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Abstract: Uterine fibroids represent the most common benign tumors of the uterus. They are
considered a typical fibrotic disorder. In fact, the extracellular matrix (ECM) proteins—above all,
collagen 1A1, fibronectin and versican—are upregulated in this pathology. The uterine fibroids
etiology has not yet been clarified, and this represents an important matter about their resolution. A
model has been proposed according to which the formation of an altered ECM could be the result
of an excessive wound healing, in turn driven by a dysregulated inflammation process. A lot of
molecules act in the complex inflammatory response. Macrophages have a great flexibility since
they can assume different phenotypes leading to the tissue repair process. The dysregulation of
macrophage proliferation, accumulation and infiltration could lead to an uncontrolled tissue repair
and to the consequent pathological fibrosis. In addition, molecules such as monocyte chemoattractant
protein-1 (MCP-1), granulocyte macrophage-colony-stimulating factor (GM-CSF), transforming
growth factor-beta (TGF-β), activin A and tumor necrosis factor-alfa (TNF-α) were demonstrated to
play an important role in the macrophage action within the uncontrolled tissue repair that contributes
to the pathological fibrosis that represents a typical feature of the uterine fibroids.
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1. Uterine Leiomyoma: A Typical Fibrotic Pathology

Uterine leiomyomas (leiomyomas, myomas, uterine fibroids, fibroids) are the most
common benign tumors of the uterus. The perimetrium constitutes the more external
layer of the uterus; it equals the peritoneum and is surrounded by a thin connective tissue
layer. The perimetrium resembles a typical serosa/adventitia layer. The endometrium
constitutes the more internal layer. It is formed by a simple columnar epithelium and
contains numerous tubular glands. In addition, a cell-dense connective tissue layer can be
individuated at the level of this structure. Finally, a transition to squamous non-keratinized
epithelium at the portio (squamocolumnar junction) can be appreciated. Functionally,
the endometrium can be divided into two sublayers: the so-called stratum basale, which
represents the basal layer, and the so-called stratum functionale, which is the real functional
layer. The endometrium resembles a typical mucosa layer. Finally, the myometrium
constitutes the intermediate layer between the perimetrium and the endometrium and
represents the muscularis structure of the uterus. The uterine musculature shows properly
the typical characteristics of the smooth muscle tissue. More precisely, the myometrium
is composed of three smooth muscle layers: the subvascular layer, which is quite thin;
the vascular layer, which is rather strong and well-perfused; and the supravascular layer,
which is composed of a complex of crossing muscle fibers. The subvascular layer is
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mainly involved in the separation of the endometrium during the menstrual cycle. The
vascular layer runs around the uterus and, in doing this, it forms a kind of net for the
perfusion of the tissue. It plays a major role during labor within the complex mechanism
that regulates the uterine contractions during the partum [1]. The supravascular, with its
muscle fibers, stabilizes the uterine wall [2,3]. The cells of the myometrium can transform
themselves into uterine leiomyoma cells. So, the uterine leiomyoma is a pathology that
involves, in detail, the myometrium. The uterine fibroids incidence in reproductive age
women is approximately 60%, and if we consider black women, this percentage reaches
80% [4]. The symptomatology of uterine fibroids is very heavy. One of the most relevant
clinical symptoms is prolonged or heavy menstrual bleeding. In addition, the irregular and
excessive bleeding often experienced by the women affected by uterine leiomyomas, a lot
of times, leads to anemia. Other symptoms of the uterine fibroids are represented by pelvic
pain or pressure, pain at the level of the back of the legs, a pressure sensation at the level
of the lower part of abdomen, bowel and bladder dysfunctions and pain during sexual
intercourse.

In addition to all these physical ailments, uterine leiomyomas may also impact the
pregnancy outcome. Depending on their position, size and number, uterine leiomyomas
can be a cause of infertility and recurrent miscarriage [5–9]. Although uterine leiomyomas
are not malignant tumors, they can cause significant morbidity. Thus, this pathology
represents one of the most important public health problems worldwide [10]. This fact
becomes also more relevant if we bear in mind that, at the moment, no long-term medical
treatments are available for fibroids resolution [11].

