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A B S T R A C T   

Among legumes, the lentil (Lens culinaris) is a major dietary component in many Mediterranean and Asian 
countries due to its high nutritional value, especially protein. However, allergic reactions triggered by lentil 
consumption have also been documented in many countries. Complete allergens profiling is critical for better 
management of lentil food allergies. Earlier studies suggested Len c 1, a 47 kDa vicilin, Len c 2, a seed-specific- 
biotinylated 66-kDa protein, and Len c 3, low molecular weight lipid transfer proteins (LTPs) were major 
allergenic proteins in lentils. Recently, mass-spectrometry-based proteomic platforms successfully identified 
proteins from lentil samples homologous to known plant allergens. Furthermore, in silico analysis using 337 
protein sequences revealed lentil allergens that have not previously been identified as potential allergens in 
lentil. Herein, we discuss the feasibility of omics platforms utilized for lentil allergens profiling and quantifi
cation. In addition, we propose some future strategies that might be beneficial for profiling and development of 
precise assays for lentil allergens and could facilitate identification of the low allergen-containing lentil cultivars.   

1. Introduction 

Lentil (Lens culinaris) is a legume and a rich source of protein 
(22–26% dry weight; Longobardi et al., 2017). Lentil is also a good 
source of vitamins, dietary fiber, and minerals (Ibanez, Martinez, San
chez, & Fernández-Caldas, 2003; Longobardi et al., 2017); fat content 
and trans-fatty acids contents are lower than other legumes, such as 
chickpeas (Cicer arietinum), cowpeas (Vigna unguiculata), lupins (Lupinus 
albus), faba bean (Vicia faba), and pigeon bean (Cajanus cajan) (Ene- 
Obong & Carnovale, 1992; FAO, 2019; Urbano, Porres, Frías, & Vidal- 
Valverde, 2007). In 2019, around 5.7 million tons of lentils were pro
duced around the world, wherein China, India, Nepal, Bangladesh, 
Canada, and USA (Fig. 1A and B) were the major lentil producers (FAO, 
2019; Rawal & Navarro, 2019). 

Although lentil is a common component of the diet in many 

countries, allergic reactions due to lentil consumption have been re
ported by many research groups (Leonardi et al., 2014; Sackesen et al., 
2020; San Ireneo, Ibáñez, Sánchez, Carnés, & Fernández-Caldas, 2008). 
Strong IgE-mediated hypersensitivity and immune cross-reactivities 
have been reported in many populations, especially in Mediterranean 
and Asian countries (Crespo, Pascual, Burks, Helm, & Esteban, 1995). 
LTPs are well-known plant allergen proteins, have also been identified in 
lentils (Akkerdaas et al., 2012; Asero, 2011; E. Finkina et al., 2007; 
Shaheen et al., 2019). However, it is important to note that allergic re
actions vary with race, age, and other factors (Dalal, Binson, Reifen, 
Ballin, & Somekh, 2002; Mahdavinia et al., 2021; Sasaki et al., 2020; 
Wollmann et al., 2015). 

To date, numerous efforts have been made to identify and quantify 
lentil allergens. A search on the NCBI website using the keywords “le
gumes”, “allergen/allergy”, and “proteomics” revealed a total of 3663 
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research articles published in the last two decades, wherein lentil al
lergens (Supplementary Table 1, Fig. 1C) and proteome-based research 
(Supplementary Table 1, Fig. 1D) are steadily in the bottom compared to 
other legume species. However, a word cloud of all research papers 
published on lentils showed that allergen protein identification, char
acterization, and allergic symptoms from lentil samples were key in
terests (Fig. 1E). These results showed there is a lack in lentil research, 
particularly identification and profiling of allergens, which might be 
related to the incomplete protein sequences. It is important to note that 
precise protein sequencing, profiling, and quantification of plant aller
gens is challenging for non-model species using mass-spectrometry due 
to the availability of a publicly accessible protein sequence database 
(Carpentier et al., 2008). Standard methods, such as immunoblot assay 
for identification and quantifications of lentil allergens have been re
ported (Kumar et al., 2010; López-Torrejón et al., 2003; Pascual et al., 
1999; Shaheen et al., 2019). Enzyme linked-immunosorbent assay 
(ELISA) has also been widely used for allergens research. However, this 
method depends on recognition of food allergens by monoclonal or 
polyclonal antibodies (Vidova & Spacil, 2017). These conventional 

