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Abstract Secreted proteins, which include cytokines, hormones, and growth factors, are extra-
cellular ligands that control key signaling pathways mediating cell- cell communication within and 
between tissues and organs. Many drugs target secreted ligands and their cell surface receptors. Still, 
there are hundreds of secreted human proteins that either have no identified receptors (‘orphans’) 
or are likely to act through cell surface receptors that have not yet been characterized. Discovery of 
secreted ligand- receptor interactions by high- throughput screening has been problematic, because 
the most commonly used high- throughput methods for protein- protein interaction (PPI) screening 
are not optimized for extracellular interactions. Cell- based screening is a promising technology for 
the deorphanization of ligand- receptor interactions, because multimerized ligands can enrich for 
cells expressing low affinity cell surface receptors, and such methods do not require purification of 
receptor extracellular domains. Here, we present a proteo- genomic cell- based CRISPR activation 
(CRISPRa) enrichment screening platform employing customized pooled cell surface receptor sgRNA 
libraries in combination with a magnetic bead selection- based enrichment workflow for rapid, parallel 
ligand- receptor deorphanization. We curated 80 potentially high- value orphan secreted proteins 
and ultimately screened 20 secreted ligands against two cell sgRNA libraries with targeted expres-
sion of all single- pass (TM1) or multi- pass transmembrane (TM2+) receptors by CRISPRa. We iden-
tified previously unknown interactions in 12 of these screens, and validated several of them using 
surface plasmon resonance and/or cell binding assays. The newly deorphanized ligands include three 
receptor protein tyrosine phosphatase (RPTP) ligands and a chemokine- like protein that binds to killer 
immunoglobulin- like receptors (KIRs). These new interactions provide a resource for future investiga-
tions of interactions between the human- secreted and membrane proteomes.

Editor's evaluation
This paper reports the development and application of a proteo- genomic screening platform to 
identify protein- protein interactions between secreted proteins and their cell surface receptors. 
The authors use a CRISPRa- based approach to overexpress membrane proteins in cells and then 
use magnetic cell sorting to identify receptors that bind candidate ligands. This approach led to 
the identification of several novel interaction pairs that were then validated biochemically, including 
receptor tyrosine phosphatase ligands and other interactions with implications for immune system 
function. The work is likely to be relevant to a wide variety of fields including biochemistry and signal 
transduction research.
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Introduction
The human proteome can be envisioned as an array of nodes grouped into local communities, where 
each node represents one protein and each local community represents a protein complex or network 
(Budayeva and Kirkpatrick, 2020; Huttlin et al., 2017). These communities determine physiolog-
ical function and subcellular localization. Many communities include secreted protein ligands, their 
cell surface receptors, and signaling molecules that bind to the receptors. The human secretome on 
its own constitutes approximately 15% of all human genes and encodes more than 4000 different 
proteins (Uhlén et al., 2019) with a wide range of tissue expression (Figure 1A and B). Most of the 
new drugs developed in recent years target secreted proteins and their receptors, and new thera-
peutic targets are likely to emerge from screens to identify ligand- receptor interactions (Clark et al., 
2003; Stastna and Van Eyk, 2012).

Mapping of interactions that occur at the cell surface has significantly lagged behind that of 
intracellular interactions, because the most widely used high- throughput protein- protein interac-
tion (PPI) screening methods, including affinity purification/mass spectrometry (AP/MS), yeast two- 
hybrid screening (Y2H), and phage display, are not well suited to analysis of extracellular domain 
(ECD) interactions (Havugimana et al., 2012; Huttlin et al., 2015; Krogan et al., 2006; Martinez- 
Martin, 2017). ECD interactions are often of low affinity, with KDs in the micromolar range, and 
can have fast dissociation rates, rendering them difficult to detect since they may not produce 
stable complexes (Honig and Shapiro, 2020). As a consequence, ECD interactions are generally 
underrepresented in screens that rely on the formation of such complexes (Braun et  al., 2009; 
Martinez- Martin et al., 2019; Özkan et al., 2013; Söllner and Wright, 2009; Wojtowicz et al., 
2020). In addition, many putative ECD interactions reported by AP/MS and Y2H protein interaction 
databases have the tendency to be false positives. AP/MS produces false positives for cell surface 
proteins due to incomplete solubilization of membranes, leading to identification of indirect inter-
actions. Y2H examines interactions inside the cell, but most ECDs have disulfide bonds and glyco-
sylation sites. To acquire these modifications and fold correctly, cell surface and secreted proteins 
must move through the secretory pathway. Because of this, ECD interactions detected by Y2H 
are often false positives due to domain misfolding. Similar issues apply to phage display and to 
microarrays in which mRNAs are translated on a chip. Thus, while these high- throughput methods 
can identify interactions with the cytoplasmic domains of receptors, they usually fail to find genuine 
ECD interactions.

Successful high- throughput screens to detect weak ECD interactions in vitro have taken advantage 
of avidity effects by expressing ECDs as fusions with multimerization domains. In such binary interac-
tion screens, one protein (the bait) is applied to a surface, and the other (the prey) is in solution. Prey 
binding to the bait is assessed using colorimetric or fluorescent detection. These methods include 
AVEXIS, ECIA, apECIA, alpha- Screen, and BPIA, which are carried out using ELISA plates, chips, or 
beads (Braun et al., 2009; Bushell et al., 2008; Li et al., 2017; Martinez- Martin, 2017; Shilts et al., 
2022; Taouji et  al., 2009). However, in vitro screens have limitations. They require robotic high- 
throughput instrumentation and are time- consuming and expensive to carry out on a large scale, since 
they require synthesis of ECD coding regions and expression of individual bait and prey proteins. In 
addition, in vitro screens cannot usually assess binding to ECDs of receptors that span the membrane 
multiple times, because such ECDs are often composed of noncontiguous loops and cannot be easily 
expressed in a soluble form. Furthermore, in vitro binary interaction mapping technologies lack the 
natural spatial context of the cell membrane. They may also fail in cases where cofactors and/or post- 
translational modifications are required for binding.

To address these issues, several groups have successfully developed cell- based screens for pheno-
typical screens (Bassik et al., 2013; Han et al., 2020; Kamber et al., 2021), uncovering signaling 
cascades (Breslow et al., 2018; Wisnovsky et al., 2021) or to study interactions between cell surface 
receptors using receptor ECDs (Chong et al., 2018), that take advantage of CRISPR technology (Cong 
et al., 2013; Jinek et al., 2013; Mali et al., 2013). In CRISPR activation (CRISPRa) screens such as the 
one described here, gene expression is induced by targeting transcriptional activators (Chavez et al., 
2016; Chong et al., 2018; Tycko et al., 2017) to their control elements using sgRNAs (Kampmann, 
2018; Morgens et al., 2016; Tanenbaum et al., 2014). Utilizing CRISPRa pooled sgRNA libraries 
eliminates the need to create expensive collection of synthetic genes, and in addition allows a forward 
positive screening workflow which enables a higher dynamic range compared to loss- of- function 
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Figure 1. A CRISPR activating enrichment screening platform. Curation of the human membrane proteome, cell surface library design, validation, and 
benchmark screen. (A) Human membrane and secreted proteome; left panel: predicted number of intracellular, membrane (M), and secreted (S) genes, 
with a total number of approximately 5520 human protein- coding genes predicted to encode ~15,984 membrane- spanning proteins including mapped, 
alternative splice variants and isoforms. (B) Secreted proteome visualized by two- way hierarchical clustering of normalized mRNA expression data from 

Figure 1 continued on next page
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screens (Doench, 2018). Libraries of cells, each with an sgRNA targeting one receptor, can be easily 
stored and screened for binding to soluble ligands.

Here, we describe a CRISPRa enrichment workflow that employs customized, pooled cell surface 
receptor sgRNA libraries in combination with magnetic bead- based selection (magnetic- activated cell 
sorting [MACS]) to enrich for receptor- expressing cells. This approach allows cost- efficient parallel 
screening with multiple ligands. We created two cell libraries, comprising all single- pass transmem-
brane (TM1) and multi- pass transmembrane (TM2+) receptors, and screened them with a collection 
of secreted ligands. To define a set of high- priority ligands, we first curated the human- secreted 
proteome and selected and expressed 20 at levels sufficient for screening the TM1 and TM2+ libraries. 
We identified new receptor candidates in more than half of these screens. These were validated using 
surface plasmon resonance (SPR) and/or cell binding assays. These studies define new receptors for 
several secreted ligands that function in the immune and nervous systems and provides a resource for 
future investigations of relationships between the human- secreted and membrane proteome.

Results
A CRISPR activating enrichment screening platform
A large variety of different second- generation dCas9 activator (CRISPRa) systems are currently in use. 
A recent study directly compared a large number of published Cas9 activators systems and found the 
VPR, SunTag, and SAM approaches perform equally effective across a number of different cell lines 
and target genes (Chavez et al., 2016; Kampmann, 2018). The SunTag system was initially devel-
oped in K562 cells (myeloid leukemia cell line K562) (Tanenbaum et al., 2014), a highly characterized 
(ENCODE, The Protein Atlas) and easy to handle suspension cell line that is widely used for CRISPR 
screens and highly suitable for MACS- based applications. CRISPR- mediated activation of transcription 
using the SunTag system (termed sunCas9) is a precise and scalable method for inducing expression of 
endogenous genes across a high dynamic range (Gilbert et al., 2014). This system uses a dead Cas9 
(dCas9) variant fused to a SunTag, a multicopy epitope tag that recruits the VP64 transcriptional acti-
vator via binding to a cytoplasmic scFV- nanobody- VP64 fusion protein. sgRNAs guide this complex to 
the enhancer region of the gene of interest and facilitate target- specific gene activation and expres-
sion (Tanenbaum et al., 2014).