Considering the role played by estrogens and progesterone in the leiomyoma growth [11,12],
for the treatment of uterine fibroids, the U.S. Food and Drug Administration (FDA) ap-
proved leuprolide acetate, which is a gonadotropin-releasing hormone analog. However,
these kinds of molecules, in particular in young women, can provoke several side ef-
fects, above all, a hypogonadal state; this is the reason why the duration of therapy is
currently limited. Uterine leiomyomas usually start to grow again after breaking off
the treatment [13,14]. Nevertheless, it was demonstrated that leuprolide acetate can be
effectively used in order to decrease the volume of the uterine fibroids with improved
fibroid-related symptoms. [15–17]. Of the treatments that have been studied up to now, the
focus has above all been on those belonging to two categories: antiprogestin and selective
progesterone receptor modulators (SPRMs). Thus, clinical trial results suggested mifepris-
tone, which is an antiprogestinic molecule [18], and asoprisnil [19] and telapristone acetate
(CDB-4124) [20], both belonging to the SPRMs category, as candidate therapeutic drugs
against uterine fibroids (https://clinicaltrials.gov accessed on 7 April 2021). In particular,
17a-acetoxy-11b-(4-N,N-dimethylaminophenyl)-19-norpregna-4,9-diene-3,20-dione, also
referred to as CDB-2914 and ulipristal acetate (UPA) [21–24], is an SPRM molecule, and
it is very interesting to study because of the high affinity that it has shown in binding
progesterone receptor isoforms A and B [25,26].

Currently, in the international literature, there is a debate about the usefulness and
safety of the use of UPA [27].

A few years ago, we demonstrated that UPA can exert a downregulation effect at
the level of the mRNA of activin A, a pro-fibrotic factor for leiomyoma. The UPA causes
a similar impairing effect also on follistatin (FST), activin receptor type II (ActRIIB) and
activin receptor-like kinase 4 (ALK4) mRNAs [28]. All these molecules together represent
the activin pathway and these results consider activin A and its receptors as UPA targets
and at the same time reinforce the validity of UPA as a treatment for uterine fibroids.

In 2012, the European Medicines Agency (EMA) approved the clinical use of UPA
5 mg, sold under the trade name Esmya (or generic medicines), but limited it to a three-
month period and pre-surgery. However, in 2018, other limitations occurred since cases of
severe liver toxicity had been reported. Following cases of liver damage that even required
transplantation, in November 2020, the EMA recommended limiting the prescription of
UPA 5 mg (Esmya or generic medicines) as much as possible. So, currently, Esmya and
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generic medicines containing UPA 5 mg are only allowed to treat uterine fibroids in pre-
menopausal women for whom surgical procedures (including uterine fibroid embolisation)
are not appropriate or have not worked. On the other hand, these medicines must not be
used for controlling the symptoms of uterine fibroids in the pre-surgical phase. Besides,
it had already been demonstrated that in the women that had been pre-surgically treated
with UPA, the myomas appeared softer and showed less clear cleavage planes. So, the
result was that it was less easy to enucleate if compared to the enucleation modalities of
the myomas belonging to women not pre-surgically treated with UPA [29]. In addition
to all this, after the patients stop taking the UPA, leiomyomas revert [30,31]. Nowadays,
hysterectomy remains the definitive treatment against uterine fibroids. In fact, at the
moment, uterine leiomyomas represent the most common indication for hysterectomy in
the world. However, it represents itself an additional problem concerning uterine fibroids
and also the less invasive myomectomy leads to a serious postoperative morbidity [32,33].
Hysterectomy exerts also a very significant economic impact on the healthcare system all
over the world, reaching an amount almost equal to $2.2 billion/year for the United States
of America alone [34].

According to their anatomical location, uterine fibroids can be classified into three
different types: submucosal fibroids, intramural fibroids and subserosal fibroids [35].

Uterine fibroids present themselves as solid, rounded masses, with an inhomogeneous
eco-structure [36].

From a histological point of view, uterine fibroids can be classified into different types:
usual leiomyoma, cellular leiomyoma that shows increased cellularity [37], lipoleiomyoma
that exhibits adipocytes [38], apoplectic leiomyoma that shows stellate zones of recent
hemorrhage [39] and rare, bizarre leiomyoma [40,41]. Among them, the usual leiomyoma
is the most common histological variant with an incidence equal to approximately 94%
and it is what is commonly referred to as a leiomyoma unless otherwise specified.

