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Copy number variation (CNV) is a common type of structural variations in human
genome and confers biological meanings to human complex diseases. Detection of
CNVs is an important step for a systematic analysis of CNVs in medical research
of complex diseases. The recent development of next-generation sequencing (NGS)
platforms provides unprecedented opportunities for the detection of CNVs at a base-
level resolution. However, due to the intrinsic characteristics behind NGS data, accurate
detection of CNVs is still a challenging task. In this article, we propose a new density
peak-based method, called dpCNV, for the detection of CNVs from NGS data. The
algorithm of dpCNV is designed based on density peak clustering algorithm. It extracts
two features, i.e., local density and minimum distance, from sequencing read depth (RD)
profile and generates a two-dimensional data. Based on the generated data, a two-
dimensional null distribution is constructed to test the significance of each genome bin
and then the significant genome bins are declared as CNVs. We test the performance of
the dpCNV method on a number of simulated datasets and make comparison with
several existing methods. The experimental results demonstrate that our proposed
method outperforms others in terms of sensitivity and F1-score. We further apply it
to a set of real sequencing samples and the results demonstrate the validity of dpCNV.
Therefore, we expect that dpCNV can be used as a supplementary to existing methods
and may become a routine tool in the field of genome mutation analysis.

Keywords: copy number variations, next-generation sequencing data, density peak, null distribution, read depth

INTRODUCTION

Copy number variation (CNV) is an important category of DNA structural variations, including
amplifications or losses of DNA fragments with a length of more than 1 kilo base-pairs (bp)
(Freeman et al., 2006; Yuan et al., 2012b). The mutation rate of CNV loci is much higher than that
of single nucleotide polymorphisms (SNP) across the whole genome. CNV is one of the important
pathogenic factors affecting human complex diseases (Shlien and Malkin, 2009; Fridley et al., 2012;
Xi et al., 2020a,b). Therefore, it is necessary and meaningful to analyze CNVs when studying and
treating complex diseases especially human cancers. Generally, the mechanisms for the formation
of CNVs can be classified into two categories: DNA recombination and DNA error replication
(Martin et al., 2019). In each category of the mechanisms, CNVs are usually presented in either
amplification or deletion states. The major step of CNV analysis in samples obtained from human
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cancers is to identify which genome regions are CNVs and
determine the corresponding states (i.e., either amplification
or deletion). Therefore, it is required to develop statistically
computational methods to analyze the data generated by different
sequencing technologies.

There are three primary types of technologies that
can produce data sets for the detection of CNVs: array
comparative genomic hybridization (aCGH), SNP array, and
next-generation sequencing (NGS) technologies. Currently,
various computational methods have already been developed
for analyzing each type of the data sets. For example, aiming at
aCGH data, classic methods include fastRPCA (Nowak et al.,
2011), PLA (Zhou et al., 2014), WaveDec (Cai et al., 2018),
and graCNV (Auer et al., 2007). Meanwhile, aiming at SNP
array data, famous methods include GISTIC (Beroukhim et al.,
2007), STAC (Diskin et al., 2006), SAIC (Yuan et al., 2012b), and
AISAIC (Zhang et al., 2014). In comparison with these two types
of data, NGS data is at the highest resolution and is used widely
for the detection of CNVs in recent years. Due to the inherent
characteristics behind NGS data, the CNV detection methods
using NGS data can be classified into four categories (Zhao et al.,
2013): pair-end mapping, split-read, de no assembly, and read
depth (RD) based approaches. The intention of the pair-end
mapping-based approach is that it determines CNVs according
to the difference of the length between the two ends of paired
reads mapped to the reference and the insert fragment, while
the split-read based approach determines CNVs by splitting
the sequence and observing the distance of the split reads
mapped to the reference sequence. De no assembly approach is
usually used to find out novel inserted sequences (Yuan et al.,
2019b). These three categories of approaches are appropriate
for the detection of CNVs with a limited size, since the pair-end
mapping and split-read based approaches are subject to the
length of inserted fragments and the de no assembly method is
subject to the cost of computation time. Nevertheless, CNVs are
usually ranging at a large scope of interval in size, and can be up
to more than tens of M base-pairs. Relative to the above three
categories, the RD based approach is more versatile in detecting
CNVs with any sizes. The major principle of this approach is
to determine CNVs according to the variance of RDs across the
genome to be analyzed.