To evaluate the performance and feasibility of CRISPRa- mediated transcriptional activation of 
cell surface proteins for a receptor/ligand interaction discovery platform, we first selected 10 well- 
characterized cell surface receptors with varying mRNA expression levels ranging from not detected 
to highly expressed in K562 human myeloid leukemia cells (Figure 1—figure supplement 1A; Thul 
et al., 2017; Uhlén et al., 2019). We then generated a pooled lentiviral mini- library of 10 sgRNAs 
per enhancer (100 sgRNA elements), matched with 100 control sgRNAs derived from scrambled 
sequences (Gilbert et al., 2014) and transduced K562 cells stably expressing the sunCas9 system 

normal tissue. (C) Human membrane proteome curation and workflow of the cell surface library design. (D) Pooled, customized, and target- specific 
single- pass transmembrane (TM1) and multi- pass transmembrane (TM2+) sgRNA libraries (10 sgRNA/target) were designed, cloned, and lentivirally 
infected into K562- SunCas9 cells at low multiplicity of infection (MOI). (E) Schematic overview of the CRISPR activation (CRISPRa) enrichment screening 
platform. A protein of interest (POI) is complexed with magnetic beads and screened against customized CRISPRa cell surface receptor library, followed 
by consecutive rounds of magnetic- activated cell sorting (MACS) positive selection. In the final step, genomic DNA is extracted from the selected, 
target enriched library round(s), barcoded, subjected to deep sequencing and analyzed using the casTLE statistical framework to identify potential hits. 
CRISPRa hits are then subjected to various orthogonal validation methods. (F–I) Benchmark CRISPRa enrichment screen using human IL- 2, performing 
two consecutive rounds of magnetic bead selection followed by gDNA extraction, barcoding, and deep sequencing. (F) Enrichment over two rounds 
of consecutive magnetic bead selection by tetramer staining with human IL- 2 post selection (Parental, Round 1, and Round 2). (G) Visualization of the 
deep sequencing analysis. Results are visualized by x/y scatter plot: casTLE- Score (log2); pValue (−log10), size of the hit represents the casTLE- Effect + 
casTLE- Score. (H) Candidate hits of the final round of enrichment visualized by a x/y ranked plot using a combined ESP score. (I) Trajectories of highest- 
ranking candidates are plotted over the consecutive rounds of enrichment rounds; size of the bubble represents the pValue (−log10).

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Source data 1. Pooled CRISPR activation (CRISPRa) library source list.

Figure supplement 1. Evaluation of sunCas9 CRISPR activation (CRISPRa)- mediated transcriptional activation, pooled CRISPRa library quality control, 
and IL- 2 benchmark screens.

Figure 1 continued
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(Figure 1—figure supplement 1A). Each library plasmid contained a single sgRNA targeting one of 
the 10 genes, a GFP fluorescent marker and a puromycin resistance marker. The library- transduced 
cells were puromycin selected for 5 days to obtain >90% GFP positive cells. The expression levels of 
the 10 cell surface receptors were then evaluated by cell surface staining (CSS) using APC- (allophyco-
cyanin) labeled antibodies against the respective targets (CD122 was used as a control). In summary, 
the majority (8 out of 10) targets showed elevated cell surface expression to varying degrees in 
comparison to non- transduced K562 sunCas9 cells or a control receptor (CD122) that was not part of 
the mini- library (Figure 1—figure supplement 1A- B).

We then used human interleukin 2 (IL- 2), which has a high affinity receptor subunit termed CD25 
(IL2RA), to validate our screening workflow in two parallel screens, simulating two library sizes by 
diluting the 10 target (100 sgRNA) K562 sunCas9 mini- library by 1:20 and 1:200 with non- transduced 
K562 sunCas9 cells, corresponding to final library sizes of 200 and 2000 targets, respectively 
(Figure 1—figure supplement 1C- F). Both library pools were incubated with magnetic streptavidin 
microbeads complexed with biotinylated IL- 2, and IL- 2 binding cells were isolated in a positive selec-
tion workflow by MACS, using Miltenyi LS- MACS columns (Figure 1—figure supplement 1C- D). After 
labeling, washing, and elution, positively selected cells were expanded and stained using an APC- 
labeled anti- CD25 antibody (Figure 1—figure supplement 1D). Genomic DNA was extracted from 
both consecutive rounds of selection as well as the naïve K562 sunCas9 mini- library itself, followed by 
barcoding and deep sequencing for both libraries.

Deep sequencing data for each round of selection was analyzed and hits were identified using the 
robust casTLE statistical framework (Morgens et al., 2016) and results were analyzed, filtered, and 
visualized. We calculated casTLE metrics for each round of selection in comparison to the naïve library. 
Using casTLE, both IL- 2 CRISPRa screens successfully identified IL- 2 receptor alpha (IL2RA; CD25) 
as the top hit with the highest confidence (casTLE Score), casTLE Effects, and significance (pValue) 
(Figure 1—figure supplement 1E). Side by side comparison of enrichment scores for both rounds of 
selections from both libraries was plotted as bar graphs (Figure 1—figure supplement 1F).

Customized, pooled CRISPRa cell surface receptor library design
Having established the screening workflow (Figure 1E, Figure 1—figure supplement 1), we sought 
to leverage the power and efficiency of customized, pooled CRISPRa cell surface libraries to perform 
targeted screens with secreted orphan ligands. We first compiled a comprehensive list of cell surface 
receptors by carefully curating the human membrane proteome (Figure 1A). We chose a targeted cell 
surface library approach instead of a genome- wide approach, allowing a smaller library size, resulting 
in a better signal- to- noise ratio (SNR) and avoiding unwanted transcriptional upregulation of non- 
membrane proteins. We utilized several databases including HUGO, UniProt, the Human Protein 
Atlas, and bioinformatic tools (SignalP, TMHMM) to compile two cell surface target lists covering both 
TM1 and TM2+ cell surface proteins (Figure 1C). For the CRISPRa- mediated transcriptional activation 
of cell surface proteins, we synthesized and cloned two pooled sgRNA libraries, a TM1 and a TM2+ 
library, each with 10 sgRNAs per target (Gilbert et al., 2014). Both libraries include matched controls 
targeting genomic locations without annotated function (Figure 1C, D). K562 cells stably expressing 
the sunCas9 system were infected with both libraries (TM1; TM2+) at low, medium, and high multi-
plicity of infection (MOI), then selected with puromycin until the cell population was at least 90% GFP 
positive, indicating the presence of lentivirus. Cells were recovered and expanded, and represen-
tative aliquots were saved as naïve library stocks in liquid nitrogen with at least ×1000 cell number 
coverage per sgRNA to maintain maximum library complexity. Sufficient sgRNA representation of the 
naïve library was confirmed by deep sequencing after puromycin selection and showed the highest 
coverage and diversity at low MOI with at least 91% of reads with at least one reported alignment 
(R=0.97) for both libraries (Figure 1—figure supplement 1G, H). Library information including sgRNA 
target IDs and sequences for both libraries (TM1; TM2+) can be found in Figure 1—source data 1.

CRISPRa benchmark screen using human IL-2
After library cloning and validation, we benchmarked the sensitivity and robustness of our screening 
platform with a proof of concept screen using human IL- 2, following the protocols used for the mini- 
library (Figure 1—figure supplement 1). We successfully recovered CD25 (IL2RA) as the top hit after 
two rounds of enrichment, deep sequencing, and analysis following the outlined workflow (Figure 1E). 

https://doi.org/10.7554/eLife.81398
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Initially, the naïve TM1 library showed no positive IL- 2 binding by tetramer staining (Figure 1F). Library 
enrichment was monitored by IL- 2 tetramer staining (IL- 2:SA647; 200 nM) throughout the selection 
workflow, and after only one round of positive selection we observed a significant enrichment of IL- 2 
selected cells, from 0.1% to 13.3% IL- 2 tetramer positive cells (Figure 1F; middle FACS plot). After 
expanding the cells from the first round and subjecting them to a second round of CRISPRa enrich-
ment screening, we observed a further robust increase of IL- 2 tetramer positive from 13.3 to 95% IL- 2 
tetramer positive cells (Figure 1F; right FACS plot).

After each consecutive round of selection, enriched cells were expanded and genomic DNA was 
extracted, followed by barcoding and deep sequencing. Genomic DNA from the K562 sunCas9 TM1 
naïve library itself served as the baseline. Following deep sequencing, data from both rounds of 
consecutive IL- 2 selections was analyzed and visualized using the casTLE statistical framework. To 
predict high- confidence interaction pairs from each dataset, a custom score was then computed 
for each potential interaction pair by combining all three metrics (casTLE Score, casTLE Effect, and 
pValue) into one ESP score: (casTLE- Effect + casTLE Score)/pValue. CD25 was identified as the top hit 
with the highest confidence (casTLE Score), pValue (significance), and casTLE Effect (Figure 1G, H). 
Furthermore, we used the casTLE ESP metrics from each round to plot trajectories of CD25, which 
allows for a direct evaluation of sgRNA enrichment throughout the selection workflow and shows a 
positive trajectory for CD25 in the selection workflow (Figure 1I), validating the sensitivity and robust-
ness of our screening pipeline.

Selection and production of secreted proteins for CRISPRa screening
We first generated a secreted proteome master list from several databases, including HUGO, 
UniProt, the Human Protein Atlas (Uhlén et al., 2019), and bioinformatic tools (SignalP, TMHMM) 
to identify potential high- priority secreted proteins for our screening workflow. After curation of the 
human- secreted proteome (Figure 1A, B), approximately 60% of the ~1600 genes were classified as 
encoding enzymes (mostly proteases), enzyme inhibitors, serum proteins, or components of saliva, 
tears, or other fluids (these include carrier proteins), structural, extracellular matrix proteins, antimi-
crobial proteins, complement factors, coagulation factors, lectins, or unknown. The remaining ~40% 
of genes were identified as likely to encode secreted ligands acting through cell surface receptors 
and further examined through literature searches. We classified products of 419 genes as ligands 
with known receptors that can adequately account for their biology. Finally, we identified 206 gene 
products either as ‘orphans’ with no identified receptor or as ligands that are likely to have additional, 
as yet unidentified receptors in addition to those that have been described. From these 206, we 
ultimately selected a total of 80 high- priority targets (one per gene; we did not consider isoforms 
generated through alternative splicing). These had a wide range of tissue expression with many of the 
chosen secreted ligands being expressed in brain tissue (Figure 2A) covering a broad range of molec-
ular function and processes (Figure 2—figure supplement 1A, B). Coding sequences for these 80 
secreted proteins of interest (SPOI) were synthesized, subcloned into an Avi- 6xHIS expression plasmid 
(Figure 2—source data 1), expressed in Expi293F cells, purified with Ni- NTA resin, then biotinylated 
in vitro and further purified by size- exclusion chromatography (SEC) (Figure 2—figure supplements 
2 and 3).

