz)

128 K 80 K 8 K 2 K 500 250 125

Beef Loin
(Quality Grade 1+)

APC −0.784 ** −0.788 ** −0.796 ** −0.778 ** −0.675 ** −0.659 ** −0.629 **
TBARS −0.850 ** −0.852 ** −0.837 ** −0.804 ** −0.726 ** −0.715 ** −0.669 **

Beef Loin
(Quality Grade 1)

APC −0.350 −0.327 −0.383 * −0.409 * −0.483 ** −0.485 ** −0.466 **
TBARS −0.481 ** −0.425 * −0.490 ** −0.509 ** −0.610 ** −0.617 ** −0.605 **

Beef Round
(Quality Grade 1+)

APC −0.408 * −0.416 * −0.387 * −0.412 * −0.066 −0.022 −0.001
TBARS −0.445 * −0.468 ** −0.412 * −0.464 ** −0.146 −0.073 −0.055

Beef Round
(Quality Grade 1)

APC −0.736 ** −0.702 ** −0.522 ** −0.476 ** −0.303 −0.376 * −0.422 *
TBARS −0.648 ** −0.628 ** −0.539 ** −0.454 * −0.343 −0.334 −0.422 *

* p < 0.05, ** p < 0.01.

3.4. Proximate Composition Results

Table 2 shows the results of the proximate composition of beef loin (grade 1+, grade 1)
and round (grade 1+, grade 1) used in the experiment. The grade 1+ and 1 were carcass
quality grade in Korea, which means marbling score, firmness, lean meat color, fat color,
and maturity (1++; the highest grade, 1, 2, and 3; the lowest grade) [47]. The moisture and
crude protein were significantly higher in the round region than in the loin region. On
the other hand, in crude fat, the loin portion was higher than the round portion, and in
particular, the grade 1+ loin showed the highest crude fat content (p < 0.05). There was
no significant difference in the period of review by part and by grade. These results were
similar to the previously reported results [42,48–51].

3.5. Correlation between EIS and Composition Analysis

Table 3 shows correlations between the composition of beef and the impedance values.
The impedance value and the moisture and crude protein content in the beef show a
negative correlation, and the crude fat content shows a positive correlation. Crude ash is
not associated with impedance. Impedance shows a high correlation with crude fat and
crude protein. The frequency of 128 kHz shows the highest correlation with crude fat, and
frequencies from 125 to 80 kHz show the highest correlation with crude protein.
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Table 2. Proximate composition of beef loin and round.

Proximate Composition (%)
Beef Loin Beef Round

SEM
Grade 1+ Grade 1 Grade 1+ Grade 1

Moisture 62.62 c 64.22 b 70.72 a 70.51 a 0.352
Crude Fat 17.59 a 15.02 b 6.43 c 6.04 c 0.313

Crude Protein 18.87 b 19.67 b 21.66 a 22.28 a 0.314
Crude Ash 0.91 a 1.08 a 1.19 a 1.18 a 0.078

a–c Means within a row with a different superscript differ significantly at p < 0.05.

Table 3. Correlation coefficients between each impedance at different frequencies and composition
analysis results.

Proximate
Composition

Frequency (Hz)

128 K 80 K 8 K 2 K 500 250 125

Moisture −0.826 ** −783 ** −0.635 ** −0.483 * −0.562 ** −0.571 ** −0.556 *
Crude Fat 0.861 ** 0.832 ** 0.680 ** 0.539 * 0.604 ** 0.613 ** 0.601 **

Crude Protein −0.845 ** −0.857 ** −0.724 ** −0.626 ** −0.652 ** −0.665 ** −0.658 **
Crude Ash −0.432 −0.387 −0.227 −0.155 −0.147 −0.146 −0.145

* p < 0.05, ** p < 0.01.

Figure 9 shows the results of principal component analysis for the composition of beef
and impedance spectroscopy. The impedance value for each frequency and the value of the
first principal component for the general component are 76.13%. The value of the second
principal component is 15.94%, which means that the first principal component can explain
76.13% of the data. All impedance values and crude fat content are distributed on the right
side of the first main component, so that the higher the crude fat, the higher the impedance
value. The second main component indicates the difference by frequency, and frequencies
below 8 K show a high correlation with crude protein and moisture. In contrast, the 128
and 80 K frequencies show a high correlation with crude fat.