Usual leiomyomas are the ones considered a fibrotic disorder [42,43].
The leiomyomas were described as typical fibrotic tissues because they exhibit the up-

regulation of the extracellular matrix (ECM) proteins—above all, collagen 1A1, fibronectin
and versican [44]. In particular, numerous authors showed that the uterine fibroids contain
approximately 50% more ECM than the corresponding myometrium [45–49]. In addition,
the ECM was suggested to represent a reservoir for growth factors, cytokines, chemokines,
angiogenic and inflammatory response mediators, and proteases [43,50–53], which are
all molecules thought to be involved in the initiation and development of the uterine
fibroids [11].

In this regard, a very important matter about uterine fibroids is that their etiopatho-
genesis has not yet been clarified [53].

Nowadays, some major risk factors associated with the uterine leiomyomas are known
and, among them, the following are the most important ones: early menarche, nulliparity,
age (meaning late reproductive years), polycystic ovary syndrome, diabetes, hypertension,
obesity, and heredity [10,50,54]. In addition to this, since black women have a high inci-
dence rate of uterine leiomyomas [4], ethnicity may also be considered as a potential risk
factor for this pathology.

Of the most important factors involved in the pathogenesis of uterine leiomyoma, in
the literature, it has been reported that chromosomal abnormalities, both at the level of
alterations of karyotypic character and at the level of alterations of cytogenetic character,
are present in about 50% of leiomyomas [55–57]. In addition, in the leiomyomas, the
chromosomes 2, 3, 6, 7, 8, 10, 11, 12, 13, 14 and 22 were demonstrated to present genetic
alterations with the genes MED12, HMGA2, HMGA1, FH, BHD, TSC2, PCOLCE, ORC5L,
and LHFPL3 supposed to be mutated in some way [50,58–66]. Mutations at the level of
these genes and, in particular, MED12 mutation, FH inactivation and HMGA2 overexpres-
sion, as well as COL4A6-COL4A5 deletion were confirmed also by studies based on the
modern high-throughput sequencing techniques [67].
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Furthermore, as well as genetic factors, molecules and cellular events belonging to
typical epigenetic pathways, such as several microRNAs, DNA methylation and histone
modification, have also been described to be involved in leiomyomas [68–71]. In particular,
uterine leiomyomas have been shown to present a dysregulation about a lot of different
microRNAs and, among them also let7, miR-21, miR-93, miR-106b, and miR-200 and their
predicted target genes. In addition, the same type of dysregulation has not been found
in the healthy myometrium [68,72–78]. In addition, other potential gene-markers for the
uterine leiomyoma can be provided through the use of gene set enrichment analysis [79].

Moreover, it has been clearly highlighted that estrogens and progesterone, the most
important female hormones, as well as their correspondent receptors, exert a very relevant
effect on uterine leiomyoma growth, and it was shown that, in doing this, the action of these
molecules undergoes the mediation of other molecules such as growth factors, cytokines,
and chemokines [11,80]. Sometimes, in the postmenopausal period, women need hormone
replacement treatment (HRT) based on estrogens and progesterone in order to cope with
some of the typical menopausal symptoms. So, also in postmenopausal women affected
by uterine leiomyoma, estrogens and progesterone due to HRT can exert an important
effect on uterine leiomyoma growth. For this reason, the use of these hormones should be
limited [81].

Epidermal growth factor (EGF), heparin-binding epidermal growth factor (HB-EGF),
platelet-derived growth factor (PDGF), insulin-like growth factor (IGF), transforming
growth factor-alfa (TGF-α), transforming growth factor-beta (TGF-β), vascular endothe-
lial growth factor (VEGF), acidic fibroblast growth factor (acidic-FGF), basic fibroblast
growth factor (basic-FGF), activin and myostatin are the most important growth factors
that mediate the estrogens and progesterone action within the uterine leiomyoma physi-
ology [54,80,82–84]. In addition to this, interleukin (IL)-1, IL-6, IL-11, IL-13, IL-15, tumor
necrosis factor-alfa (TNF-α), granulocyte macrophage-colony-stimulating factor (GM-CSF)
and erythropoietin (EPO) are all cytokines that interact with estrogens and progesterone,
playing an important role in uterine leiomyoma growth [85–88]. Additionally, chemokines,
with their receptors and in particular, macrophage inflammatory protein (MIP)-1α, MIP-1β,
regulated on activation normal T cell expression and presumably secreted (RANTES),
Eotaxin, Eotaxin-2, IL-8, chemokine CC-motif receptor (CCR) 1, CCR3, CCR5, C-X-C
chemokine receptor (CXCR) 1, CXCR2 and monocyte chemoattractant protein-1 (MCP-1)
stimulate the uterine leiomyoma growth after the interaction with estrogens and proges-
terone [88,89].