CRISRPa enrichment screens reveal new secreted ligand-receptor 
interactions
We obtained sufficiently high expression levels for 20 of the 80 high- priority targets (Figure  2A, 
Figure 2—source data 2) to allow screening using our cell- based CRISPRa enrichment workflow. In 
addition to the Expi293F expression system, we explored whether insect expression could serve as 
viable alternative expression strategy to rescue some of the secreted ligands that failed to express 
in the Expi293F expression system. To test this strategy, we selected a total of 12 candidates that 
were subcloned for expression in insect cells (Hi5): 10 candidates that showed no expression from 
Expi293F cells and an additional 2 candidates that were previously successfully expressed in Expi293F 
(CC134_HUMAN; SPRC_HUMAN). While the control candidates (CC134_HUMAN; SPRC_HUMAN) 
showed some low level of expression from insect cells, none of the other 10 candidates tested showed 
any positive expression (Figure 2—source data 2). Names and mRNA expression patterns in normal 
tissue for these 20 ligands are shown in Figure 2A. The 20 high- priority targets show a wide spectrum 
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Figure 2. Selection and protein production of high- priority secreted ligands and overview of screening results. (A) Eighty high- value orphan secreted 
proteins were selected, synthesized, cloned, and expressed in Expi293F cells, 20 secreted ligands with a broad range of tissue expression passed our 
quality control and were used in our CRISPR activation (CRISPRa) enrichment workflow. (B) TCGA cancer tissue RNA- seq data was obtained for all 20 
screened secreted ligands from 17 cancer types representing 21 cancer subtypes and were processed as median FPKM (number fragments per kilobase 

Figure 2 continued on next page
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of tissue expression in normal, healthy tissue (Figure 2A) and a broad range of expression in cancer 
(Figure 2B) with several candidates enriched in brain tissue and clustering in glioma (GBM, brain 
tissue, and in various locations in the nervous system, including the brain stem and spinal column). 
In addition, the majority of targets show a strong GDA with many reported diseases (Figure  2C, 
Figure 2—figure supplement 4, Figure 2—source data 3).

Each of the 20 secreted ligands was used to screen the TM1 and TM2+ libraries with up to three 
consecutive rounds of selection, followed by deep sequencing and statistical analysis using the casTLE 
framework (Figure 2—source data 4). In general, screening results of the final round of enrichment 
were subjected to a first- pass filter using the following cut- offs: casTLE- Effect > 2, casTLE- Score > 2, 
pValue < 0.05, candidates outside the secreted and membrane proteome and common false posi-
tive contaminants were removed. To integrate data analysis and visualization, we used the combined 
ESP score to rank sort interaction pairs for every screen. In addition, we utilized the aforementioned 
trajectory plots, which allow for direct evaluation of a potential candidate’s enrichment throughout the 
selection workflow and easy elimination of false positives.

PPIs often occur between phylogenetically related proteins both within and between subfamilies. 
Hence, screening results were augmented by using phylogenetic homology analysis (PHA), a strategy 
that has proven to be highly effective to predict additional PPIs between subfamily members (Wojto-
wicz et al., 2020). Furthermore, in an effort to explore potential functional relationships between 
orphan- secreted ligands and newly discovered interactions, mRNA expression profiles from healthy 
tissues were obtained from The Human Protein Atlas (Karlsson et al., 2021) to perform hierarchical 
clustering and correlation analysis.

We selected a subset of CRISPRa enrichment screens with high ranking predicted ESP scores for 
potential interaction pairs for further validation using orthogonal methods, including SPR and CSS. 
Bona fide PPIs are expected to display distinct association and dissociation kinetics, which can be 
observed with high sensitivity by SPR, the ‘gold’ standard to measure biomolecular interactions. 
CSS was utilized as an alternative orthogonal validation method to show PPIs in a cellular context 
using a fluorescent- tetramerization- based approach by flow cytometry for high sensitivity detec-
tion of putative PPIs on the cell surface. In a first- pass analysis we selected the validated hits of the 
CRISPRa enrichment screens and performed database searches to calculate overlaps between our 
screening results and the aggregate of BioGrid, BioPlex, and STRING databases (physical interac-
tions; membrane and secreted proteome). We observed no overlap between any of these databases 

of exon per million reads) and visualized as a hierarchical clustering heatmap. (C) Gene disease association (GDA) data for all 20 high- priority candidates 
used in the CRISPRa enrichment screening workflow: Number of involved Diseases and Publications as well as top three ranking GDA are indicated. 
Data was obtained from the DisGenet database, full GDA analysis is visualized in Figure 2—figure supplement 4, and a fully annotated dataset 
can be found in Figure 2—source data 3. (D) Venn diagram visualizing the overlap between physical interactions between secreted and membrane 
proteins presented in this study and public interaction databases (BioGRID, BioPLEX, and STRING). (E) CRISPRa enrichment screening interactions 
represented as a protein interaction network, nodes represent CRISPRa query secreted ligands (blue) and candidate hits (gray). Edges represent the 
interactions between nodes. The visualized network shows 22 interactions between secreted and membrane proteins; 18 new interactions from eight 
screens in the single- pass transmembrane (TM1) and 4 interactions from four screens in the multi- pass transmembrane (TM2+) library between secreted 
and membrane proteins. Interactions (edges) resulting from CRISPRa enrichment screens are represented in dark blue, interactions resulting from 
phylogenetic homology analysis (PHA) are visualized in purple.

The online version of this article includes the following source data, source code, and figure supplement(s) for figure 2:

Source code 1. Annotated Cytoscape node/edge Gene Disease Association (GDA) network.

Source data 1. Plasmid sequences.

Source data 2. Secreted protein library.

Source data 3. Gene disease association (GDA) data.

Source data 4. CRISPR activation (CRISPRa) casTLE statistical analysis.

Source data 5. Surface plasmon resonance (SPR) conditions.

Figure supplement 1. High- value secreted orphan ligands.

Figure supplement 2. Size- exclusion chromatography.

Figure supplement 3. Size- exclusion chromatography.

Figure supplement 4. Gene disease association (GDA) high- priority secreted ligands.

Figure 2 continued
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and the hits reported in this study (Figure 2D). As we previously reported for interactome screens 
of Drosophila and human cell surface proteins (Özkan et al., 2013; Wojtowicz et al., 2020), high- 
throughput PPI analysis methods such as Y2H and AP/MS generate mostly false positive interactions 
for secreted and membrane proteins and are unable to identify genuine interactions found through 
ELISA and/or cell- based screening methods.

In total, we tested 22 candidate PPIs between the secreted and membrane proteome by SPR 
and/or CSS from 12 screens with PPIs in both the TM1 and the TM2+ library. A cytoscape interac-
tion network of novel PPIs observed in screen is visualized in Figure 2E and summarized in Table 1, 
where nodes represent the secreted ligands (blue) and cell surface receptors discovered (gray) and 
edges represent the interactions between them. These validation data are shown for selected PPIs in 
Figures 3–7.

Oligodendrocyte-myelin glycoprotein binds to multiple receptor 
tyrosine phosphatases
Protein tyrosine phosphorylation is a fundamental regulatory step in intracellular signal transduc-
tion and is orchestrated in a coordinated fashion by activities of protein tyrosine kinases and protein 
tyrosine phosphatases (PTPs). PTPs play essential roles in the regulation of growth, differentiation, 

Table 1. Summary of the new protein- protein interactions (PPIs) tested in this study.
Source indicates whether the PPI was discovered in the indicated CRISPR activation (CRISPRa) 
enrichment screen (Screen) or by phylogenetic homology analysis (PHA). Assay indicates whether 
interaction was tested by SPR or CSS (SPR conditions are included in Figure 2—source data 5 ).

Interaction Screen Hit Library Source Assay

GAS1- PTPRA GAS1 PTPRA TM1 Screen SPR, CSS

OMG- PTPRD OMG PTPRD TM1 PHA SPR

OMG- PTPRF OMG PTPRF TM1 PHA SPR

OMG- PTPRS OMG PTPRS TM1 PHA SPR

OMG- PTPRU OMG PTPRU TM1 Screen SPR

OSTN- PTPRU OSTN PTPRU TM1 Screen SPR

MK- RNF167 MK RNF167 TM1 Screen SPR

PTN- RNF167 PTN RNF167 TM1 Screen SPR

PTN- ROR1 PTN ROR1 TM1 Screen SPR

PTN- MFRP PTN MFRP TM1 Screen SPR

SMOC1- SMOC1 SMOC1 SMOC1 TM1 PHA SPR

SMOC1- SMOC2 SMOC1 SMOC2 TM1 Screen SPR

TAFA2- KIR3DL1 TAFA2 KIR3DL1 TM1 Screen SPR, CSS

TAFA2- KIR3DL2 TAFA2 KIR3DL2 TM1 PHA SPR, CSS

TAFA2- KIR3DL3 TAFA2 KIR3DL3 TM1 Screen CSS

TAFA2- KIR2DL5A TAFA2 KIR2DL5A TM1 PHA CSS

TAFA2- RNF167 TAFA2 RNF167 TM1 Screen SPR

TAFA5- RNF167 TAFA5 RNF167 TM1 Screen SPR

LY6H- CD36 LY6H CD36 TM2+ Screen CSS

NRN1- CD36 NRN1 CD36 TM2+ Screen CSS

SCRG1- CD36 SCRG1 CD36 TM2+ Screen CSS

VWC2L- CD36 VWC2L CD36 TM2+ Screen CSS

PHA = phylogenetic homology analysis. SPR = surface plasmon resonance. CSS = cell surface staining.

https://doi.org/10.7554/eLife.81398
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Figure 3
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Figure 3. CRISPR activation (CRISPRa) screening results and surface plasmon resonance (SPR) validation of Type R2A and Type R2B PTPRs for OMG 
(Oligodendrocyte- myelin glycoprotein) and OSTN (Osteocrin). (A) Ranked x/y scatter plot of Round 3 of the OMG screen. (B) Depicts the trajectory of 
the highest ranking candidate, PTPRU, plotting ESP scores for all three consecutive rounds of selections in a x/y enrichment plot. The size of the bubble 
represents the pValue (−log10). (C) SPR sensorgram and binding kinetics for human PTPRU- ECD (ligand) binding to human OMG (analyte), sensograms 
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oncogenic transformation, and other processes (Julien et al., 2010). The classical PTPs include cyto-
plasmic PTPs and transmembrane RPTPs, which can be classified into distinct subfamilies according 
to their domain architecture. Most RPTPs display features of cell adhesion molecules with a diverse 
domain repertoire including MAM (meprin, A- 5) domains, Ig (immunoglobulin- like) domains, and FN 
(fibronectin) Type III repeats in their extracellular segments (Figure 3M; Tonks, 2006). In our human in 
vitro interactome screen, we identified new cell surface binding partners for multiple RPTPs that are 
likely to mediate cell- cell and/or cell- matrix interactions (Wojtowicz et al., 2020).