Figure 9. PCA for the proximate composition results and EIS.

4. Image Classification with EIS Results

As a result of the experiment, it was confirmed that APC, TBARS, and composition
measured by the conventional method were statistically correlated with EIS, which means
that impedance measurements can predict the freshness and composition of meat in daily
life. Using image data with EIS, machine learning was performed using loin (grade 1+)
data, which had the highest correlation.
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Figure 10 shows a block diagram of the prediction algorithm. In pre-processing,
filtered images are generated for each storage period (0, 8, 16, 24, 36, and 48 h) for a
sufficient amount of training data. After applying a 2D Gaussian filter with kernel size = 5
and sigma = 3, ±30% zoom, 10% shear, 10% rotation, vertical flip, and horizontal flip are
applied, and 100 images with a size of (150,150) pixels are used to extract the R, G, and B
of each pixel with (3100*6) vectors. Then, using Gaussian distribution random number
generation and a vector combiner, the averaged R, G, and B values of the images and EIS
were combined to generate (10,1000) vectors over the storage periods. The 79.2%, 19.8%,
and 1% of the generated data set were used for training, validation, and testing, respectively.
Prediction was performed with an AdaBoost (adaptive boosting) classifier and gradient
boosting regressor based on a decision tree learner. In the boosting method, a gradient
boosting method is performed in which the error of the previous tree is determined through
a negative gradient while creating trees sequentially and an Adaboost method is performed
in which the classifier adaptively changes the wrong part and places a high weight on the
classifier with many misclassified data and reflects it in the next sample classification [52].
The classifier estimates the storage periods of meat at room temperature based on combined
vectors from EIS and meat images. The estimation accuracy was evaluated according to
the number of classes (3, 4, and 5) that can distinguish between the complete corruption
of APC and the pretense of TBARS. The parameters max_depth = 1, n_estimator = 50,
learning_rate = 0.65, and Algorithm = SAMME.R were used for fast converges with low
errors with fewer boosting iterations. When predicting a storage period with three classes
(fresh (0–8 h)/rancid (8–24 h)/spoiled (24–48 h), the use of EIS significantly improves
accuracy by up to 85%. In contrast, the accuracy is 56.7% when only images are used in the
classifier, as shown in Table 4.

Figure 10. Utilization of EIS and image classification with preprocessing and AdaBoost classification
and gradient boosting regression machine learning algorithms.
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Table 4. Comparison of storage period prediction accuracy between image input only and image
input with EIS information.

5 Class 4 Class 3 Class

Accuracy (%)
Image 20 43.66 56.66

Image + EIS 55.0 61.66 85.0

Second, APC and TBARS values were estimated with a gradient boosting regression
algorithm. The parameter setting was n_estimators = 600, representing the number of
boosting steps to be performed, max_depth = 3, which is the number of nodes in the tree,
min_samples_split = 5, which is the minimum number of samples required to split an
internal node, and learning_rate = 0.1 with least squares regression. The estimated value
was evaluated with a relative standard deviation (RSD). N is the number of samples in the
test set, yi is the actual value, and ŷı is the predicted value in Equation (2). It was used to
compare data sets with different units of measurement. y in Equation (3) is the average of
the actual values.

RMSE =

√√√√ 1
N

N

∑
i=1

(yi − ŷı)
2 (2)

RSD =
RMSE

y
×100 (3)

Table 5 shows that the RSD value is much lower when vectors are combined with EIS
and image information than when only EIS and pictures are applied. The RSD value of
APC is 1.197, and value of TBARS is 0.678 at Image with EIS.

Table 5. Comparison of APC/TBARS value prediction RSD among image input only, EIS information
only, and image input with EIS information.

Image EIS Image + EIS

RSD
APC 2.012 1.555 1.197

TBARS 1.802 0.890 0.678

Furthermore, given that moisture, crude fat, and crude protein are positively correlated
with the EIS in Section 3, the gradient boosting regression algorithm is also used to estimate
the component analysis. As shown in Table 6, the RSD value of moisture, crude fat, and
crude protein shows less than 5%, while the RSD value of crude ash is 11.6%.