methods have been successfully applied for the detection of particular 
allergen and quantification in various biological samples (Koeberl 
Clarke, & Lopata, 2014). However, there are some limitations with these 
antibody-based methodologies (Koeberl Clarke, & Lopata, 2014), which 
might be overcome with peptide-based microarray assay (Sackesen 
et al., 2020; Vereda et al., 2010). 

Proteomic-based platforms combined with liquid chromatography 
and coupled with tandem mass spectrometry (LC-MS/MS) have gained 
importance because of their accuracy, multiplexity, identification, and 
quantification of allergens from biological samples including lentil 
(López-Pedrouso, Lorenzo, Gagaoua, & Franco, 2020; Scippa et al., 
2010). Thus, successful application of mass spectrometry-based prote
omics platforms could expand the identification and quantification of 
lentil allergens and pave the way to future studies. Furthermore, mul
tiple bioinformatics-based tools have been developed that could suc
cessfully predict allergens and/or allergen-like proteins from available 
protein sequences (Garino, Coïsson, & Arlorio, 2016; Gupta et al., 2013; 
Hall & Liceaga, 2021; Maurer-Stroh et al., 2019). 

In this review, we discuss the status of lentil allergens and allergen- 

Fig. 1. Current status of lentils growth, production, and allergen research. A, Global production of lentils in comparison with other legumes in 2019. B, major lentil 
harvested areas in the world. C-D, a comparison of lentil and other legume research over the last 21 years (Supplementary Table 1). An individual search for each 
crop was performed on the NCBI website using the terms: “<crop name > allergen AND allergy” for allergy-related research articles (C), and “<crop name >
proteomics” for proteomics-related articles (D). E, a word cloud (https://www.wordle.net/) of around 55 paper titles from PubMed and DOAJ databases for “lentil 
allergen” and associated medical subject headings (MeSH) terms (search strategy are given in Supplementary Table 2). 
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like proteins as well as the methods utilized for identification and 
quantification. Additionally, we performed in silico analysis using 337 
lentil protein sequences, which provided a list of potential allergens. We 
also considered potential research strategies that would help to eluci
date and validate detailed information for the lentil allergome as well as 
help to develop strategies for lentil allergy management through mod
ifications in food systems. 

2. Known lentil allergens or allergen-like proteins 

According to the plant allergen database (https://www.allergome. 
org; https://www.allergenonline.org), a total of ten lentil allergen pro
teins, namely Len c, Len c 1, Len c 1.0101, Len c 1.0102, Len c 1.0103, 
Len c 2, Len c 2.0101, Len c 3, Len c 3.0101, and Len c Agglutinin were 
identified and verified (Akkerdaas et al., 2012; Sánchez-Monge et al., 
2000). A recent update (February 2021) of the online allergen database 
(https://www.allergenonline.org/) also reports three allergen protein 
groups from lentil along with 951 sequences. However, it is important to 
note that different databases may be highly redundant, and/or missing 
many of the recently identified allergens. The majority of known aller
gens in lentil seeds belong to the cupin, tryp alpha amyl, and lectin legB 
family (Punta et al., 2012). However, recent studies identified a number 
of allergens or allergen-like proteins from lentil samples (Table 1). 

Based on the available information, lentil allergens can be grouped 
into four major protein families, namely convicilin, vicilin, LTP, and 
lectin. As expected, phylogenetic analysis with the same protein group 
homologs from different members of the Fabaceae family reveals close 
evolutionary relationships (Supplementary Fig. 1). This result is in 
agreement with earlier studies that showed plant allergen homologs 
shared highly conserved sequences (Arora, Kumar, Singh, & Singh, 
2020; Verma, Kumar, Das, & Dwivedi, 2013). 