So, not only were growth factors [54,80,82], cytokines [11], chemokines [89], inflamma-
tory response mediators [90], proteases [43,91–93] and the ECM, in particular as a reservoir
of these molecules [43,50–52], shown to represent important actors in the establishment
and in the growth of uterine fibroids [11], but also genetic alterations [50,55,64,94,95] and
epigenetic mechanisms [69,70] as well as estrogens [96,97] and progesterone [97–104] can
be considered as promoters of fibroid growth (Figure 1).

So far, we have discussed the anatomical environment and the histological features
of the uterine fibroids as well as their incidence, their heavy symptoms, the available
treatments and those still under study, the risk factors and also what is known about their
pathogenesis. In this review, we will continue the discussion, thoroughly summarizing the
role of the inflammatory process in uterine fibroid development and growth with particular
regard towards the importance of the macrophages and the immune response in the uterine
fibroids, trying to contribute to shed light on their etiopathogenesis.

The inflammatory process seems to have a noteworthy role in the establishment of the
uterine fibroids [105]. In fact, we have just mentioned that the leiomyomas were described
as typical fibrotic tissues [44] with a great deal of ECM [45–48].

In general, the fibrotic response arises from the recruitment of inflammatory cells such
as monocytes and macrophages by means of inflammatory signals into the site of injury in
every tissue and the consequent activation of fibroblasts that start producing collagen [106].
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These fibroblasts are usually activated by inflammatory signals and they differentiate
into myofibroblasts. They head the ECM turnover [107], leading to tissue homeostasis
restoration [108,109]. A dysregulation in the myofibroblasts action can generate pathologi-
cal fibrosis [106]. In fertile women, transient inflammation is a physiological and important
process for the correct achievement of menstruation, ovulation, and parturition. An altered
response can produce chronic inflammation in the uterus, ultimately leading to dysregu-
lated tissue repair [90]. In particular, about leiomyoma development and growth, Leppert
and her group suggested a model according to which, after a tissue injury, an abnormal
response to tissue repair could occur, leading to disordered healing [42]. In a leiomyoma,
smooth muscle cells, as well as fibroblasts or stem cells, can gain a myofibroblastic pheno-
type. In a dysregulated process, after myofibroblast transformation, the myofibroblasts
cannot undergo apoptosis with the consequent formation of an altered ECM [30], which is
a distinctive trait of the leiomyomas [44–48]. About this, it was noticed that fibroids exhibit
a remarkable similarity to keloids, especially because of the disordered appearance of ECM
and dysregulation of many genes in the ECM. In fact, microarray experiments have shown
that fibroids possess gene features that resemble keloids [42]. So, fibroids could represent
a disorder of wound healing and could arise in response to dysregulated extracellular
signals as well as keloids [42]. Additionally, myomectomy and caesarean section, which
have already been demonstrated to be causes of uterine rupture, may themselves represent
a kind of damage followed by a wound healing response. In women showing disordered
extracellular signals because of these alterations, a fibroid may develop [110].