The RD based approach is generally implemented through the
following four steps (Duan et al., 2014; Yuan et al., 2019a): (1)
mapping sequencing reads to a reference genome and extracting a
read count profile, (2) dividing the genome into non-overlapping
bins and calculating a RD value for each bin based on the read
count profile, (3) making normalization and correction to the
RD values, and (4) analyzing the corrected RD values to declare
CNVs. The theoretical assumption underlying the RD based
approach is that the RD value of one bin or one region is roughly
related to its corresponding copy number, i.e., the larger the RD
value, the larger the copy number, and vice versa. Therefore,
the key point here is how to design an appropriate scheme
to reasonably analyze the RD values. The currently popular
methods for detecting CNVs using RD values include but are not
limited to: RDXplorer (Yoon et al., 2009), CNVnator (Abyzov
et al., 2011), GROM-RD (Smith et al., 2015), XCAVATOR

(Magi et al., 2017), Control-FREEC (Boeva et al., 2012), CNVkit
(Talevich et al., 2016), CNAseg (Ivakhno et al., 2010), CopywriteR
(Kuilman et al., 2015), SeqCNV (Chen et al., 2017), CloneCNA
(Yu et al., 2016), iCopyDAV (Dharanipragada et al., 2018),
DeAnnCNV (Zhang et al., 2015), CNV_IFTV (Yuan et al.,
2019c), CONDEL (Yuan et al., 2020), and CNV-LOF (Yuan et al.,
2019a). Each of these methods has its own characteristics and
advantages. For example, Control-FREEC makes the best use of
GC-content to normalize the read count profile so as to find out
CNV regions, and iCopyDAV chooses an appropriate bin size and
uses thresholds for RD values to declare CNVs. Although much
effectiveness has been achieved by these methods, some factors
such as low-level tumor purity (i.e., the fraction of tumor cells in
the sequencing sample), limited coverage depth and GC-content
bias still pose a big challenge to the detection of CNVs with small
amplitudes. Therefore, it would be necessary and meaningful to
seek for new methods that can grasp the essential characteristics
of sequencing data associated with CNVs.

Given the above, we summarize several aspects that should
be considered to improve the detection of CNVs. In the first
place, it is necessary to make a smooth or segmentation to the
observed RD profile, so that adjacent bins with similar amplitudes
can be merged into the same region and the bins showing a
local mutation state cannot be masked. In the second place, it
is meaningful to extract effective features from sequencing data
that can make an accurate distinguishing between mutated and
normal genome regions. In the last place, it is necessary to design
a reasonable model for displaying the extracted features and
perform a suitable analysis of the features to determine CNVs.

With a careful consideration of the problems described above,
in this article, we propose a new method, called dpCNV, for
the detection of CNVs from NGS data. The motivation and
underlying idea of dpCNV could be demonstrated as below. It
considers the inherent correlations among adjacent positions on
the genome, and thus analyzes CNVs based on the unit of genome
segments rather than individual bins. These segments can be
produced by performing a segmentation process on the RD
profile. It carefully takes into account that CNV regions usually
accounts for a small fraction of the whole genome and many
CNVs just display a “local” outlier state, and thus extracts two
related features (i.e., local density and minimum distance) from
the RD profile based on the density peak algorithm (Rodriguez
and Laio, 2014). Finally, dpCNV analyzes the two feature values
for each segment through multivariate Gaussian distribution and
calculates the corresponding p-value to declare whether it is a
CNV. We perform a large number of simulation experiments
to test the dpCNV method and make comparisons with several
existing methods. The experimental results demonstrate the
merit of the proposed method. Moreover, we apply it to analyze a
set of real sequencing samples and prove its validity.

The remainder of this article is organized as follows. Section
“Materials and Methods” demonstrates the workflow of dpCNV
and the related principles. In section “Results,” simulation studies
are designed to evaluate the performance of the proposed method
and its peer methods, as well as validations by applying it to a set
of real sequencing samples. Section “Conclusion” discusses the
proposed method and summarizes an outline of future work.
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MATERIALS AND METHODS

Workflow of dpCNV
The workflow of the dpCNV method is demonstrated in Figure 1.
The dpCNV method works by starting from an input of a
sequenced tumor sample and a reference genome. The sequenced
tumor sample is aligned to the reference genome by using the
commonly used alignment tool BWA (Li and Durbin, 2009), and
then a read count profile is extracted from the alignment result
by using SAMtools (Li et al., 2009). With the read count profile,
a RD profile is produced with a pre-defined bin size, such as
1000 base pairs (bp), which is moderate in the detection of CNVs
(Yuan et al., 2020).