Among the lentil allergens, Len c 1 (Len c 1.01), the earliest dis
covery as a major allergen, is a 50 kDa γ-vicilin chain from the cupin 
superfamily (López-Torrejón et al., 2003). Vicilin, also known as 7S 
globulins, are among the major storage proteins of legumes (Finkina 
et al., 2017). A total of three genetic isoforms namely Len c 1.0101, Len c 
1.0102, and Len c 1.0103 have been identified. Len c 1.02 is a 12- to16- 
kd protein of beta-subunit of lentil vicilin protein that may be produced 
by the posttranslational modification of the precursor Len c 1.01 (López- 
Torrejón et al., 2003). On the other hand, Len c 2 protein is an IgE- 
binding component of a 66 kDa seed-specific biotinylated protein. It is 
isolated from boiled lentils (Bouakkadia et al., 2015; Sánchez-Monge 
et al., 2000). Len c 3, a lipid transfer protein (LTPs) is a small molecular 
weight protein (around 9 kDa) that belongs to the superfamily “prola
min”. A subfamily of six lentil LTP isomers designated as Lc- LTP1-6 has 
been identified and verified as immunologically potential allergens 
using immunoblot analysis and mass spectrometry-based platforms 
(Akkerdaas et al., 2012; Asero, 2011; Bogdanov et al., 2015; E. I. Finkina 
et al., 2020; Shaheen et al., 2019). LTPs are considered as one of the 
main plant allergens that are highly cross-reactive. They can easily bind 
to different types of lipid molecules such as fatty acids, phospholipids, 
sterols, galactolipids, and lignins (Shenkarev et al., 2017). However, LTP 
showed a lower binding affinity to IgE proteins isolated from sera of 
patients with lentil allergy by heating and digestion processes (E. I. 
Finkina et al., 2020). Besides Len c, agglutinin (lectin) has been reported 
in several studies (Bouakkadia et al., 2015). 

In our recent proteomic-based discovery study, we have identified a 
total of 44 allergens and allergen-like proteins from lentil, including Len 
c 1, Len c 2, Len c 3, vicilin, convicilin, legumin, lectins along with their 
isomers (Shaheen et al., 2019). Label-free quantitative analysis of these 
allergen proteins revealed that Len c 1, Len c 2, and vicilin are the most 
abundant allergens, whereas convicilin and Len c 3 are less abundant 
(Shaheen et al., 2019). 

3. Methodologies for identification and quantification of lentil 
allergen and allergen-like proteins 

Identification and characterization of allergens and allergen-like 
proteins from food samples is one of the key interests in the food in
dustry. Therefore, a wide range of methodologies has been developed to 
characterize the allergen proteins from food samples. These methodol
ogies are mainly established methods including DNA-based polymerase 
chain reaction (PCR), immunology-based approach, and mass 
spectrometry-based platforms (Table 1). Herein, we briefly discuss the 
methods that have been utilized to identify and characterize the legumes 
and/or lentil allergen proteins. 

Table 1 
List of Lentil allergen and allergen-like proteins identified and quantified by 
various studies.  

Name of the allergen/ 
allergens like proteins 

Identification 
Method 

Quant 
Method 

References 

Albumin 2, Allergen Len c 
1.0101 partial, Allergen 
Len C 1.0102 partial, Beta- 
lathyrin 2 partial, Chain D 
lentil lectin, Convicilin 
partial, Convicilin 
Precursor, CVC partial, 
Endochitinase, Lectin, 
Legumin, Legumin A, 
Legumin A precursor, 
Legumin A2, Legumin B, 
Legumin K, Legumin type 
B alpha chain precursor, 
LTP 2, LTP 6, Pollen 
specific pectin methylest, 
Provicilin, Seed albumin 2 
partial, Storage protein, 
Vicilin, Vicilin 14 kDa 
component, Vicilin 47 K, 
Vicilin partial, Vicilin 
precursor, Vicilin type C 
partial, 

LC-MS/MS Label- 
Free 

(Shaheen et al., 
2019) 