In our CRISPRa screen with oligodendrocyte- myelin glycoprotein (OMG), we observed the Type 
R2B subfamily member PTPRU as the top- ranking hit (Figure 3A) with a positive enrichment trajectory 
over all three rounds of selection (Figure 3B). We confirmed binding of OMG to PTPRU by SPR, with 
a KD of ~70 nM (Figure 3C). We also identified two members of the R2A subfamily, PTPRF and PTPRS, 
as well as the R4 subfamily member PTPRA as enriched in the OMG screen (Figure 3D). Type R2A 
(PTPRD, PTPRF, PTPRS), R2B (PTPRK, PTPRM, PTPRT, PTPRU), and R3 (PTPRB, PTPRH, PTPRJ, PTPRO, 
PTPRP) are the largest RPTP subfamilies. They all share large ECDs that include FN- III repeats. R2A 
RPTPs also have Ig domains, and R2B RPTPs have both Ig and MAM domains (Figure 3M). PPIs often 
occur between phylogenetically related proteins both within and between subfamilies. We examined 
binding of OMG to all R2A and R2B subfamily members as well as PRPRJ (R3) by SPR. Binding in the 
micromolar affinity range was observed for all three R2A RPTPs (PTPRD, PTPRF, PTPRS) but only for 
PTPRU among R2B RPTPs (Figure 3E; Figure 3—figure supplement 1A). Hierarchical clustering by 
healthy tissue expression correlations may infer functionally related communities. We therefore exam-
ined healthy tissue mRNA expression profiles for OMG, R2A, R2B, and R3 RPTP family members from 
the Human Protein Atlas (Karlsson et  al., 2021) and performed a multivariate clustering analysis. 
OMG clustered with several RPTP family members including binding partners PTPRU and PTPRD 
(Figure 3F). In the nervous system, these RPTPs are expressed primarily in neurons, and could function 
as receptors for OMG, which is expressed in oligodendrocytes and some neurons (Figure 3—figure 
supplement 1B).

PTPRU binds to Osteocrin (OSTN), a primate-specific brain ligand
PTPRU was also identified as a potential hit in a screen for Osteocrin (OSTN). Although our initial 
ESP ranking showed PTPRJ, a RPTP member of the R3 subfamily, as the top- ranking hit for OSTN 
(Figure 3G), analyzing the enrichment trajectories over all three rounds of selections revealed that 
PTPRJ actually followed a negative trajectory (Figure  3H). By contrast, the R2B family member 
PTPRU showed a significant positive enrichment trajectory over the course of the screening workflow 
compared to PTPRJ (Figure 3H). We therefore analyzed binding of OSTN to a panel of R2A, R2B, and 
R3 RPTP members and found that OSTN exclusively bound to PTPRU, with a KD of ~12 nM (Figure 3I, 
J) and none of the other R2A or R2B subfamily members (Figure 3—figure supplement 1C).

were fitted using a 1:1 binding model; raw data are shown in color, fitted data are shown as black dotted lines. (D) Shows enrichment scores for 
additional members of the receptor protein tyrosine phosphatase (RPTP) family members found in the OMG screen. (E) Summary of SPR results testing 
binding of R2A, R2B, and R3 RPTP subfamily members (Figure 3—figure supplement 1A). (F) Multivariate heatmaps for OMG calculated from normal 
tissue mRNA expression correlations. (G) OSTN screen ranked x/y scatter plot of Round 3 ESP scores; top three candidates as indicated. (H) Trajectory 
of high ranking candidates PTPRJ and PTPRU by plotting ESP scores for all three consecutive rounds of selections in an x/y enrichment plot; size of 
the bubble represents the pValue (−log10). (I) SPR sensorgram and binding kinetics for human PTPRU- ECD (ligand) binding to human OSTN (analyte), 
sensograms were fitted using a 1:1 binding model; raw data are shown in color, fitted data are shown as black dotted lines. (J) Summary of SPR results 
(Figure 3—figure supplement 1C) testing binding of OSTN (analyte) binding to R2A, R2B, and R3 RPTP subfamily members (ligands). (K) Multivariate 
heatmap for OSTN calculated from normal tissue mRNA expression correlations. (L) Hierarchical two- way clustering heatmap of normal tissue mRNA 
expression for OSTN and PTPRU. (M) Schematic representation of the domain architectures of RPTP subfamilies; PPIs as indicated. (N) Dendrogram of 
PTPR R2A, R2B, R4 subfamily members calculated from multiple sequence alignments (MSA) and visualization of the reported interactions in a node/
edge network format, secreted ligands (blue) and cell surface receptor protein- protein interactions (PPIs) observed (gray). Interactions (edges) resulting 
from CRISPRa enrichment screens are represented in dark blue, interactions resulting from phylogenetic homology analysis (PHA) are visualized in 
purple.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. PTPR subfamily- related surface plasmon resonance (SPR) sensograms for oligodendrocyte- myelin glycoprotein (OMG) and 
OSTN and hierarchical clustering analysis of normal tissue for OMG.

Figure 3 continued
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OSTN (Musclin) is a 130 aa peptide hormone that was originally identified in mouse bone and 
muscle. It regulates bone growth, supports physical endurance, and mediates diverse cardiac bene-
fits of physical activity (Subbotina et al., 2015). These actions could be mediated through OSTN’s 
binding to the natriuretic peptide clearance receptor (NPR- C) (Moffatt et al., 2007). By binding to 
NPR- C, OSTN decreases clearance of natriuretic peptides and thereby increases signaling through 
the NPR- A and NPR- B receptors. In primates, however, the OSTN gene has acquired neuron- specific 
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Figure 4. Growth arrest specific 1 (GAS1) CRISPR activation (CRISPRa) enrichment screen identifies receptor protein tyrosine phosphatase (RPTP) 
subfamily member PTPRA. (A) Ranked x/y scatter plot for the GAS1 CRISPRa enrichment screen (ESP scores). (B) Trajectory plot of the highest 
ranking candidate PTPRA for all three consecutive rounds of selections in an x/y enrichment plot, size of the bubble represents the pValue (−log10). 
(C) Comparison of ESP trajectories for PTPRA and two lower scoring RPTP subfamily members (PTPRU, PTPRJ). (D) Surface plasmon resonance (SPR) 
sensorgram and steady- state curve for human GAS1 (analyte) binding to PTPRA- ECD (ligand) binding in comparison to PTPRU and PTPRJ (Figure 4—
figure supplement 1A, B; no binding observed). (E, Figure 4—figure supplement 1C, B) Cell surface staining of K562 (untransduced) or K562 cells 
lentivirally transduced with FLAG- tagged full- length PTPRA with GAS1:SA- 647 tetramers (400 nM) and analysis by flow cytometry, representative FACS 
histograms, quantification, and full titration (1:1 dilutions; 400 nM tetramer). Data are represented as mean ± SD (n=3). (F) Multivariate heatmaps for 
GAS1 and the PTPRA, PTPRU, and PTPRJ calculated from single- cell normal tissue mRNA expression correlations. (G) Hierarchical two- way clustering 
heatmap of single- cell normal tissue mRNA expression for GAS1 and PTPRA.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Growth arrest specific 1 (GAS1) screen- related surface plasmon resonance (SPR) sensograms.

https://doi.org/10.7554/eLife.81398
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Figure 5. Killer immunoglobulin- like receptor (KIR) subfamily protein- protein interactions (PPIs) identified by CRISPR activation (CRISPRa) screening 
and phylogenetic homology analysis (PHA) approach for TAFA2. (A) ESP rank plot of the TAFA2 CRISPRa enrichment screen. (B) Trajectory plot of 
the top three ranking candidates for all consecutive rounds of selections in a x/y enrichment plot, size of the bubble represents the pValue (−log10). 
(C) Schematic representation of the domain architecture of KIR2 and KIR3 subfamily members of inhibitory KIRs. (D) Surface plasmon resonance (SPR) 
sensorgrams and binding kinetics for human TAFA2 (analyte) binding to KIR3DL1- ECD (ligand), sensograms were fitted using a 1:1 binding model; 
raw data are shown in color, fitted data are shown as black dotted lines. (E) Cell surface staining of NKL or NKL cells expressing KIR3DL1, KIR2DL1 
with TAFA2:SA- 647 tetramers (200 nM) and analysis by flow cytometry. (F) Dendrogram of the KIR2 and KIR3 subfamily calculated from multiple 
sequence alignments of KIR ECDs (gray) and PPIs (TAFA2; blue) observed in the CRISPRa screen (red) and predicted by PHA (blue). (G) Cell surface 
staining of K562 control cells or K562 cells lentivirally transduced with full- length KIR3DL1, KIR3DL2, KIR3DL3, KIR2DL2, or KIR2DL5A (FLAG- tagged; 
Figure 5—figure supplement 1C) with TAFA2:SA- 647 tetramers (200 nM) and analysis by flow cytometry: full titration (1:1 dilutions; 200 nM tetramer), 

Figure 5 continued on next page
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regulatory elements, and primate OSTN is expressed in cortical neurons and is induced by depo-
larization in in vitro cultures and by sensory stimuli in vivo. OSTN restricts dendritic growth after 
depolarization. OSTN expression peaks during the onset of synaptogenesis in fetal development, but 
it continues to be expressed in neocortex in adults (Ataman et al., 2016). A pairwise correlation of 
normal human tissue mRNA expression data for OSTN and the R2A, R2B, and R3 RPTP subfamilies 
showed correlation only with PTPRU and its close relative PTPRT (Figure 3K). A hierarchical cluster 
analysis of human tissue mRNA expression data shows a strong correlation of OSTN and PTPRU in 
brain and skeletal muscle (Figure 3L; Cluster 3).

A PHA of the R2A, R2B, and R4 PTPR subfamily was combined with a summary of PPIs identified 
for OMG and OSTN as a node/edge network (Figure 3N). While the R2A subfamily members cluster 
closely within their family, the R2B subfamily appears to be more diverse with two subclusters (PTPRM 
and PTPRT, PTPRK, and PTPRU) and might be due to the fact that MAM domains are less conserved 
than FN or Ig domains (Figure 3—figure supplement 1D).