Based on the RD profile, the dpCNV method performs
CNV analysis via the following four steps. (I) It implements
a segmentation process on the RD profile to generate small
genome segments, each of which usually include a set of
adjacent and correlated bins. Here, the segmentation is carried
out by using the Fused-Lasso algorithm (Tibshirani and Wang,
2008). (II) It extracts two features as the statistic and calculates
the corresponding values via density peak algorithm. (III) It
establishes a two-dimensional null distribution via multivariate
Gaussian distribution and tests significance for each segment.
(IV) It declares CNVs via a threshold of significance level
and determines CNV statuses (i.e., amplification or deletion)
via a RD cutoff.

FIGURE 1 | Workflow of the dpCNV method to detect copy number variations
from tumor samples with next-generation sequencing data.

Segmentation on the RD Profile
With the RD profile, a GC-content bias correction process is
carried out through a similar approach with the works (Abyzov
et al., 2011; Yuan et al., 2019a), and then a segmentation
process is implemented on the corrected RD profile. The
purpose of the segmentation is to divide the whole RD profile
into a set of small segments, each of which is composed by
adjacent bins, and is to provide a segment-based unit for the
detection of CNVs rather than a bin-based unit. Theoretically,
the segment-based unit can help to increase the independence of
elements in significance testing, so that a reasonable evaluation
of p-values can be expected to be achieved (Yuan et al., 2012b).
Nevertheless, the bin-based unit may result in a conservativeness
of p-value evaluation since adjacent bins are usually correlated
(Yuan et al., 2019c).

There are various existing approaches that can carry out
segmentation on the RD profile. Here we choose the Fused-
Lasso algorithm for this task (Tibshirani and Wang, 2008).
In comparison with other segmentation algorithms, the Fused-
Lasso algorithm performs better in smoothing adjacent bins
with highly similar RD values while remaining local fluctuations
among the resulted segments (Tibshirani and Wang, 2008). For
convenience, the resulted segments are denoted by:

S = {s1, s2, s3, . . . , sn} (1)

where n denotes the total number of segments that have been
achieved. The following steps of analyzing CNVs are based on
the set of S.

Calculation of Statistic Values for Each
Segment
With the segment-based RD profile S, we adopt the density-based
peak algorithm to extract two features as the statistic for each
segment: local density (ρ) and minimum distance (δ), and to
calculate their corresponding values. With the consideration of
that regions with changed copy numbers are inherently different
from those of normal copy numbers and only account for a
small part of the whole genome, we transfer the problem of
detecting CNVs to the issue of identifying outliers from the set of
segments with features of ρ and δ. Accordingly, each segment can
be regarded as an object or a point in the two dimensional space
of ρ and δ. In the following text, we make a detailed description
to these two features and the calculation approach.

Before describing the two features ρ and δ, we introduce the
Euclidean distance between any two objects (segments) si and sj.
Given the total number of segments of n, an Euclidean distance
matrix Mn×n can be obtained, where each element (dij) can be
calculated by the Euclidean distance formula:

dij =
√

(ρi − ρj)2 + (δi − δj)2 (2)

where ρi and δi represent the feature values of object si, and the
same to ρj and δj. With the Euclidean distance matrix Mn×n,
an adjustable distance threshold γ is introduced according to
the theorem of the density peak algorithm (Rodriguez and Laio,
2014). This threshold can be explained as a radius of each object
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si and is used to calculate how many objects are adjacent to the
object si within the distance of γ. Then, the concept of local
density ρ for each object is produced.

Definition 1
The local density ρi of the object si is defined as the number of
objects adjacent to the object si with the radius γ, and can be
calculated by using Eq. 3:

ρi =

n∑
j6=i

χ(dij − γ) (3)

where χ(x) = 1 if x < 0, and otherwise, χ(x) = 0.

Definition 2
The minimum distance δi of the object si is defined as the
minimum value among the distances between the object si and
those objects with higher density than si, and can be expressed
as Eq. 4:

δi = min
j:ρi<ρj

(dij). (4)

For the object si with the highest density, the value δi is defined
as the maximum distance between the object and the rest of
objects in the set S, and can be expressed as Eq. 5:

δi = max
j

(dij) if ρi ≥ ρj
j 6=i

. (5)

For a clear understanding of local density and minimum
distance, we use an example to describe the distribution of a set
of objects with respect to the values of the two features, as shown
in Figure 2. For the example, we can see that the objects at the
abnormal area (outliers) are near to the left and bottom side of
the distribution. From the basic idea of density peak algorithm,
outliers usually have a larger minimum distance and a smaller
local density than those of other objects. Here, the abnormal area
denotes the place of outlier objects, and normal area denotes
the cluster of most objects. More details about the density peak
algorithm is referred to Rodriguez and Laio (2014).