2. The Role of Macrophages in Tissue Repair and Fibrosis in Several Organs

Although a lot of different cellular types such as fibroblasts, epithelial cells, endothelial
cells, stem cells, neutrophils, innate lymphoid cells (ILCs), NK cells, B cells and T cells join to
the complex inflammatory response that leads to tissue repair [109], macrophages develop
a key regulatory role in every stage that characterizes the tissue repair and fibrosis [111].
This capability could be due to the macrophages’ highly flexible programming [112]. In
fact, within the injured tissue, the macrophages can be found in several different pheno-
typic states, and this flexibility allows them to perform many functions beginning from
the promotion and resolution of inflammation, including the removal of apoptotic cells,
up to the support of cell proliferation following injury [113]. After tissue injury, through
chemokine gradients and some different adhesion molecules, a lot of inflammatory mono-
cytes and macrophage precursors are recalled from the bone marrow to the injured site.
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These recruited cells outnumber the resident tissue macrophages [114,115]. At this point,
the release in the local tissue microenvironment of cytokines and growth factors represents
the signal for the proliferation of both the recruited and resident macrophages [116,117]. In
addition, in response to these signals, the macrophages also change their aspect in order
to develop their functions [116,117]. In this way, macrophages assume the phenotype
that could be called “pro-inflammatory macrophages” and so they can lead the initial
phase of the response to injury since they represent an important source of chemokines,
matrix metalloproteinases and other inflammatory mediators such as TNF-α [111]. The
inflammatory process in response to injury goes on because of the macrophages’ high
flexibility [112]. In fact, they assume the phenotype that could be called "wound healing
macrophages", which are specialized in the production and consequent secretion of several
growth factors such as PDGF, transforming growth factor-beta 1 (TGF-β1), insulin-like
growth factor-1 (IGF-1) and vascular endothelial growth factor-alfa (VEGF-α) [118–122].
These molecules stimulate cell proliferation and angiogenesis [118–122]. In addition, under
the effect of the soluble mediators produced by the wound healing macrophages, local and
recruited tissue fibroblasts are induced to differentiate into myofibroblasts that drive the
wound contraction and closure especially through the synthesis of extracellular matrix com-
ponents [123] such as collagen 1A1, fibronectin and versican. Wound healing macrophages
develop their regulatory role [111] also towards neighboring parenchymal and stromal cells’
proliferation and expansion, and they can recruit additional stem cell and local progenitor
cell populations in order to make them join to tissue repair in case of severe injury. At
this point, the macrophages again change their aspect, gaining another phenotype, which
can be called "anti-inflammatory macrophages" [124]. Anti-inflammatory macrophages act
in response to several inhibitory mediators such as IL-10 and in turn they release a wide
range of anti-inflammatory mediators such as IL-10 and TGF-β1 and show as cell surface
receptors the proteins programmed death-ligand 1 (PD-L1) and programmed death-ligand
2 (PD-L2), which represent the principal molecules involved in the immune system sup-
pression and in the resolution of the inflammation [125–128] (Figure 2). Therefore, wound
healing is a process that must be tightly regulated, otherwise it may lead to the formation
of chronic wounds that in turn may facilitate the development of pathological fibrosis [129].
The macrophages, with their great flexibility that allows them to adopt different pheno-
types [112,113], could play a unique, important and critical role at each stage of the wound
healing, from the initiation and maintenance up to the resolution of the tissue repair pro-
cess. Different studies have highlighted the macrophages’ great flexibility. In the literature,
this plasticity is often reported as the M1/M2 dichotomy of macrophages. It describes
the different macrophage subtypes that are involved in the tissue repair process. The
M1/M2 dichotomy describes the macrophage subsets showing the M1 subtypes expressing
higher levels of several pro-inflammatory cytokines, such as TNF-α and interleukin-1 beta
(IL-1β) and the M2 subtypes expressing increased levels of anti-inflammatory cytokines,
such as IL-10 and TGF-β [130–132]. Even if this is a widespread nomenclature, it is now
thought that the M1/M2 dichotomy is not sufficient at all to describe the several differ-
ent phenotypes and functions of macrophages in vivo [133], also because both M1 and
M2 markers can often be expressed at the same time [134]. In addition to this, studies
about tissue repair in skeletal muscle showed that in vivo macrophage activation signaling
pathways do not correspond to in vitro M1/M2 ones. Among them, for example, we can
mention the signal transducer and activator of transcription 1 (STAT1)/interferon gamma
(IFN-γ) receptor [135], canonical M2 markers induced by IL-4 [135], the transducer and
activator of transcription 6 (STAT6) in IL-4 signaling [136], the IL-4/IL-13 signaling [137],
and last but not least, hypoxia-inducible factors (HIFs) in M1/M2 gene expression [138]
and in macrophage accumulation [139] pathways. Therefore, it can be affirmed the M1/M2
macrophage dichotomy was conceived by studying macrophages in culture and it is not
suitable in order to describe macrophages in vivo straightforward [140]. The most note-
worthy concept we have to focus on is that both definitions of M1/M2 macrophages and
pro-inflammatory/wound healing/anti-inflammatory macrophages agree with the fact
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that macrophages have a great flexibility so that they can assume several different phe-
notypes [112,113], and this capability may enable them to lead the tissue repair process.
Indeed, something dysregulated such as macrophage proliferation, accumulation and infil-
tration, within the reported macrophage action could lead to uncontrolled repair tissue and
to the consequent pathological fibrosis. Several studies have been carried out in order to
characterize the macrophages’ behavior within the initiation, maintenance and resolution
of the tightly regulated wound healing response in different organs.
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Figure 2. Illustration of the role of the macrophages and their highly flexible programming in tissue repair and fibrosis in
several organs. Macrophages, because of their high flexibility, can play a key regulatory role in every stage that characterizes
the tissue repair and fibrosis from the promotion to the resolution of the inflammation leading to the wound closure.
The figure shows the principal events and principal molecules: chemokines, Matrix metalloproteinases, tumor necrosis
factor-alfa (TNF-α), platelet-derived growth factor (PDGF), transforming growth factor-beta 1 (TGF-β1), insulin-like growth
factor-1 (IGF-1), vascular endothelial growth factor-alfa (VEGF-α), programmed death-ligand 1 (PD-L1) and programmed
death-ligand 2 (PD-L2), interleukin-10 (IL-10) involved in the process, highlighting the different phenotypic states that
the macrophages can assume in the process. The blue net represents the extracellular matrix (ECM) that is produced by
myofibroblasts after that fibroblasts or other cellular types differentiated into them.