Len c 3 Immunoblot, 
MALDI-TOF 

– (Akkerdaas 
et al., 2012) 

Len c 1, Len c 2 Immunoblot – (Sánchez- 
Monge et al., 
2000) 

Len c 1.0101, Len c 1.0102, 
Len c 1.0103, Len c 1.02 

Immunoblot, ELISA – (López- 
Torrejón et al., 
2003) 

Len c 1 Peptide microarray 
immunoassay 

– (Vereda et al., 
2010) 

Len c 1 Peptide microarray 
immunoassay  

(Sackesen 
et al., 2020) 

Len c 1 IgE 
Immunoblotting 

– (Armentia 
et al., 2006) 

LTP1, LTP2, LTP3, LTP4, 
LTP5, LTP6, LTP7, LTP8 

Biochemical assay – (E. Finkina 
et al., 2007) 

LTP-1, LTP-3 ELISA – (Bogdanov 
et al., 2015) 

Len c 1, Len c 2, Len c 3, Len 
c Agglutinin 
Proviciline, Viciline, 14 
kDa component, F-box 
protein, ATP-dependent 
Clp protease, Pyruvate 
phosphate dikinase 
regulatory protein 1, 
Glutathione S-transferase 

1D, 2-DE 
Immunoblot, 
LC-MS/MS 

– (Bouakkadia 
et al., 2015) 

Len c 3  Immunoglobulin 
Binding Assay 

– (E. I. Finkina 
et al., 2020) 

Convicilin, Len c 1.0101, Len 
c 1.0102, Lectin 

LC-MS/MS  (Bautista- 
Expósito et al., 
2018) 

Len c 1.0101, Len c 1.0102 MALDI-TOF, LC- 
ESI-LIT-MS/MS 

– (Scippa et al., 
2010)  
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3.1. PCR-based methodologies 

DNA-based methods such as polymerase chain reaction (PCR), 
transcriptomic, microarray assay, and single nucleotide polymorphisms 
(SNPs) have been used for the identification and quantification of 
allergenic epitopes (Besler, 2001; Monaci & Visconti, 2010; Schmitt, 
Nesbit, Hurlburt, Cheng, & Maleki, 2010). Identification of allergens 
using a gene-based platform is an indirect method but fast and reliable 
(Wang et al., 2011). SNPs are also used for identifying the mutations in 
genes (Shaheen et al., 2019; Soo, Walczyk, & Smith, 2012). The 
microarray-based genetic approach has not only been used to detect the 
legume epitope proteins, but also determine and monitor the disease 
profile of allergens and to establish multi-allergen tests (Flinterman 
et al., 2008; Harwanegg et al., 2003; Shreffler, Lencer, Bardina, & 
Sampson, 2005). Additionally, electrophoresis after the PCR assay is 
proposed by several authors to evaluate the amplicons (Sena-Torralba, 
Pallás-Tamarit, Morais, & Maquieira, 2020). 

3.2. Conventional Immunology-based approach 

The immunological-based approach is the basic technique for 
searching novel and known allergen proteins from biological samples 
(González-Buitrago et al., 2007). This platform is often combined with 
different technologies with one common thread using antibodies that 
recognize allergen proteins or part of these proteins (epitopes). The 
combination of immunochemical identification and gel electrophoresis 
provides a wide range of information about the level of interrogated 
protein, molecular weight of the protein, and its dispensation between 
the cellular fragments (Litovchick, 2020). Most of the known lentil 
allergen proteins such as Len c 1 (López-Torrejón et al., 2003), Len c 2 
(Sanchez-Monge et al., 2004), and LTPs (Akkerdaas et al., 2012) have 
been successfully identified by the immunoblot-based approach. 
Currently, numerous commercial allergen strips are available as a low- 
cost test, which provides rapid results, ideal for quick diagnosis of 
many known allergen proteins (Hamid, Elfedawy, Mohamed, & Mosaad, 
2009). 