Establish of a Two-Dimensional Null
Distribution
With the statistic values in a two-dimensional space [i.e., local
density (ρ) and minimum distance (δ)], the task now is how
to design an appropriate model to test the significance of them.
Since the values of the two features are usually at different scopes,
it is not appropriate to combine them as a single feature value
for the analysis. Therefore, it would be reasonable to design a
model that can analyze the statistic values in a two-dimensional
space. To mirror this, we establish a multivariate (i.e., two-
dimension) Gaussian distribution as the null distribution based
on the observed statistic values, and then evaluate a p-value for
each of them. The multivariate Gaussian distribution is expressed
as Eq. 6:

p(x;µ, 6) =
1

(2π) |6|
1
2

exp
(
−

1
2
(x− µ)T6−1(x− µ)

)
(6)

FIGURE 2 | An example of describing the distribution of a set of objects with
respect to the values of the two features. We can note that the objects at the
abnormal area (outliers) are near to the left and bottom side of the distribution.

where µ is a two-dimensional vector, representing the mean
values of local density and minimum distance, i.e., µ = [ρ, δ],
and 6 represents the covariance matrix of the two features.

The reason about why to choose a multivariate Gaussian
distribution as the null distribution can be explained as below.
Assuming that there are no CNVs in the segment-based RD
profile S, and then the mean RD value should be around the
sequencing coverage depth of the whole genome and the variance
is primarily contributed by random artifacts such as sequencing
and mapping errors. From this viewpoint, the RD values can
be approximately modeled by a Gaussian distribution (Yuan
et al., 2020). Theoretically, with a Gaussian distributed object, the
deduced local density (ρ) and minimum distance (δ) would also
follow Gaussian distribution, respectively. Therefore, the joint
of the two features can be approximately modeled by a two-
dimensional Gaussian distribution. For a clear understanding of
this, we depict an example using a simulated dataset to show the
distribution of the statistic values (ρ, δ) in Figure 3.

Declaration and Determination of CNV
Statuses
Based on the two-dimensional null distribution above, the
p-value (pi) for each object (segment) si can be calculated. We
define a commonly used significance level α as the cutoff for
declaring CNVs, i.e., if pi is less than α, then the object si
will be declared as a CNV status; otherwise, it is regarded as a
normal status. According to our experience and a large number of
simulation experiments, we find that the value of α is appropriate
to be assigned with 0.005.

With the abnormal objects, we further deduce their types (i.e.,
amplification or deletion) of CNV according to their RD values.
Here, we use the average RD value of the objects in the cluster
center (shown in Figure 3) as the baseline (rb) of normal copy
number. This is consistent with that the objects in the cluster
center are regarded as normal objects according to the density
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FIGURE 3 | An example of showing the two-dimensional Gaussian
distribution of the statistic values (i.e., local density and minimum distance)
based on simulation data. The blue points represent the segments with
normal copy numbers while the red points represent the segments with
abnormal copy numbers.

peak algorithm. Subsequently, for each abnormal object, if its RD
value is larger than rb, then it is regarded as an amplification
event, otherwise, it is regarded as a deletion event.

RESULTS

The dpCNV software is implemented in Python language, and
the code is publicly available at https://github.com/BDanalysis/
dpCNV/. In order to demonstrate the performance and
usefulness of our proposed method, we first conduct a number
of simulation experiments and make comparisons with several
existing methods in terms of precision, sensitivity and F1-score
(the harmonic mean of sensitivity and precision). Then, we
apply the proposed method to a set of real sequencing samples,
which have been obtained from the European Genome-phenome
Archive (EGA) databases.1 To assure a fair comparison between
dpCNV and other methods, we use the default parameter values
in the implementation of the compared methods.

Simulation Studies

Simulation studies are usually regarded as an appropriate and
feasible way to assess the performance of existing and newly
developed methods (Yuan et al., 2012a, 2017, 2018). This is
because that the ground truth CNVs embedded in the simulated
data sets could be used for an exact calculation of sensitivity and
precision for the methods. Currently, there are many methods for
simulating NGS data have been proposed. Here, we use one of our
previously developed simulation methods, IntSIM (Yuan et al.,
2017), for the simulation of NGS data with ground truth CNVs.
Two primarily factors (i.e., tumor purity and depth of coverage)
have been considered in the simulation process. Specifically, six
scenarios have been simulated by setting different values of tumor

1https://www.ebi.ac.uk/ega/

purity (0.2, 0.3, and 0.4) and coverage depth (4× and 6×), and in
each scenario 50 replicated samples have been produced.