Table 6. Composition value prediction and RSD with EIS information.

Crude Fat Crude Protein Crude Ash Moisture

RSD 4.571 2.409 11.574 0.872

Although the comparisons with other works is not easy since the types of the meat,
what to predict, number of the samples, and classes affect the accuracy of the prediction,
the proposed scheme of combination of image classification and EIS is comparable with the
state-of-the-art works using image classification [17,53], and moisture content prediction
using EIS [23].

5. Conclusions

EIS has high usability, rapidity, and non-destructiveness compared to conventional
meat freshness assessment methods such as sensory evaluation, microbiological detection,
and chemical substances detection. Impedance spectroscopy in the 2–128 kHz range over
the storage period shows a significant correlation with APC and TBARS values, which
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are reliable indicators of corruption. In addition, crude fat, crude protein, and moisture
of beef also have a positive correlation. These results show the suitability of impedance
information to assess the freshness of beef. Based on these results, it was possible to
predict the storage period or numeric values of APC/TBARS, and composition analysis
through a machine learning algorithm using combined vector information from images
of beef and EIS and showed 10–20% higher accuracy than the case of prediction with
only image information. In addition, it showed meaningful result of RSD. As a further
work, higher accuracy can be expected when collecting data on both magnitude and
phase when measuring EIS and expanding the frequency range up to a few MHz with the
sophisticated algorithms such as convolution neural network (CNN) and recursive neural
network (RNN).

Author Contributions: Conceptualization, S.H. and J.B.; software. S.H. and H.-J.K.; formal analysis,
S.H., H.-J.K., A.J. and J.B.; investigation, S.L. and J.C.; data curation, S.H. and H.-J.K.; visualization,
S.H. and H.-J.K.; writing—Review and editing, S.H., H.-J.K., A.J. and J.B.; supervision, J.B. and A.J.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported in part by 2018 Research Grant from Kangwon National
University and in part by the MSIT (Ministry of Science and ICT), Korea, under the ITRC (Information
Technology Research Center) support program (IITP-2020-2018-0-01433), supervised by the IITP
(Institute for Information and Communications Technology Promotion).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data available on request from the authors. The data that support the
findings of this study are available from the corresponding author, Joonsung Bae, upon reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zhang, Y.; Mao, Y.; Li, K.; Dong, P.; Liang, R.; Luo, X. Models of pseudomonas growth kinetics and shelf life in chilled longis-simus

dorsi muscles of beef. Asian-Aust. J. Anim. Sci. 2011, 24, 713–722.
2. Domínguez, R.; Pateiro, M.; Gagaoua, M.; Barba, F.J.; Zhang, W.; Lorenzo, J.M. A comprehensive review on lipid oxidation in

meat and meat products. Antioxidants 2019, 8, 429. [CrossRef] [PubMed]
3. Koutsoumanis, K.; Stamatiou, A.; Skandamis, P.; Nychas, G.-J.E. Development of a microbial model for the combined effect of

temperature and pH on spoilage of ground meat, and validation of the model under dynamic temperature conditions. Appl.
Environ. Microbiol. 2006, 72, 124–134. [CrossRef] [PubMed]

4. Pearson, D. Assessment of meat freshness in quality control employing chemical techniques: A review. J. Sci. Food Agric. 1968, 19,
357–363. [CrossRef]

5. Strange, E.D.; Benedict, R.C.; Smith, J.L.; Swift, C.E. Evaluation of rapid tests for monitoring alterations in meat quality during
storage. J. Food Prot. 1977, 40, 843–847. [CrossRef]

6. Min, J.S.; Lee, S.O.; Jang, A.; Jo, C.; Park, C.S.; Lee, M. Relationship between the concentration of biogenic amines and vola-tile
basic nitrogen in fresh beef, pork, and chicken meat. Asian Aust. J. Anim. Sci. 2007, 20, 1278–1284. [CrossRef]

7. Byun, J.-S.; Min, J.S.; Kim, I.S.; Kim, J.-W.; Chung, M.-S.; Lee, M. Comparison of indicators of microbial quality of meat during
aerobic cold storage. J. Food Prot. 2003, 66, 1733–1737. [CrossRef]