The growth arrest specific 1 protein (GAS1) binds to PTPRA
PTPRA was identified as the highest- ranking hit in the growth arrest specific 1 (GAS1) screen, with 
the highest ESP score and a consistent positive enrichment over three rounds of positive selec-
tion (Figure  4A, B), followed by lower scoring PTPRU and PTPRJ with low enrichment trajectory 
(Figure 4C). PTPRA is a member of the R4 RPTP subfamily (see also Figure 3M), which have short, 
highly glycosylated ECDs (Tonks, 2006). GAS1 bound exclusively to PTPRA, with a KD of  ~1  µM 
(Figure 4D). No binding was observed to PTPRU or PTPRJ (Figure 4—figure supplement 1A, B) 
by SPR. We also showed that tetramerized GAS1 (GAS1:SA647) exhibits increased binding to K562 
cells that overexpress PTPRA, demonstrating that GAS1 is a soluble ligand for cell surface PTPRA 
(Figure 4E, Figure 4—figure supplement 1C). A multivariate clustering showed that GAS1 is clus-
tering more closely to PTPRA than to PTPRU or PTPRJ (Figure 4F).

PTPRA is ubiquitously expressed, while GAS1 has a more restricted expression pattern with a 
stronger correlation with PTPRA in fibroblasts, Muller glia cells, and skeletal myocytes (Figure 4G, 
Clusters 6–8). GAS1 and PTPRA are both involved in RET tyrosine kinase signaling through SRC, as well 
as in other signaling pathways (Biau et al., 2013; Mustelin and Hunter, 2002; Yao et al., 2017). GAS1 
is related to the GFR1 family of transmembrane proteins, which are coreceptors for the RET receptor 
tyrosine kinase (RTK). RET- GFR1 complexes bind to glial- derived neurotrophic factor (GDNF), leading 
to RET autophosphorylation and activation of downstream Akt and MAPK signaling pathways. GAS1 
interacts directly with RET and recruits it to lipid rafts. GAS1 binding causes a reduction in GDNF- 
induced Akt phosphorylation, suggesting that it is a negative regulator of RET signaling (Cabrera 
et al., 2006; López- Ramírez et al., 2008). PTPRA also associates with RET signaling complexes and 
can directly dephosphorylate RET, causing inhibition of RET signaling (Yadav et al., 2020). Elevated 
levels of PTPRA leads to promotion of lung cancer and is associated with poor prognosis and overall 
survival (Gu et al., 2017; Lin et al., 2020) through c- Src activation. PTPRA has not been demonstrated 
to directly bind to RET, however, and a linkage between PTPRA and RET might be provided by GAS1.

TAFA-2 selectively interacts with inhibitory KIRs
A CRISPRa enrichment screen with TAFA- 2 (FAM19A2; chemokine- like family member 2) identified 
two inhibitory killer immunoglobulin- like receptors (KIRs), KIR3DL1 and KIR3DL3, which are selectively 
expressed on natural killer (NK) cells, as the highest- ranking hits by ESP scoring (Figure 5A) with a 
positive trajectory during the selection workflow (Figure 5B). KIRs are a polymorphic subfamily of 
MHC class I receptors (Li and Mariuzza, 2014; Pende et al., 2019; Sivori et al., 2019). KIR3s have 
D0, D1, and D2 Ig- like domains. By contrast, KIR2s have only D1 and D2 domains, except for KIR2DL5, 
which has a D0 and D2 but lacks D1 (Figure 5C). The structure of KIR3DL1 complexed to an HLA- B 

representative FACS histograms and quantification (200 nM tetramer). Data are represented as mean ± SD (n=3). (H) Hierarchical two- way clustering 
heatmap of immune cell mRNA expression data for TAFA2, KIR2, and KIR3 subfamily members.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. TAFA2 screen- related surface plasmon resonance (SPR) sensograms for KIR3 family members.

Figure 5 continued
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Figure 6. Shared hits for the pleiotrophin family (MDL, PTN), neurokine family members (TAFA- 2 and TAFA- 5), and a SPARC- related ligand (SMOC1). 
(A) Venn diagram depicting overlap of the top 20 ranking candidates for PTN, MK (MDK), TAFA- 2, and TAFA- 5 screens. Shared hits for PTN, MK, TAFA- 2, 
TAFA- 5, and shared candidates for PTN, TAFA- 2, and TAFA- 5 screens are listed. (B) PTN or MDK ectodomains were captured on sensors (ligands) and 
analyzed for binding to RNF167 (RNF128 was used as a negative control and showed no binding). (C) Surface plasmon resonance (SPR) sensorgrams 
for human TAFA- 2 and TAFA- 5 binding to RNF167- ECD in comparison to MCAM (Figure 6—figure supplement 1A; no binding observed). (D, E) SPR 
sensorgrams and steady- state curves for human PTN (analyte) binding to MFRP- ECD and ROR1- ECD (ligand) in comparison to human MDK (Figure 6—

Figure 6 continued on next page
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reveals that the helices and bound peptide of the HLA engage with the D1 and D2 domains of the KIR, 
while the D0 domain extends down toward the β-2- microglobulin subunit and engages sequences 
that are highly conserved among all HLA- A and B alleles (Li and Mariuzza, 2014).

We observed binding of TAFA- 2 to KIR3DL1 to by SPR, with a KD of  ~1.7  µM (Figure  5D, 
Figure 5—figure supplement 1A). Binding to KIR3DL3 was at the limit of detection and did not satu-
rate (Figure 5—figure supplement 1B). To examine binding at the cell surface, fluorescent TAFA- 2 
tetramers (TAFA2:SA647) were incubated with NKL or NKL cells expressing either full- length KIR3DL1 
or KIR2DL1 (Figure  5E; left panels). Flow cytometry analysis revealed concentration- dependent 
binding of TAFA- 2 to cells expressing KIR3DL1, but not to those expressing KIR2DL1 (Figure 5E; right 
panel).

Interestingly, a PHA of inhibitory KIR family members revealed that D0 domain containing KIRs 
are more closely related by sequence than KIRs without a D0 domain (Figure 5F). Hence, to further 
define KIR binding specificity, we tested binding of TAFA- 2 tetramers (TAFA2:SA647) to K562 cells 
expressing KIR3DL1, KIR3DL2, KIR3DL3, KIR2DL2, or KIR2DL5A. We observed higher concentration- 
dependent binding of TAFA- 2 to cells expressing the KIR3s or KIR2DL5A, which all have D0 domains, 
compared to KIR2DL2, which does not have a D0 domain (Figure 5G, Figure 5—figure supplement 
1C). These data suggest that D0 domains are required for optimal TAFA- 2 binding.

TAFA- 2 is a member of a highly conserved 5- gene family (TAFA1- 5) of chemokine- like peptides 
(neurokines) expressed in the brain. Like other chemokines, TAFAs 1, 4, and 5 bind to G protein- 
coupled receptors. TAFAs 1–4 all complex with neurexins during their passage through the ER/Golgi 
pathway, leading to formation of disulfide- bonded cell surface neurexin- TAFA complexes (Khalaj 
et al., 2020; Sarver et al., 2021; Tom Tang et al., 2004). Although TAFA- 2 has only been exam-
ined in the brain, the gene is also expressed in the immune system. Its expression is restricted to 
naïve and memory regulatory T cells (T- regs), basophils, and neutrophils, with the highest expression 
levels being observed in basophils (Figure 5H). Neurexins are not expressed in these cell types, so 
TAFA- 2 may be secreted as a monomer or complexed to another protein. The observed interactions 
of TAFA- 2 with D0 domains of KIRs suggest that expression of the chemokine by T- regs or basophils 
might modulate KIR signaling in NK cells in response to binding of HLA on target cells. In addition 
to HLA, KIR3DL3 was more recently discovered as a novel interaction partner for HHLA2 (a immune 
checkpoint member of the B7 family), which has both immune inhibitory and activating abilities and 
is expressed in many human cancers (Wei et al., 2021). Interestingly, KIR3DL3 and TMIGD2, another 
HHLA2 interaction partner, were simultaneously able to bind to different sites of HHLA2. This would 
open another intriguing way of regulating signaling KIR3DL3/TMIGD2- HHLA2 with regard to the 
newly discovered KIR3DL3- TAFA2 interaction.

Screening results for pleiotrophin family members (MDK, PTN), 
neurokine superfamily members (TAFA-2, TAFA-5), and a SPARC-related 
ligand (SMOC1)
In Figure 6, we show results of additional screens with shared hits for the pleiotrophin family members 
midkine (MDK) and pleiotrophin (PTN), and the neurokine family members TAFA- 2 and TAFA- 5.

We analyzed the top 20 highest ranking candidates for MDK, PTN, TAFA- 2, and TAFA5 and found 
a strong overlap of hits for several candidates (Figure 6A). We identified the transmembrane PA- TM- 
RING E3 ligase RNF167 as shared hits between screens for PTN, TAFA- 2, and TAFA- 5. PTN and MDK 

figure supplement 1B, C; no binding observed). (F) Hierarchical two- way clustering of mRNA expression data from normal tissue for PTN, MDK, 
TAFA- 2, TAFA- 5, RNF167, MFRP, and ROR1. Cluster 1 (MDK, ROR1, MFRP) and Cluster 2 (PTN, TAFA2, TAFA5, RNF167) are indicated. (G) Dendrogram 
of PTN, MDK, TAFA- 2, TAFA- 5, RNF167, MFRP, and ROR1 calculated from multiple sequence alignments (MSA). (H) Visualization of the reported 
interactions in a node/edge network format with indicated clusters, of secreted ligands (blue) and cell surface receptor protein- protein interactions (PPIs) 
observed (gray). (I) SMOC1 screening results visualized in ranked x/y scatter plot (ESP scores). (J) Trajectory plot of SMOC2 for all three consecutive 
rounds of selections in a x/y enrichment plot, size of the bubble represents the pValue (−log10). (K, L) BST2, IGSF23, and SMOC2 ECDs were captured 
on sensors (ligands) and analyzed for binding to SMOC1 (analyte), SPR assay showing binding of SMOC1 (analyte) to SMOC2 or SMOC1, immobilized 
on a sensor chip (ligand).

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. RNF167 and MDK- related surface plasmon resonance (SPR) sensograms.

Figure 6 continued
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Figure 7. Multifunctional scavenger receptor CD36 binds multiple secreted ligands. (A) Ranked ESP scatter trellis plots of all analyzed multi- pass 
transmembrane (TM2+) library screens shows CD36 as the highest ranking hit for multiple screens (CD36 indicated in blue), top two ranking hit 
candidates are labeled as indicated. False positive candidates are indicated by dotted lines (TMTM14A, REEP4). (B–C) Cell surface staining of full- 
length CD36- transfected and control cells with SA- 647 tetramerized (400 nM) LY6H, NRN1, VWC2L, or SCRG1 and analysis by flow cytometry, SPRC 
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are two members of the neurite growth- promoting factor family. They are neuromodulators with 
multiple neuronal functions during development (González- Castillo et al., 2015). MDK and PTN have 
been found to bind to several different cell surface receptors, including RPTPZ, which has a CS- linked 
ECD, Syndecans (which are linked to HS), a transmembrane low- density lipoproteins (LRP), the RTK 
ALK, and integrins (Papadimitriou et al., 2016).