With these simulated data sets, the dpCNV method and four
peer methods (including FREEC, GROM-RD, CNVnator, and
CNV_IFTV) are performed. Their results and comparisons are
depicted in Figure 4. Here, the precision is calculated as the ratio
of the number of correctly detected CNVs to the number of all
declared CNVs, while the sensitivity is calculated by the ratio of
the number of correctly detected CNVs to the total number of
ground truth CNVs. From the Figure 4, one could observe that
the performances of most methods are improving along with the
increasing of tumor purity and coverage depth. Comparatively,
the dpCNV method is superior in terms of the trade-off (F1-
score) between precision and sensitivity in each of the simulation
scenarios. With respect to sensitivity, dpCNV ranks first in all the
simulation scenarios, followed by FREEC or CNV_IFTV. With
respect to precision, GROM-RD and CNVnator display larger
values than other methods.

The fact that dpCNV is superior to other methods under this
study is due to the following reasons. Firstly, the relationship
between adjacent bins has been taken into account by performing
a segmentation process. In this process, most noised data
points can be smoothed, and some local variations can be
remained. In addition, two meaningful features (i.e., local density
and minimum distance) are extracted from the segmented
data based on a density peak algorithm. Secondly, a two-
dimensional null distribution has been established for testing the
significance of each genome segment. This can help to relieve the
conservativeness of p-value assessment and provide a meaningful
null hypothesis testing.

Real Data Applications
To further validate the performance of dpCNV, we apply it to
three whole-genome sequencing data (EGAD00001000144_LC,
EGAR00001004802_2053_1, and EGAR00001004836_2561_1)
obtained from the EGA project. These samples include a lung
cancer sample and two ovarian cancer samples. Besides, we also
perform three peer methods (FREEC, CNVnator, CNV_IFTV)
on these samples for comparisons. Since real sequencing data
usually have no ground truth CNVs, it is difficult for us to
exactly calculate the sensitivity and precision for the methods.
Nevertheless, we analyze the overlapping results among the
compared methods to observe the consistence between their
results, as shown in Figure 5. We can note that CNVnator gets
the largest number of overlaps with other methods, followed
by dpCNV and FREEC. However, the total number of detected
CNVs detected by CNVnator is also the largest. This means
that it is not appropriate to determine which method is superior
just according to the number of overlapped CNVs. Nevertheless,
we adopt the overlapping density score (ODS) proposed in our
previous work (Yuan et al., 2020) to evaluate the methods. The
ODS is calculated by using Eq. 7. The comparative result is shown
in Table 1, from which we can notice that dpCNV achieves
the highest ODS in the analysis of two ovarian tumor samples
and FREEC gets the highest ODS in the analysis of the lung
tumor sample:

ODS = mcnv ·m′cnv (7)
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FIGURE 4 | Performance comparisons between our proposed method and the four peer methods in terms of sensitivity, precision, and F1-score (colored curves) on
simulation data.

FIGURE 5 | The overlapping results of four methods on the three samples. The red boxes represent the total number of CNVs detected by each method, while the
blue boxes denote the number of overlapping CNVs detected by any two methods.

TABLE 1 | Comparison of ODS between dpCNV and three peer methods on real
samples.

Sample dpCNV FREEC CNV_IFTV CNVnator

EGAD00001000144_LC 99.4 114.02 47.96 19.06

EGAR00001004802_2053_1 155.25 152.89 35.75 44.2

EGAR00001004836_2561_1 263.16 192.79 57.04 114.7

Average 172.6 153.23 46.92 59.32

Bold value denotes the largest values in each line.

where mcnv denotes the total overlapped CNVs divided by
the number of compared methods and m′cnv denotes the
total overlapped CNV divided by the number of CNVs
detected by itself.

An overview of the numbers of CNVs detected by the four
methods are shown in Figure 6, where we could clearly take an
overview of distribution on 22 autosomes of results called by
dpCNV, FREEC, CNVnator, and IFTV, respectively. Each circus
diagram is composed of two parts, the upper part consists of four
arcs corresponding to the four detection methods and the lower
part consists of 22 arcs corresponding to the 22 autosomes. In
the lung cancer diagram, dpCNV obtains the largest number of
CNVs while CNVnator obtains the smallest number of CNVs.
In the diagrams of the two ovarian cancer samples, CNVnator
gets the largest number of CNVs while FREEC and dpCNV get
relatively fewer CNVs.