Similarly, ELISA is one of the most popular immunological methods 
where proteins are directly detected from the allergenic source (Immer 
& Lacorn, 2015). A recent study successfully utilized the ELISA-based 
method to demonstrate the allergenicity and allergen compositions of 
53 Chinese peanut cultivars (Wu et al., 2016). However, the efficacy of 
multiple ELISA kits to detect allergen proteins from a wide range of 
lupines and legumes showed variable sensitivity among the samples, 
which relates to the cross-reactivity of the sample species (Koeberl, 
Clarke, & Lopata, 2014). A number of factors can determine the per
formance of the ELISA methods to detect food allergens (Abbott, 2010), 
wherein the major challenge of this method is the selection of an ideal 
buffer for the extraction of proteins from the food samples (Parker, 
2015). Nevertheless, the application of polyclonal and/or monoclonal 
antibodies for detection, identification, and quantification of precise 
allergen proteins is still divisive (Ascoli & Aggeler, 2018). 

3.3. Peptide microarray-based immunoassay 

Peptide-based microarrays are similar to protein microarrays, but 
they have been constructed using thousands of pre-synthesized peptides 
on a microarray surface (Li et al., 2021). Compared to proteins, syn
thesized peptides are more stable, easy to produce and modify, and more 
importantly, less expensive. Recently, peptide-based microarrays have 
been successfully applied for detection and mapping of the IgE epitopes 
of several food allergens (Flinterman et al., 2008; Han et al., 2016; 
Kühne et al., 2015; Martínez-Botas & de la Hoz, 2016) including lentils 
(Sackesen et al., 2020; Vereda et al., 2010). Using lentil allergic patients’ 
serum samples, for the first time, Vereda and coworkers identified 
several IgE-binding sequential epitopes of Len c 1 which are in the C- 
terminal region (Vereda et al., 2010). Similarly, a recent work by 

Sackesen and coworkers also used microarray-based immunoassays to 
detect antibodies such as IgE and IgG4 binding to Len c 1 epitopes in the 
patients’ sera. The study also revealed that IgE and IgG4 binding to 
epitopes were significantly higher in the reactive patient than the 
tolerant one. However, IgE epitopes binding to Len c 1 were not 
detectable for all lentil allergic patients as it was not the only allergen in 
lentils (Sackesen et al., 2020). The peptide-based microarray technique 
required a low amount of human serum sample and showed higher 
sensitivity compared to the conventional methods. Therefore, it could be 
adopted as a cost-effective screening method for the identification of 
other lentil allergen epitopes (Kühne et al., 2015; Li et al., 2021). 

3.4. Mass spectrometric-based proteomic methodologies 

Recently, liquid chromatography-tandem mass spectrometry (LC- 
MS/MS)-based proteomic platforms have been successfully utilized and 
are considered a reliable method to identify and quantify plant allergen 
proteins (Ahsan, Rao, Gruppuso, Ramratnam, & Salomon, 2016; Gavage 
et al., 2020; López-Pedrouso et al., 2020; Nakamura & Teshima, 2013; 
Righetti & Boschetti, 2016; Stevenson, Houston, & Thelen, 2010; The
len, 2009). In this section, we discuss LC-MS/MS-based proteomics 
platforms that have been used to identify and quantify lentil allergen 
proteins. 