Like TAFA- 2, TAFA- 5 is a member of the TAFA superfamily, a emerging family of neurokines that 
are highly expressed in brain tissue, especially hippocampus, cerebral cortex, white matter, and 
ganglia (Figure 6F). TAFA5 knockout mice display increased depressive- like behaviors and impaired 
hippocampus- dependent spatial memory (Huang et al., 2021).

We observed binding of RNF167 to PTN and MDK as well as TAFA- 2 and TAFA- 5 by SPR (Figure 6B, 
C, blue sensogram). No binding was observed to RNF128 which is a related transmembrane E3 ligase 
of the same subfamily (Figure 6B, C, red sensogram) and no binding was observed to RNF167 testing 
an unrelated receptor ECD (Figure 6—figure supplement 1A). RNF167 is a member of the trans-
membrane PA- TM- RING E3 ligase family with approximately 10 members and exert widespread 
involvement in several diseases (Cai et al., 2022). These E3 ligases are minimally defined by three 
conserved domains, a protease- associated (PA) domain that acts as a substrate recruitment domain, 
a transmembrane domain (TM), and a RING- H2 finger (RNF) (Nakamura, 2011). In general, the E3 
ligase family (~600 predicted RING E3’s) still remains highly elusive and the majority of PA- TM- RING 
E3 ligases remain orphans, mostly due to the nature of the ubiquitylation cascade, which are being 
characterized by very weak affinity and fast kinetics (Duan and Pagano, 2021; Komander and Rape, 
2012; Metzger et al., 2014). RNF167 (also known as Godzilla) is widely expressed in all tissues with 
enhanced expression in brain tissue (Figure 6F) and has recently been implicated in the regulation 
of the AMPA receptor (AMPAR) (Ghilarducci et al., 2021; Lussier et al., 2012). A two- way hierar-
chical clustering of normal tissue mRNA expression data shows a strong correlation between RNF167, 
TAFA- 2, TAFA- 2, and PTN in brain tissue (Figure 6F; Cluster 2).

The transmembrane RTK ROR1 and the membrane Frizzled (FZD)- related protein (MFRP) were 
identified as shared candidate hits among several screens: PTN, MDK, TAFA- 2, and TAFA- 5. We 
observed binding of PTN to ROR1 and MFRP (Figure 6D, E) with KDs between ~1 and 2 µM, no 
binding was observed for MDK (Figure 6—figure supplement 1B, C). Interestingly, both receptors 
share an evolutionary conserved FZD domain in the ECD (Yan et al., 2014). ROR1 and its closely 
related paralog ROR2 are receptors for Wnt5a and other Wnts in the planar cell polarity pathway 
(Endo et al., 2022; Green et al., 2014; Minami et al., 2010). MFRP is Type II transmembrane protein 
with an extracellular FZD domain. MFRP is predominantly expressed in the retinal pigment epithelium 
with high expression in brain tissue (choroid plexus and required for both prenatal ocular growth and 
postnatal emmetropization Katoh, 2001; Sundin et al., 2008). A PHA of the involved PPIs shows a 
clear family- based clustering and separation into neurokine, pleiotrophin, FZD domain containing 
branches (Figure 6G). A node/edge network of PPI discovered similarly show two distinct clusters of 
interactions (Figure 6H; Clusters 1 and 2) that overlap with tissue expression clustering (Figure 6F).

SMOC1, a SPARC- related ligand overexpressed in brain tumors (Brellier et al., 2011), recovered 
BST2, IGSF23, and SMOC2 as the highest- ranking hits (Figure 6I and J). We observed binding of 
SMOC1 to SMOC2 by SPR (Figure 6K, blue sensogram). No binding was observed to IGSF23 or BST2 
(Figure 6K; red sensograms). We also observed binding of SMOC1 to itself (Figure 6L; blue senso-
gram). SMOC2 is a matricellular protein which promotes matrix assembly and is involved in endothe-
lial cell proliferation and migration, more recently SMOC2 variants were also reported to play a role 
in BMP signaling (Long et al., 2021).

tetramers (SPRC:SA647) served as a negative (non- CD36 enriched) control. (B) Representative histograms (red, control cells; blue, CD36 positive cells). 
(C) Quantification of flow data (Data are represented as mean ± SD ; n=3); data are represented as mean ± SD. (D) Hierarchical two- way clustering 
heatmap of normal tissue cell mRNA expression data for CD36 and the indicated CD36 enriched screens. (E) Dendrogram of observed CD36 (blue) 
protein- protein interactions (PPIs) in the indicated CRISPRa screens (gray) calculated from multiple sequence alignments of the indicated secreted 
ligands (gray). (F) Multivariate correlation analysis of normal tissue cell mRNA expression data for CD36 and the indicated CD36 enriched screens.

The online version of this article includes the following figure supplement(s) for figure 7:

Figure supplement 1. Gating strategy of 293F cells.

Figure 7 continued
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The scavenger receptor CD36 acts as a receptor for a broad range of 
secreted ligands
CD36, also known as SCARB3 or glycoprotein 4 (GPIV), is a multifunctional Type B scavenger receptor 
with two transmembrane domains and an ~410 aa ECD. CD36 is known to bind to many ligands 
(Silverstein and Febbraio, 2009). In our analysis of TM2+ library screens we identified CD36 as a 
top scoring hit in several screens: KRTDAP, LY6H, NRN1, NRN1L, VWC2L, and SCRG1 (Figure 7A). To 
examine potential binding of these secreted ligands to CD36 on the cell surface, fluorescent tetramers 
of LY6H, NRN1, VW2CL, and SCRG1 were incubated with 293F cells or 293F cells expressing full- 
length CD36 (Figure 7B, Figure 7—figure supplement 1A). We observed binding of LY6H, NRN1, 
VW2CL, and SCRG1 to CD36 by FACS. SPRC, which showed no enrichment of CD36 in its screen, 
served as a control and did in fact not bind to CD36 (Figure 7B, C). All CD36 enriched secreted 
ligands (LY6H, NRN1, NRN1L, VWC2L, SCRG1) except for KRTDAP show a strong correlation and 
cluster in brain tissue, which expresses CD36 mRNA only at low levels (Figure  7D). A PHA of all 
screens enriched for CD36 shows that VWC2L, LY6H, NRN1, NRN1L, and to some extent SCRG1 are 
more closely related to each other by sequence than KRTDAP (Figure 7E). Similarly, a multivariate 
analysis depicts a strong correlation of all secreted ligand with the exception of KRTDAP and CD36 
itself (Figure 7F) in normal tissue. However, CD36 protein is expressed in brain microglia, and inter-
estingly CD36- mediated debris uptake regulates brain inflammation in neurodegenerative disease 
models (Dobri et al., 2021; Grajchen et al., 2020).

While we also initially identified top scoring candidates for several other screens: MYOC, TICN1, 
OMG, and MDK, further analysis of their subcellular localization revealed that TMEM14A and REEP4 
(indicated by dotted lines in the respective plots) are mainly localized in the ER or mitochondrial 
membrane compartment and not in the plasma membrane.

Discussion
In an effort to accelerate the discovery of novel interactions between secreted ligands and the 
membrane proteome, we have developed a proteo- genomic high- throughput cell- based CRISPRa 
enrichment screening platform by employing customized, pooled cell surface receptor sgRNA libraries 
encoding transmembrane proteins in combination with MACS to enrich for receptor- expressing cells. 
We defined a list of 80 high- priority secreted ligands that are likely to have receptors that have not been 
previously identified. Twenty of these were successfully expressed, biotinylated, coupled to strepta-
vidin magnetic beads, and used in our CRISPRa enrichment screening workflow. After three consec-
utive rounds of selections and deep sequencing of enriched cells, casTLE statistical analysis enabled 
high- confidence prediction and identification of interaction pairs from each dataset (Figures 1 and 2).

To validate the results of the screens, we used SPR and cell binding methods (CSS) to prove that 
the receptor candidates actually bound to the ligands used for screening. We then expanded the set 
of receptor candidates by taking advantage of homology (PHA), examining other members of the 
gene families identified in the initial screens for binding. Using these approaches, we identified 14 
candidate receptors for 12 screened secreted ligands.

Interestingly, in some cases (OMG, TAFA- 2), a single ligand bound to multiple receptors in the same 
family (Figures 3 and 5), while in other cases (CD36, RNF167), a single receptor bound to several 
unrelated ligands (Figures 6 and 7). Our results highlight the inability of standard high- throughput 
in vitro screening methods to identify genuine ECD interactions, because none of the hits from our 
screens were found in the aggregate of commonly used protein interaction databases (Figure 2D) 
and attests for the sensitivity and robustness of our screening strategy for secreted ligands. This was 
previously observed when the results of ELISA- based in vitro screens using multimeric ECD fusion 
proteins were compared with PPIs represented in these databases (Martinez- Martin, 2017; Özkan 
et al., 2013; Ranaivoson et al., 2019; Söllner and Wright, 2009; Taouji et al., 2009; Verschueren 
et al., 2020; Wojtowicz et al., 2020).

PPIs often occur between phylogenetically related proteins both within and between subfamilies 
and PPI modules with tight functional relationships similarly are more likely to be co- expressed. While 
tissue expression correlations can be used as a predictive tool for physical interactions, poor correla-
tions do not necessarily suggest a lack of biological significance especially in the case of secreted 
ligands which are not restricted to the tissue origin of expression. In agreement with this hypothesis, 

https://doi.org/10.7554/eLife.81398


 Tools and resources Biochemistry and Chemical Biology | Cell Biology

Siepe et al. eLife 2022;11:e81398. DOI: https://doi.org/10.7554/eLife.81398  20 of 29

we observed that many of the protein pairs newly identified from the CRISPRa enrichment screens 
displayed tissue- dependent associations. In some cases, correlations were observed between secreted 
ligand and the receptor (GAS1, OSTN, OMG, TAFA- 2), while in other cases correlations very strongly 
correlated between hit candidates (CD36).