In addition, based on the COSMIC (catalog of somatic
mutations in cancer) database, we analyze the CNVs detected
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FIGURE 6 | The circus diagram on three real samples. The upper part consisting of four arcs indicates the four methods, while the lower part consisting of 22 arcs
denotes 22 autosomes. The length of each arc in upper part represents the total number of detected CNVs.

by our proposed method on three whole genome sequencing
data from biological meanings. For example, 425 CNVs detected
by dpCNV from the lung cancer sample are compared to
the COSMIC database. There are 151 cytobands and 405
genes in the comparative result. We may notice that many
cytobands contain a lot of meaningful genes. For example,
the cytoband 11p15.5 contains IFITM1 (Sakamoto et al.,
2020) and IFITM3 (Infusini et al., 2015). Many of genes
are confirmed to be tumor driver genes and closely related

to non-small cell lung cancer, such as C3orf21 (Yang et al.,
2017), ZNF454 (Zhu et al., 2020), and C10orf137 (Zheng
et al., 2013). For the two ovarian cancer samples, dpCNV gets
225 cytobands and 128 cytobands, 285 genes and 529 genes
overlapped with the COSMIC database, respectively, in which
there are many important tumor driver genes corresponding to
ovarian cancer, such as PUM1 (Guan et al., 2018), GOLPH3L
(Feng et al., 2015), PIWIL4 (Guo et al., 2009), and KNDC1
(Yu et al., 2020).

Frontiers in Genetics | www.frontiersin.org 7 January 2021 | Volume 11 | Article 632311

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-632311 January 4, 2021 Time: 15:56 # 8

Xie et al. Density Peak-Based Method to Detect CNVs

CONCLUSION

Accurate detection of CNVs is a crucial step for a comprehensive
analysis of genomic mutations in the study of genome evaluation
and human complex diseases. In this article, a new method
named dpCNV is proposed for the detection of CNVs from
NGS data. The central point of dpCNV is that it extracts
two meaningful features based on the density peak algorithm
and establishes a two-dimensional null distribution to test the
significance of genome segments. dpCNV is different from
traditional methods and have some new characteristics: (1) it
considers the intrinsic correlations among genome bins, and
adopts Fused-Lasso segmentation algorithm to smooth the noise
data between adjacent bins; (2) it carefully takes into account that
CNV regions usually accounts for a small fraction of the whole
genome and many CNVs just display a “local” outlier state, and
thus extracts two related features (i.e., local density and minimum
distance) from the RD profile based on the density peak
algorithm; (3) it analyzes the two feature values for each segment
through multivariate Gaussian distribution and calculates the
corresponding p-value to declare whether it is a CNV.

The performance of dpCNV is assessed and validated through
simulation studies and applications to a set of real sequencing
samples. In simulation experiments, dpCNV outperforms four
peer methods (FREEC, GROM-RD, CNVnator, and CNV_IFTV)
in terms of sensitivity and F1-score. In real sample experiments,
dpCNV is performed on three whole genome sequencing samples
including a lung cancer sample and two ovarian samples, and
is compared with three peer methods (FREEC, CNVnator, and
CNV_IFTV). Here, we have not make comparison with GROM-
RD since it has not obtained results from these real sequencing
samples. In this comparison, we make an evaluation of the
four methods by using ODS. The result indicates that dpCNV
obtains a better performance than other methods. In addition,
we demonstrate the biological meanings of the detected CNVs by
referring the COSMIC database.

With regard to the future work, we plan to make a further
improvement to the current version of the dpCNV method from

the following aspects. In the first place, we will design a strategy
to predict tumor purity and integrate it to the detection of CNVs.
In the second place, we intend to predict absolute copy numbers
for each CNV region, since absolute copy numbers might provide
much information of the study of chromosome instability. In the
third place, we intend to combine the detection of CNVs with
other types of genomic mutations into a pipeline analysis, which
will help to improve the efficiency of genomic mutation analysis.
In the last palace, it is necessary to explore the detection of CNVs
by using mRNA sequencing data. Generally, RD values obtained
from the sequencing data on DNA are closely related with copy
numbers. A high expression of mRNAs might be associated with
a large copy number. Therefore, using mRNA sequencing data
may facilitate the detection of CNVs in tumor genomes.
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