Matrix-assisted laser desorption/ionization time-of-flight (MALDI- 
TOF) is a well-established and widely used mass spectrometry-based 
method in food chemistry. MALDI-TOF has been shown to be suitable 
for the identification of known food contamination and allergen proteins 
composition during industrial production (Calvano, Bianco, Losito, & 
Cataldi, 2021). Earlier studies showed successful identification of known 
lentil allergen proteins such as Len c1 and Len c3 using immunoblot 
followed by MALDI-TOF analysis (Akkerdaas et al., 2012; Scippa et al., 
2010). However, recent advancement of LC-MS/MS-based methods 
mainly known as shotgun proteomics or discovery proteomics can be 
essential for this purpose. This platform provides highly accurate iden
tification and quantitation of many known and unknown plant allergens 
and allergen-like proteins with their posttranslational modified forms 
(Rahman et al., 2021; Rost, Muralidharan, & Lee, 2020; Spiric et al., 
2017). Only a handful of gel-based and/or shotgun proteomic analyses 
have been performed to catalogue the total proteome and allergen 
proteins from lentil seed samples. Thus far, only a couple hundred lentil 
seed proteins have been profiled using the gel-based proteomic 
approach (Akkerdaas et al., 2012; Bouakkadia et al., 2015; Scippa et al., 
2010; Shaheen et al., 2019). Most of the earlier proteomic studies suc
cessfully identified major lentil allergen proteins such as Len c1, Len c2, 
Len c3, proviciline, viciline, convicilin, and lectin (Akkerdaas et al., 
2012; Bouakkadia et al., 2015; Scippa et al., 2010). However, for the 
first time, in a recent study, we have identified and sequenced the iso
forms of LTPs, legumins, and many other allergen-like proteins such as 
beta-lathyrin 2, albumin 2, endochitinase, pollen-specific pectin meth
ylest from lentil seed using nano-LC systems coupled with high- 
resolution mass spectrometry (Shaheen et al., 2019). Taken together, 
these earlier studies suggest that optimization of protein extraction and 
sample preparation methodologies coupled with an advanced LC-MS/ 
MS pipeline could significantly improve the sequencing depth of lentil 
seed proteome, thus providing identification and confirmation of many 
novel allergen proteins. 

Targeted proteomics can be performed using technical methodolo
gies including selected reaction monitoring (SRM), multiple reaction 
monitoring (MRM) and parallel reaction monitoring (PRM), with the 
latter being one of the new concepts and application of mass 
spectrometry-based proteomics invented in the last decade (Gillet et al., 
2012; Picotti & Aebersold, 2012; Picotti, Bodenmiller, Mueller, Domon, 
& Aebersold, 2009; Picotti et al., 2010). Among targeted proteomic 
platforms, absolute quantification (AQUA)-MRM is considered one of 
the most reliable for accurate protein quantitation from any biological 
sample (Ahsan, Wilson, & Thelen, 2018; Picotti et al., 2009). The great 
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advantage of using the targeted proteomic platform is the specific 
identification, and quantification of a target set of peptides and/or 
proteins in an MS analysis with high sensitivity, reproducibility, and 
quantitative accuracy. Therefore, the application of targeted proteomic 
pipelines has rapidly increased in the last five years particularly in the 
field of food industry (Ahsan et al., 2016; Gavage et al., 2020). Targeted 
proteomic-based assays has been successfully utilized for identification 
and quantification of many well-known legume allergen proteins 
(Gavage et al., 2020; Stevenson et al., 2010). Recently, we have estab
lished the ideal peptide list of three lentil allergen proteins namely Len 
C1.0101, Len c 1.0102, and LTP2/4/5/6 for MRM-based assay (Shaheen 
et al., 2019). One of the main criteria of developing a successful MRM- 
based assay depends on the reproducibility of the targeted peptides in 
the actual biological sample (Ahsan et al., 2016). Due to the lack of a 
large-scale discovery proteomics dataset, the lentil seed proteome data is 
still fragmentary. Therefore, a great deal of discovery proteomic analysis 
remains to be done to develop an efficient and precise MRM-based 
quantitation assay for lentil allergome. 

4. In silico analysis for potential lentil allergens 

In silico or computational methods are widely used to determine or 
predict physiochemical properties such as structures and domains of a 
protein. The probability of a protein being allergenic can also be 
calculated in silico by using different algorithms and comparing the 

structures that are known to have allergenic properties (Garino et al., 
2016; Maurer-Stroh et al., 2019). Although, in silico methodologies are 
incapable of distinguishing between the sensitization and elicitation 
phases of allergies, the FAO/WHO and the European Food Safety Au
thority (EFSA) guidelines state that a query protein is potentially aller
genic if it has a sequence identity of>35% identical over a frame of 80 
amino acids or matched exactly with 6 to 8 amino acids with an allergen 
(Maurer-Stroh et al., 2019). 