8. Watanabe, A.; Daly, C.; Devine, C. The effects of the ultimate pH of meat on tenderness changes during ageing. Meat Sci. 1996, 42,
67–78. [CrossRef]

9. Aksu, M.I.; Kaya, M.; Ockerman, H.W. Effect of modified atmosphere packaging and temperature on the shelf life of sliced
pastirma produced from frozen/thawed meat. J. Muscle Foods 2005, 16, 192–206. [CrossRef]

10. Raharjo, S.; Sofos, J.N.; Scmidt, G.R. Solid-phase acid extraction improves thiobarbituric acid method to determine lipid oxi-dation.
J. Food Sci. 1993, 69, 921–924. [CrossRef]

11. Fernández, J.; Pérez-Álvarez, J.A.; Fernández-López, J.A. Thiobarbituric acid test for monitoring lipid oxidation in meat. Food
Chem. 1997, 59, 345–353. [CrossRef]

12. Kim, J.H.; Yim, D.G. Assessment of the microbial level for livestock products in retail meat shops implementing HACCP sys-tem.
Korean J. Food Sci. Anim. Resour. 2016, 36, 594–600. [CrossRef] [PubMed]

13. Swe, M.M.; Eamsa-Ard, T.; Srikhirin, T.; Kerdcharoen, T. Monitoring the freshness level of beef using nanocomposite gas sen-sors
in electronic nose. In Proceedings of the 2019 IEEE International Conference on Consumer Electronics—Asia (ICCE-Asia),
Bangkok, Thailand, 12–14 June 2019.

http://doi.org/10.3390/antiox8100429
http://www.ncbi.nlm.nih.gov/pubmed/31557858
http://doi.org/10.1128/AEM.72.1.124-134.2006
http://www.ncbi.nlm.nih.gov/pubmed/16391034
http://doi.org/10.1002/jsfa.2740190701
http://doi.org/10.4315/0362-028X-40.12.843
http://doi.org/10.5713/ajas.2007.1278
http://doi.org/10.4315/0362-028X-66.9.1733
http://doi.org/10.1016/0309-1740(95)00012-7
http://doi.org/10.1111/j.1745-4573.2005.08404.x
http://doi.org/10.1111/j.1365-2621.1993.tb09391.x
http://doi.org/10.1016/S0308-8146(96)00114-8
http://doi.org/10.5851/kosfa.2016.36.5.594
http://www.ncbi.nlm.nih.gov/pubmed/27857534


Sensors 2021, 21, 1001 12 of 13

14. Chen, J.; Gu, J.; Zhang, R.; Mao, Y.; Tian, S. Freshness evaluation of three kinds of meats based on the electronic nose. Sensors
2019, 19, 605. [CrossRef] [PubMed]

15. Wojnowski, W.; Majchrzak, T.; Dymerski, T.; Gebicki, J.; Namiesnik, J. Electromic noses: Powerful tools in meat quality as-sessment.
Meat Sci. 2017, 131, 119–131. [CrossRef] [PubMed]

16. Deisingh, A.K.; Stone, D.C.; Thompson, M. Applications of electronic noses and tongues in food analysis. Int. J. Food Sci. Technol.
2004, 39, 587–604. [CrossRef]

17. Augstin, S.; Dijaya, R. Beef image classification using K-nearest neighbor algorithm for identification quality and freshness. J.
Phys. Conf. Ser. 2019, 1179, 012184. [CrossRef]

18. Sujiwo, J.; Kim, H.-J.; Song, S.-O.; Jang, A. Relationship between quality and freshness traits and torrymeter value of beef loin
during cold storage. Meat Sci. 2019, 149, 120–125. [CrossRef]

19. Damez, J.-L.; Clerjon, S.; Abouelkaram, S.; Lepetit, J. Beef meat electrical impedance spectroscopy and anisotropy sensing for
non-invasive early assessment of meat ageing. J. Food Eng. 2008, 85, 116–122. [CrossRef]