Our results suggest that the cell- based screening strategy is primarily limited by two factors. First, 
fewer than one- third of the high- priority ligand candidates were expressed at high enough levels to 
allow purification for screening. If it were possible to express all of the 206 ligands we identified as 
targets, one might expect to be able to identify receptors for more than 100 of them. However, it is 
unclear how this might be accomplished. Second, while a positive selection strategy using CRISPRa 
has a higher dynamic range compared to loss- of- function screens, successful enrichment and recovery 
of a potential cell surface receptor PPI is dependent on the efficiency and level of CRISPRa- mediated 
expression of cell surface receptors. Also, many functional receptors are protein complexes and inter-
actions might involve coreceptors or require chaperones that might not be present in K562 cells. In 
these cases, sgRNA- driven expression of single genes by CRISPRa would not be able to generate 
cells that make functional receptor complexes, unless the parental K562 cell line also made the other 
receptor complex components.

New biology revealed by CRISPRa enrichment screens
The most striking finding from our screen was the identification of three new ligands for RPTPs, a 
diverse set of cell signaling receptors whose functions are less well understood than those of RTKs. 
OMG, a ligand expressed by oligodendrocytes and some neurons, binds to all three R3 RPTPs and to 
one of the R2B RPTPs, PTPRU (Figure 3). All of these RPTPs are expressed in the brain. Most inter-
estingly, OSTN, a hormone that regulates bone and muscle growth in rodents but has acquired brain- 
specific expression and function in primates (Ataman et al., 2016), binds only to PTPRU (Figure 3). 
OSTN was reported to be a ligand for NPR- C, which regulates the levels of natriuretic peptides, but 
this is unlikely to explain its function in the primate brain. PTPRU, however, is expressed in the brain 
and is closely related to the three other R2B RPTPs, which are homophilic adhesion molecules that 
regulate cadherin- mediated cell adhesion. Moreover, PTPRU cannot mediate cell adhesion on its own, 
and is thought to lack phosphatase activity (Hay et al., 2020), so it may have a distinct function from 
the other R2B RPTPs.

GAS1, a regulator of Ret signaling involved in control of cell growth and a mediator of cell death 
(Cabrera et al., 2006), binds to PTPRA, an R4 RPTP that has no known ligand (Figure 4). PTPRA is a 
ubiquitously expressed signaling protein that both positively and negatively regulates tyrosine kinase 
signaling via dephosphorylation of Src family tyrosine kinases (Mustelin and Hunter, 2002). GAS1 
may provide a link of PTPRA to RET RTK signaling complexes.

Furthermore, we discovered an unexpected association between TAFA- 2, which is known as a 
neurokine (brain chemokine), and KIRs, which are inhibitory MHC class I receptors that are expressed 
only by NK cells (Figure 5). The TAFA2 gene is also expressed by T- regs and basophils, and TAFA- 2 
might be a soluble ligand that modulates NK signaling in response to MHC class I engagement. 
Furthermore, the newly discovered KIR3DL3- TAFA2 interaction may represent another intriguing 
way of modulating the KIR3DL3/TMIG2- HHLA2 signaling axis within the tumor microenvironment (Li 
et al., 2022; Wei et al., 2021).

Surprisingly, we also found several shared interactions between the PA- TM- RING E3 ligase RNF167, 
pleiotrophin, and neurokine family members (Figure  6). Most notably members of the PA- TM- E3 
ligase family are RNF43 and ZNRF3 which both modulate the WNT signaling pathway by targeting 
FZD receptor protein homeostasis. Interestingly, both E3 ligases are regulated by the secreted WNT 
agonists R- spondin (RSPO) (Clevers and Nusse, 2012; Janda et al., 2017; Zebisch and Jones, 2015). 
Ubiquitin E3 ligases are notoriously challenging to study due to the highly transient, catalytic nature of 
the ubiquitylation cascade and the transmembrane PA- TM- RING E3 ligase family is no exception with 
the majority still being orphans and their functions unknown.

In summary, we implemented a proteo- genomic screening workflow, combining CRISPRa pooled 
cell surface libraries with a MACS enrichment strategy, in order to accelerate the identification of 
interactions between the secreted and membrane proteomes. We report new receptor- secreted 
ligand PPIs that are potentially involved in a wide variety of signaling processes. Implementation of 
cell- based screening strategies based on our approach might allow elucidation of receptor- ligand 
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relationships for many proteins that are currently orphans, and has the potential to identify novel 
therapeutically relevant targets and define new biological processes.

Materials and methods
Cell lines
Suspension cells were grown in plain bottom, vented flasks (Thermo Fisher Scientific), adherent cells 
were grown in T25 or T75 flasks (Thermo Fisher Scientific). Cells were maintained at 37°C and 5% CO2. 
K562 (CCL- 243; ATCC) cells were grown in RPMI supplemented with 10% fetal bovine serum (FBS), 
1% GlutaMax, and 1% penicillin/streptomycin. HEK293T (CRL- 3216; ATCC) and LentiX cells were 
maintained in DMEM supplemented with 10% FBS, 1% GlutaMax, and 1% penicillin/streptomycin. 
K562 SunTag- VP64 (CRISPRa) cell line was a gift from M Bassik. NKL cells including NKL- KIR2DL1 and 
KIR3DL1 expressing NKL cells were a gift from P Parham. HEK293F (R79007; Thermo Fisher Scien-
tific) were grown in FreeStyle media (12338018; Thermo Fisher Scientific). Expi293F (A14528; Thermo 
Fisher Scientific) cells were grown in Expi293 Expression Medium (Thermo Fisher Scientific). Insect Hi5 
cells (Tni; Expression Systems, 94–002S) were grown in ESF 921 media (Expression Systems) with a 
final concentration of 10 mg l−1 of gentamicin sulfate (Thermo Fisher) at 27  °C and atmospheric CO2. 
Cell lines tested negative for mycoplasma (MycoAlert Mycoplasma Detection kit, Lonza).

Lentivirus production
HEK293T (LentiX) cells (female- derived kidney cell line) were grown in DMEM complete media 
(Thermo Fisher Scientific) supplemented with 10% FBS, 2 mM L- glutamine, 50 U/ml of penicillin and 
streptomycin, and used to package lentivirus using Fugene HD (Promega) in OptiMem (Thermo Fisher 
Scientific) as per the manufacturer’s instructions. Third- generation packaging plasmids were used 
for the pooled sgRNA CSR libraries. After 72 hr, lentivirus containing media was harvested, filtered 
(0.45 µM pore, PVDF), and concentrated using PEG- it (SBI) according to the manufacturer’s protocol 
or lentivirus containing media was used directly to infect the specified cell line.

FACS staining
Cells were stained with the indicated antibodies at 1:100 dilution or tetramer at the indicated concen-
tration for 30 min on ice in MACS staining buffer (Miltenyi). After incubation with fluorescent anti-
bodies, cells were washed with MACS buffer and analyzed via flow cytometry on a Cytoflex (Beckman 
Coulter) instrument. Surface expression was quantified by FACS using the CytoFLEX equipped with 
a high- throughput sampler. Live cells were identified after gating on the basis of forward scatter and 
side scatter and propidium iodide (PI) negative staining. Data were analyzed using FlowJo 10.8.1 (BD). 
All assays were performed using independent biological replicates. The number of replicates (n) is 
indicated in the figure legends. Mean fluorescence intensity (MFI) was determined in FlowJo 10.8.1.

Antibodies
Primary antibodies used in this study include anti- DYKDDDDK Tag (CST, D6W5B, # 15009), anti- CD36 
(BioLegend, # 336206), anti- KIR3DL1 (BioLegend, # 312716), anti- anti- KIR3DL2 (R&D, # FAB2878A), 
anti- anti- KIR3DL3 (R&D, # FAB8919r), anti- KIR2DL2/L3 (BioLegend, # 312612), anti- CD122 
(BioLegend, # 105912), anti- CD5 (BioLegend, # 364016), anti- CD25 (BioLegend, 302610), anti- CD272 
(BioLegend, # 344510), anti- CD2 (BioLegend, # 300214), anti- CD28 (BioLegend, # 302912), anti- CD80 
(BioLegend, # 305219), anti- CD45 (BioLegend, # 304012), anti- IL6ST (BioLegend, # 362006), anti- 
CD276 (BioLegend, # 351006), anti- CD47 (BioLegend, # 323124). These antibodies were used at 
1:100 dilution in MACS staining buffer (Miltenyi).

Curation of the human membrane and secreted proteome and selection 
of secreted bait proteins
Two lists of human membrane and secreted proteins were generated using the Human Protein Atlas 
(HPA) database (https://www.proteinatlas.org/humanproteome/tissue/secretome). Lists were checked 
for overlap and master lists were generated using the Human Protein Atlas majority decision- based 
method. Metadata for all master list proteins was extracted from UniProt https://www.uniprot.org 
and sequence information was validated by the SIgnalP- 5.0 (http://www.cbs.dtu.dk/services/SignalP/) 
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(Almagro Armenteros et  al., 2019), TMHMM- 2.0 (https://services.healthtech.dtu.dk/service.php? 
TMHMM- 2. 0), and PredGPI (http://gpcr.biocomp.unibo.it/predgpi/) (Pierleoni et al., 2008) prediction 
servers. Following curation, canonical protein sequences were extracted from UniProt and compiled 
for back translation and optimization by GeneArt/Life Sciences Technology for gene synthesis.

Generation of secreted mammalian expression plasmids
Genes encoding curated SPOI were synthesized at GeneArt/Life Sciences Technologies and subcloned 
into pD649- SPOI- AviTag- 6xHis. Genes were subcloned in- frame with the endogenous or HA (influenza 
hemagglutinin) signal peptide and downstream AviTag- 6xHis modules via 5’ NheI and 3’ AscI sites. 
A MaxiPrep of plasmid DNA was provided at 1 µg/ml in 20 mM Tris, pH 8.0. For complete plasmid 
sequences of all 80 SPOI bait expression vectors, see Figure 2—source data 3. All plasmids (80) will 
be made available through Addgene.

Generation of expression plasmids for full-length proteins
Genes encoding full- length proteins were synthesized at GeneArt/Life Sciences Technologies and 
subcloned into the pHR expression vector. Plasmids contain a kozak sequence, HA signal peptide, a 
FLAG tag (to facilitate cell surface expression analysis), and the remaining full- length coding region of 
the gene, followed by a stop codon.