Although, in silico analysis has been successfully employed to 
determine the potential allergenicity of many plant proteins (Garino 
et al., 2016; Kulkarni, Ananthanarayan, & Raman, 2013), to the best of 
our knowledge, no large-scale in silico analysis has been conducted using 
the lentil protein database. Therefore, it is imperative to investigate a 
genome/proteome-based search for potential allergen-like proteins. 
While the complete lentil genome sequence is not publicly available, we 
extracted a total of 337 lentil protein sequences from the UniProt 
database (Taxonomic ID: 3864). These protein sequences were further 
subjected to AllerCatPro, an online-based pipeline to determine the 
allergenicity potential (Maurer-Stroh et al., 2019). Out of 337 lentil 
proteins analyzed, a total of 22 and 19 proteins were categorized as 
strong and weak allergens, respectively (Fig. 2, Supplementary Table 3). 
As expected, well-characterized lentil allergens such as LTPs and Len c1 
were identified with strong evidence (Fig. 2A). Two pathogenesis- 
related (PR) proteins, namely PR4 and PR-10b, and a disease- 
resistance response protein 49 (DRR49) were also identified as 

Fig. 2. In silico identification of potential lentil allergens. A total of 337 lentil protein sequences obtained from UniProt database were subjected to AllerCatPro 
(https://allercatpro.bii.a-star.edu.sg/). A-B, scatterplots showed 22 proteins were identified with strong evidence (A) and 19 lentil proteins were identified with weak 
evidence (B) as potential allergens, respectively. Detailed information can be found in supplementary table 3. 
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potential new allergens with strong evidence (Fig. 2A), while PR-10a 
was identified with weak evidence (Fig. 2B). Among the PR proteins, 
PR-10b and DRR49 showed ≥ 75% sequence similarity, >94% identity 
with 3D epitope, and matched with 250 known allergens (Supplemen
tary Table 2). A phylogenetic analysis of lentil PR proteins with 250 
allergen hits further revealed close evolutionary relationships of PR10b 
and DRR49 with soybean (Glycine max), lupin (Lupinus luteus), mung 
bean (Vigna radiata), and peanut (Arachis hypogaea) PR proteins 
(Fig. 3A). Among the 250 allergens, soybean Gly m4 was the top hit 
against these PR-10b and DRR49 proteins (Supplementary Table 3). 

Amino acid sequence analysis of PR10b and DRR49 with other soy
bean, lupin, mung bean, and peanut PR proteins showed the epitope 
binding residues and region are highly conserved (Fig. 3B). It is also 
interesting to find out that the epitopes containing tryptic peptides of 
lentil PR10b and DRR49 are slightly different, suggesting a successful 
MRM-based targeted proteomic assay could be developed for these two 
potential lentil allergens (Ahsan et al., 2016). 

Plant PR proteins are a known class I allergen showing strong IgE 
cross-reactivity (Arora et al., 2020). It is important to note that, PR 
proteins have never been claimed or identified as potential allergens for 
lentils. Nevertheless, the allergenic activity of potential allergens iden
tified by in silico analyses need to be verified using further experimental 
strategies. Taken together, these results suggest that in silico analysis of 
the complete lentil proteome would be a potential strategy to discover 
many putative allergens which could help to assess the complete list of 
lentil allergens. Thus, food safety regulations could be evaluated more 
efficiently for lentils. 

5. Future omics-based strategies for identification and 
quantification of lentil allergens 

Minimal changes of allergen protein levels in food can trigger allergic 
reaction, a potential life-threatening condition for allergic patients 
(Ballmer-Weber et al., 2015). Early allergen detection and quantifica
tion methodologies improve our understanding of well-known lentil 
allergens. However, these conventional methodologies are unable to 
predict, detect, and quantify the isoform-specific allergens, multiple 
types of post-translational modifications in allergens, and/or less 

characterized allergens (Koeberl, Clarke, & Lopata, 2014). More 
importantly, conventional methodologies are incapable of being per
formed as a multiplexed system (Ahsan et al., 2016). Thus, there is great 
demand for developing multiplexed methodologies to identify and 
quantify the allergen proteins in the fresh food industry. Herein, we 
propose some future strategies that could be beneficial for the profiling 
and quantification of lentil allergome.  