20. Guermazi, M.; Kanoun, O.; Derbel, N. Investigation of long time beef and veal meat behavior by bioimpedance spectroscopy for
meat monitoring. IEEE Sens. J. 2014, 14, 3624–3630. [CrossRef]

21. Afonso, J.; Guedes, C.; Santos, V.; Morais, R.; Silva, J.; Teixeira, A.; Silva, S.R. Utilization of bioelectrical impedance to predict
intramuscular fat and physicochemical traits of the beef Longissimus Thoracis et Lumborum muscle. Foods 2020, 9, 836. [CrossRef]

22. Byrne, C.; Troy, D.; Buckley, D. Postmortem changes in muscle electrical properties of bovine M. longissimus dorsi and their
relationship to meat quality attributes and pH fall. Meat Sci. 2000, 54, 23–34. [CrossRef]

23. Yang, Y.; Wang, Z.-Y.; Ding, Q.; Huang, L.; Wang, C.; Zhu, D.-Z. Moisture content prediction of porcine meat by bioelectrical
impedance spectroscopy. Math. Comput. Model. 2013, 58, 819–825. [CrossRef]

24. Grossi, M.; Riccò, B. Electrical impedance spectroscopy (EIS) for biological analysis and food characterization: A review. J. Sens.
Sens. Syst. 2017, 6, 303–325. [CrossRef]

25. Ben Ishai, P.; Talary, M.S.; Caduff, A.; Levy, E.; Feldman, Y. Electrode polarization in dielectric measurements: A review. Meas. Sci.
Technol. 2013, 24, 102001–102021. [CrossRef]

26. Fricke, H. A mathematical treatment of the electric conductivity and capacity of disperse systems I. the electric conductivity of a
suspension of homogeneous spheroids. Phys. Rev. 1924, 24, 575–587. [CrossRef]

27. Fricke, H. A mathematical treatment of the electric conductivity and capacity of disperse systems II. The capacity of a sus-pension
of conducting spheroids surrounded by a nonconducting membrane for a current of low frequency. Phys. Rev. 1925, 26, 678–681.
[CrossRef]

28. Fricke, H.; Morse, S. The electric capacity of tumors of the breast. J. Cancer Res. 1926, 10, 340–376.
29. Zhao, X.; Zhuang, H.; Yoon, S.-C.; Dong, Y.; Wang, W.; Zhao, W. Electrical impedance spectroscopy for quality assessment of meat

and fish: A review on basic principles, measurement methods, and recent advances. J. Food Qual. 2017, 2017, 1–16. [CrossRef]
30. Pliquett, U. Bioimpedance: A review for food processing. Food Eng. Rev. 2010, 2, 74–94. [CrossRef]
31. Damez, J.-L.; Clerjon, S.; Abouelkaram, S.; Lepetit, J. Electrical impedance probing of the muscle food anisotropy for meat ageing

control. Food Control 2008, 19, 931–939. [CrossRef]
32. Cornish, B.H.; Thomas, B.J.; Ward, L.C. Improved prediction of extracellular and total body water using impedance loci gen-erated

by multiple frequency bioelectrical impedance analysis. Phys. Med. Biol. 1993, 38, 337–346. [CrossRef] [PubMed]
33. Damez, J.-L.; Clerjon, S.; Abouelkaram, S.; Lepetit, J. Dielectric behavior of beef meat in the 1–1500 kHz range: Simulation with

the Fricke/Cole–Cole model. Meat Sci. 2007, 77, 512–519. [CrossRef] [PubMed]
34. Schwan, H.P. Electrical properties of tissue and cell suspensions. Adv. Biol. Med. Phys. 1957, 5, 147–209. [PubMed]
35. Ultra-Low-Power, Single-Channel Integrated Biopotential (ECG, R-to-R, and Pace Detection) and Bioimpedance (BioZ) AFE,

MAX30001 Datasheet. 2019. Available online: https://datasheets.maximintegrated.com/en/ds/MAX30001.pdf (accessed on
4 December 2020).