Production of purified proteins
Proteins were produced in Expi293F cells using transfection conditions following the manufacturer’s 
protocol. After harvesting of cell media, 1 M Tris, pH 8.0 was added to a final concentration of 20 mM. 
Ni- NTA Agarose (Qiagen) was added to ~5% media volume. ×1 sterile PBS, pH 7.2 (Gibco) was added 
to ~×3 media volume. The mixture was stirred overnight at 4°C. Ni- NTA agarose beads were collected 
in a Buchner funnel and washed with ~300 ml protein wash buffer (20 mM HEPES, pH 7.2, 150 mM 
NaCl, 20 mM imidazole). Beads were transferred to an Econo- Pak Chromatography column (Bio- Rad) 
and protein was eluted in 15 ml of elution buffer (20 mM HEPES, pH 7.2, 150 mM NaCl, 200 mM imid-
azole). Proteins were concentrated using Amicon Ultracel filters (Millipore) and absorbance at 280 nm 
was measured using a Nanodrop 2000 spectrophotometer (Thermo Fisher Scientific) to determine 
protein concentration. A summary of the expression yields can be found in Figure 2—source data 2.

Biotinylation and FPLC purification
Where indicated, proteins were biotinylated as described previously (Özkan et al., 2013). Briefly, up 
to 10 mg of protein was incubated at 4°C overnight in ×2 Biomix A (0.5 M bicine buffer), ×2 Biomix B 
(100 mM ATP, 100 mM MgOAc, 500 μM D- biotin), Bio200 (500 µM D- biotin) to a final concentration 
of 20 µM, and 60–80 units BirA ligase in a final volume of 1 ml. Proteins were further purified by SEC 
using an S200 Increase or a Superose S6 column (GE Healthcare), depending on protein size, on an 
ÄKTA Pure FPLC (GE Healthcare), FPLC traces for purified proteins used for the CRISPRa enrichment 
screens and SPR validation can be found in Figure 2—figure supplement 2 and Figure 2—figure 
supplement 3.

CRISPRa enrichment screen
K562 cells stably expressing the sunCAS9 system carrying the pooled sgRNA CSR libraries (TM1; 
TM2+) were expanded and 50 million cells per screen and library were harvested, washed three times 
with cold MACS (Miltenyi) buffer, and resuspended in 2 ml MACS buffer in a sterile 5 ml Eppendorf 
tube. Cells were then labeled with magnetic streptavidin microbeads complexed with biotinylated 
bait protein (50 µl streptavidin microbeads; 1 µM biotinylated protein), mixed and incubated at 4°C 
for 30 min (tumbling). After labeling, cells were washed twice with cold MACS buffer (300× g, 10 min), 
resuspended in 1 ml MACS buffer and passed through a 40 µM cell strainer, to obtain a single- cell 
suspension, directly onto the LS- Column (Miltenyi) for magnetic bead separation according to the 
manufacturer’s protocol. Briefly, after applying the labeled cells onto the LS- Column, unlabeled cells 
pass through and are discarded while labeled cells are retained in the magnetic field, the LS- Column 
is washed three times with 3 ml of ice- cold MACS buffer. For elution of positively selected cells, the 
column is removed from the separator (magnet) and the magnetically labeled cells are flushed into a 
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15 ml Falcon tube with fresh media (RPMI complete), washed once, resuspended, and transferred to 
a T25 culture flask for expansion.

Genomic DNA extraction, library amplification, and deep sequencing
Genomic DNA was isolated using QiaAmp DNA Blood Maxi or QiaAmp DNA mini kits (Qiagen) 
according to the manufacturer’s instructions, genomic DNA was then amplified using Herculase II 
polymerase (Agilent) as described previously (Deans et al., 2016). To prepare the sgRNA sequencing 
library, the integrated sgRNA- encoding constructs were PCR amplified using Agilent Herculase II 
Fusion DNA Polymerase, followed by a second PCR amplification introducing sample- specific Illumina 
index barcodes and adapters for deep sequencing. Deep sequencing was performed using the MiSeq 
Reagent Kit v2 (300 cycles; Illumina) employing a custom sequencing oligo according to the manufac-
turer’s instructions:

(5’-  GCCA  CTTT  TTCA  AGTT  GATA  ACGG  ACTA  GCCT  TATT  TAAA  CTTG  CTAT  GCTG  TTTC  CAGC  TTAG  
CTCT  TAAA C-3’).

Cell surface binding assay with streptavidin tetramerized secreted 
ligand
To examine PPIs at the cell surface, we performed cell surface protein binding assays using K562 or 
HEK293F cells. K562 cells were used for pre- evaluation of potential base line binding for all secreted 
proteins used in the CRISPRa screening workflow. HEK293F cells were transfected using Fugene6 
according to the manufacturer’s protocol (Promega) with expression plasmids encoding full- length 
proteins containing an N- terminal tag (FLAG). Two days following transfection, cultures were harvested, 
cells were spun down for 4 min at 1600 rpm (~400× g), washed twice with cold MACS buffer (Miltenyi) 
and resuspended to a final density of ~3 × 106 cells/ml. To generate tetramerized secreted ligands 
to test for binding to cells expressing full- length proteins, FPLC- purified biotinylated proteins (see 
above) were incubated with streptavidin tetramers conjugated to Alexa647 Fluor (SA- 647) (Thermo 
Fisher Scientific) at a 4:1 molar ratio on ice for at least 15 min. To assess cell surface expression of 
full- length or ECD displayed proteins, 1:200 mouse anti- FLAG- 647 (CST) or anti- HA antibody (CST) 
staining of cells was also performed in parallel where indicated. Approximately 150,000 cells were 
incubated with Protein:SA- 647 complexes or antibody in a final volume of 100 µl in 96- well round- 
bottom plates (Corning) for 1 hr at 4°C protected from light. Following incubation, cells were washed 
two times with 200 µl cold MACS buffer and resuspended in 200 µl cold MACS buffer with 1:3000 
PI (Thermo Fisher Scientific). Immunofluorescence staining was analyzed using a Cytoflex (Beckman 
Coulter), and data were collected for 20,000 cells. Data were analyzed using FlowJo v10.4.2 soft-
ware. All data report MFI. Concentration- dependent binding of Protein:SA- 647 to full- length receptor 
expressing, but not mock control cells, was deemed indicative of cell surface binding.

SPR experiments
SPR experiments were performed using a Biacore T100 instrument (GE Healthcare). FPLC- purified 
biotinylated proteins (ligands) in HBS- P+ Buffer (GE Healthcare) were captured on a Streptavidin (SA) 
Series S Sensor Chip (GE Healthcare). Chip capture was performed in HBS- P+ buffer (GE Healthcare) 
to aim for ~100–200 ligand response units (RU). Flow cell 1 was left empty to use this flow cell as a 
reference flow cell for online subtraction of bulk solution refractive index and for evaluation of non- 
specific binding of analyte to the chip surface using Biacore T100 Control Software (v3.2) (GE Health-
care). FPLC- purified non- biotinylated protein was used as analyte. Analytes were run in HBS- P+ buffer 
using twofold increasing protein concentrations to generate a series of sensorgrams. Binding parame-
ters were either determined based on a 1:1 Langmuir model or at equilibrium using the accompanying 
Biacore T100 evaluation software. A table of all SPR conditions for each ligand- analyte pair tested 
including concentration range of twofold analyte dilutions, injection rate, injection and dissociation 
times, regeneration conditions, and meta data can be found in Figure 2—source data 5.

Data analysis
Deep sequencing results for each round of selection were analyzed using the casTLE statistical frame-
work (Morgens et  al., 2016). Briefly, casTLE compares each set of gene- targeting guides to the 
negative controls, using both safe- targeting and non- targeting controls and selecting the most likely 

https://doi.org/10.7554/eLife.81398


 Tools and resources Biochemistry and Chemical Biology | Cell Biology

Siepe et al. eLife 2022;11:e81398. DOI: https://doi.org/10.7554/eLife.81398  24 of 29

maximum effect size (casTLE- Effect). A pValue is then generated, representing the significance of 
this maximum effect by permuting the results (n=10,000 permutation). Screening results of the final 
round of enrichment for each of the 20 secreted proteins were subjected to a first- pass filter using the 
following cut- offs: casTLE- Effect > 2, casTLE- Score > 2, pValue < 0.05. Next, hits outside the secreted 
and membrane proteome and common false positive contaminants were removed. To predict high- 
confidence interaction pairs from each dataset, a custom score was then computed for each potential 
interaction pair by combining all three metrics into one ESP score: (casTLE- Effect + casTLE Score)/
pValue. To integrate data analysis and visualization, we used the combined ESP score to rank sort 
interaction pairs for every screen and created trajectory plots to ensure positive enrichment over the 
three consecutive rounds of selection for the predicted hits and allows elimination of false positive 
candidates.

Database integration
Interaction datasets were downloaded from BioGRID (https://thebiogrid.org, 4.4.210, physical inter-
actions), Bioplex (https://bioplex.hms.harvard.edu, Hek293 v3.0 and HCT116 v1.0) and STRING 
(https://string-db.org/; v11.5; physical dataset; interaction score  >0.4). To calculate the overlap 
between all obtained datasets and out own study, interactions were restricted to physical interactions 
reported and a Venn diagram was visualized (Heberle et al., 2015). PHA was performed to generate 
phylogenetic trees from multiple sequence alignments (MSA) of amino acid sequences of secreted or 
ECD sequences of transmembrane cell surface receptors (https://www.uniprot.org/). Briefly, MSA was 
performed using ClustalOmega (https://www.ebi.ac.uk/Tools/msa/clustalo/) and alignments results 
were submitted to calculate phylogenetic tree parameters (https://www.ebi.ac.uk/Tools/phylogeny/ 
simplephylogeny/) which were visualized by Interactive Tree of Life (iTOL; https://itol.embl.de/) 
(Letunic and Bork, 2021). Tissue expression datasets, normal tissue, and TCGA (The Cancer Genome 
Atlas) datasets were downloaded from The Human Protein Atlas (https://www.proteinatlas.org; 
v21.1). TCGA cancer tissue RNA- seq data was obtained from 17 cancer types representing 21 cancer 
subtypes and were processed as median FPKM (number fragments per kilobase of exon per million 
reads) and visualized as a hierarchical clustering heatmap using JMP Pro (v16). Unsupervised hierar-
chical clustering of normalized mRNA gene expression by tissue was performed with Ward linkage 
and correlation distance were plotted as heatmaps using JMP Pro (v16). Tissue expression correlation 
analysis of normalized mRNA gene expression for candidate genes was performed using multivariate 
analysis tool in JMP Pro (v16) and expression correlation results were visualized as heatmaps where 
intense red color indicates a strong positive correlation and intense blue color indicates a strong 
negative correlation.
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