1. In silico analysis using the complete lentil genome-derived amino 
acid sequences would be significantly beneficial for predicting the 
overall lentil allergome.  

2. Developing a mass-spectrometry based allergen detection and 
quantification assay is a key step in profiling the complete allergome 
(allergen and allergen likes proteins) of lentil seed. It is important to 
note that, earlier lentil proteomic studies (Akkerdaas et al., 2012; 
Bouakkadia et al., 2015; Scippa et al., 2010; Shaheen et al., 2019) 
using gel-based proteomics platforms identified a total of 200 pro
teins. Surely this number is a small portion of the lentil seed prote
ome. However, complementary proteomic platforms such as a 
combination of gel-based and gel-free proteomic platforms coupled 
with various protein extraction methodologies offers extensive 
sequencing depth of seed proteome and allergome (Bose et al., 2019; 
Natarajan, Xu, Caperna, & Garrett, 2005; Romero-Rodríguez, 
Maldonado-Alconada, Valledor, & Jorrin-Novo, 2014). We have 
demonstrated that gel-free shotgun proteomics analysis of lentil seed 
samples significantly increased the sequencing depth of the lentil 
seed proteome (unpublished). While it has already been demon
strated that the choice of protein extraction buffer enriches different 
protein functional classes from seed samples, systematic optimiza
tion of protein extraction is needed for in-depth profiling of the lentil 
seed proteome.  

3. A comprehensive proteome dataset combined with a thorough 
search against all annotated genome is necessary to identify the 
complete translational product (proteome) in non-model plant spe
cies(Al-Mohanna, Bokros, Ahsan, Popescu, & Popescu, 2020). Thus, 
a proteogenomics approach would provide a precise annotation of 
the lentil allergen proteins. 

Fig. 3. Phylogenetic relationship and amino acid sequence alignment of lentil PR proteins with other allergens. A, phylogenetic tree of a total of 254 proteins 
including 4 lentil PR proteins and 250 homologs (allergen hits) matched with PR10b (K4LMW7) and DRR49 (K4L959). The length of the branches represents the 
number of substitutions per site. Gaps were eliminated using the complete deletion option. The analysis was performed using MEGA X (S. Kumar, Stecher, Li, Knyaz, 
& Tamura, 2018). The amino acid sequence alignment lentil, soybean, lupin, mung bean, and peanut PR proteins (pink portion in Fig. 3A). B, showed that epitope 
regions are highly conserved among the species. Weblogo highlights the known epitope binding residues (Ref: AllerCatPro, K4LMW7_Lens culinaris). 
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4. Systemic proteomic screening of thousands of lentil cultivars may 
identify lentil cultivars with low allergenicity.  

5. Most of the plant allergen proteins are seed storage and defense- 
related proteins, therefore, the effect of geographical variation and 
cultural practices on lentil allergome should also be investigated.  

6. Processing steps could significantly influence the allergenicity of 
many legume seed proteins including lentils (Beyer et al., 2001; 
Cabanillas, Jappe, & Novak, 2018; Cuadrado et al., 2009; Mondoulet 
et al., 2005). Therefore, analyses of complete lentil allergome pro
files in response to cooking methods (boiling, frying etc.) would be a 
beneficial strategy to minimize the allergic reaction to the sensitive 
population. 

6. Conclusion 

The in silico analysis revealed that the complete profiling of lentil 
allergome is still in the juvenile stage due to the lack of a publicly 
available genome sequence. Precise detection, quantification, and 
meaningful labeling of lentil allergen proteins could significantly miti
gate the allergenic reaction of these sensitive populations and thereby, 
could offer better consumer safety. Thus, various omics platforms such 
as in silico analysis, peptide-based microarray, and mass spectrometry- 
based proteomics could significantly contribute to the identification 
and quantification of potential lentil allergens. 
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