36. Guermazi, M.; Fendri, A.; Kanoun, O.; Derbel, N. Potential of impedance spectroscopy for real-time assessing of food quality.
IEEE Instrum. Meas. Mag. 2018, 21, 44–48. [CrossRef]

37. Guermazi, M.; Kanoun, O.; Derbel, N. Reduction of anisotropy influence and contacting effects in in-vitro bioimpedance
measurements. J. Phys. Conf. Ser. 2013, 434, 012058. [CrossRef]

38. Kim, H.-J.; Jeon, J.; Nam, K.-C.; Shim, K.-S.; Jung, J.-H.; Kim, K.S.; Choi, Y.; Kim, S.-H.; Jang, A. Comparison of the quality
characteristics of chicken breast meat from conventional and animal welfare farms under refrigerated storage. Poult. Sci. 2020, 99,
1788–1796. [CrossRef]

39. Horwitz, W.; Latimer, G.W. Official Methods of Analysis of AOAC International, 18th ed.; AOAC International: Gaithersburg,
Maryland, 2005; pp. 1–24.

40. Jung, E.-Y.; Hwang, Y.-H.; Joo, S.-T. The relationship between chemical compositions, meat quality, and palatability of the 10
primal cuts from Hanwoo steer. Food Sci. Anim. Resour. 2016, 36, 145–151. [CrossRef]

41. Hur, S.J.; Jin, S.K.; Park, J.H.; Jung, S.W.; Lyu, H.J. Effect of modified atmosphere packaging and vacuum packaging on qual-ity
characteristics of low grade beef during cold storage. Asian Aust. J. Anim. Sci. 2013, 26, 1781–1789. [CrossRef]

42. Kim, H.J.; Jang, A. Correlations between the levels of the bioactive compounds and quality traits in beef loin and round during
cold storage. Food Control 2021, 120, 107491. [CrossRef]

http://doi.org/10.3390/s19030605
http://www.ncbi.nlm.nih.gov/pubmed/30709028
http://doi.org/10.1016/j.meatsci.2017.04.240
http://www.ncbi.nlm.nih.gov/pubmed/28501437
http://doi.org/10.1111/j.1365-2621.2004.00821.x
http://doi.org/10.1088/1742-6596/1179/1/012184
http://doi.org/10.1016/j.meatsci.2018.11.017
http://doi.org/10.1016/j.jfoodeng.2007.07.026
http://doi.org/10.1109/JSEN.2014.2328858
http://doi.org/10.3390/foods9060836
http://doi.org/10.1016/S0309-1740(99)00055-8
http://doi.org/10.1016/j.mcm.2012.12.020
http://doi.org/10.5194/jsss-6-303-2017
http://doi.org/10.1088/0957-0233/24/10/102001
http://doi.org/10.1103/PhysRev.24.575
http://doi.org/10.1103/PhysRev.26.678
http://doi.org/10.1155/2017/6370739
http://doi.org/10.1007/s12393-010-9019-z
http://doi.org/10.1016/j.foodcont.2007.09.005
http://doi.org/10.1088/0031-9155/38/3/001
http://www.ncbi.nlm.nih.gov/pubmed/8451277
http://doi.org/10.1016/j.meatsci.2007.04.028
http://www.ncbi.nlm.nih.gov/pubmed/22061936
http://www.ncbi.nlm.nih.gov/pubmed/13520431
https://datasheets.maximintegrated.com/en/ds/MAX30001.pdf
http://doi.org/10.1109/MIM.2018.8573593
http://doi.org/10.1088/1742-6596/434/1/012058
http://doi.org/10.1016/j.psj.2019.12.009
http://doi.org/10.5851/kosfa.2016.36.2.145
http://doi.org/10.5713/ajas.2013.13225
http://doi.org/10.1016/j.foodcont.2020.107491


Sensors 2021, 21, 1001 13 of 13

43. Moon, J.H.; Sung, M.; Kim, J.H.; Kim, B.S.; Kim, Y. Quality factors of freshness and palatability of Hanwoo from their physico-
chemical and sensorial properties. Korean J. Food Sci. Anim. Resour. 2013, 33, 796–805. [CrossRef]

44. Prommachart, R.; Belem, T.S.; Uriyapongson, S.; Rayas-Duarte, P.; Uriyapongson, J.; Ramanathan, R. The effect of black rice water
extract on surface color, lipid oxidation, microbial growth, and antioxidant activity of beef patties during chilled storage. Meat Sci.
2020, 164, 108091. [CrossRef] [PubMed]

45. Campo, M.; Nute, G.; Hughes, S.; Enser, M.; Wood, J.; Richardson, R. Flavour perception of oxidation in beef. Meat Sci. 2006, 72,
303–311. [CrossRef] [PubMed]

46. Kim, I.S.; Lee, S.O.; Lee, M.; Lee, J.M.; Kim, J.H.; Kim, Y.G. Physicochemical, microbiological, and sensory characteristics of chilled
chuck rolls of Han-Woo and imported beef. Korean J. Anim. Sci. 2000, 42, 109–116.

47. Koh, K.; Chung, K.-Y.; Kim, H.-S.; Kang, S.-J.; Choi, C.B.; Jo, C.; Choe, J. Determination of point of sale and consumption for
hanwoo beef based on quality grade and aging time. Food Sci. Anim. Resour. 2019, 39, 139–150. [CrossRef]

48. Yim, D.G.; Jo, C.; Kim, H.J.; Cha, J.S.; Kim, H.C.; Nam, K.C. Combined effect of Irradiation and ageing condition on physico-
chemical and microbial quality of Hanwoo eye of round. Korean J. Food Sci. Anim. Resour. 2015, 35, 406–412. [CrossRef]

49. Cho, S.-H.; Seong, P.; Kang, G.; Choi, S.; Chang, S.; Kang, S.M.; Park, K.M.; Kim, Y.; Hong, S.; Park, B.Y. Effect of age on chemical
composition and meat quality for loin and top round of Hanwoo cow beef. Food Sci. Anim. Resour. 2012, 32, 810–819. [CrossRef]

50. Lee, K.T.; Yoon, C.-S. Quality changes and shelf life of imported vacuum-packaged beef chuck during storage at 0 ◦C. Meat Sci.
2001, 59, 71–77. [CrossRef]

51. Yun, Y.; Lee, B.; Yeongkwon, Y.; Kang, S.-J.; Oh, E.; Choi, Y.M.; Boin, L.; Kimun, K.; Sejoo, K.; Eunmi, O. Comparison of beef
palatability characteristics between longissimus thoracis and vastus lateralis muscles from different grades during postmortem
aging. Food Sci. Anim. Resour. 2020, 40, 34–43. [CrossRef]

52. Kulkarni, S.; Kelkar, V. Classification of multispectral satellite images using ensemble techniques of bagging, boosting and
adaboost. In Proceedings of the 2014 International Conference on Circuits, Systems, Communication and Information Technology
Applications (CSCITA), Mumbai, India, 4–5 April 2014; pp. 253–258.

53. Trientin, D.; Hidayat, B.; Darana, S. Beef freshness classification by using color analysis, multi-wavelet transformation, and
artificial neural network. In Proceedings of the 2015 International Conference on Automation, Cognitive Science, Optics, Micro
Electro-Mechanical Sys-tem, and Information Technology (ICACOMIT), Bandung, Indonesia, 29–30 October 2015; pp. 181–185.

http://doi.org/10.5851/kosfa.2013.33.6.796
http://doi.org/10.1016/j.meatsci.2020.108091
http://www.ncbi.nlm.nih.gov/pubmed/32126446
http://doi.org/10.1016/j.meatsci.2005.07.015
http://www.ncbi.nlm.nih.gov/pubmed/22061558
http://doi.org/10.5851/kosfa.2019.e11
http://doi.org/10.5851/kosfa.2015.35.3.406
http://doi.org/10.5851/kosfa.2012.32.6.810
http://doi.org/10.1016/S0309-1740(01)00054-7
http://doi.org/10.5851/kosfa.2019.e78

	Introduction 
	Materials and Methods 
	Sample Preparation 
	EIS Measurement 
	APC Measurement 
	TBARS Measurement 
	Proximate Composition Measurement 
	Statistical Analysis 

	Results and Discussion 
	EIS Results 
	APC and TBARS Results 
	Correlation Between EIS and Microbiological Detection 
	Proximate Composition Results 
	Correlation between EIS and Composition Analysis 

	Image Classification with EIS Results 
	Conclusions 
	References