3. Macrophages in Uterine Fibroids

As it has been mentioned before, inflammation plays an important role in the patho-
physiology of the uterine leiomyoma [105], which was defined as a typical fibrotic tis-
sue [42,43].

Several studies have highlighted the involvement and importance of the macrophages
in the inflammation and consequent fibrosis that are typical features of leiomyoma tis-
sue [42–48,89,90,105,106].

Through the use of the glycosylated transmembrane glycoprotein antigen (CD68)
that belongs to a family of lysosomal granules [141] as a marker of mature and activated
macrophages, Miura et al. studied the macrophages’ infiltration in different types of uterine
leiomyomas. They demonstrated the myoma nodules and the autologous endometrium of
the submucosal myomas (SMM) and intramural myomas (IMM) show a higher level of
macrophage infiltration compared to the corresponding tissues of the subserosal myomas
(SSM) or to the eutopic endometrium belonging to women without uterine myomas used as
a control [142]. In addition to this, the authors showed a similar pattern also for the MCP-1
concentration. Moreover, MCP-1 concentration was shown to be positively correlated with
the macrophage infiltration in SMM and IMM myoma nodules and endometrium [142]. So,
the overproduction of MCP-1, which is one of the most important chemokines involved in
the monocytes’/macrophages’ migration and infiltration [143], may represent the cause
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of the macrophages’ infiltration in women with SMM and IMM, and this accumulation
of inflammatory macrophages could lead to a negative effect on reproductive outcomes
in women with SMM or IMM [142]. Anyway, the increased infiltration and accumula-
tion of macrophages within some subtypes of fibroid tissue may represent proof of the
macrophages’ importance within leiomyoma pathology.

In support of all this, Khan and colleagues demonstrated that endometria belonging
to women with uterine fibroids undergoing gonadotrophin-releasing hormone agonist
(GnRHa) therapy exhibited decreased values of macrophage infiltration and MCP-1 levels
when compared to corresponding values of macrophage infiltration and MCP-1 levels in
endometria belonging to women with uterine fibroids that had not undergone GnRHa
therapy [144].

On the other hand, a previous study conducted by Sozen highlighted that the my-
ometrium of the women with uterine fibroids taking GnRHa and in particular the en-
dothelial cells of blood vessels in myometrial tissues surrounding the leiomyoma show
higher MCP-1 levels than the myometrium of the women with uterine fibroids not tak-
ing GnRHa [145]. This difference was not accompanied by a significant difference in the
number of tissue macrophages between women who had undergone GnRHa therapy and
women who had not undergone GnRHa therapy [145]. In this study, Sozen and colleagues
expected to detect a macrophage infiltration increase following the MCP-1 increase because
of the GnRHa use, but these results were disproved [145]. It is known that the uterus after
GnRHa exposition shows a reduced arterial blood flow [146,147] and this may impair the
macrophage accumulation, representing the explanation for why a macrophage infiltration
increase does not accompany the MCP-1 increase in the myometrium of the women with
uterine fibroids taking GnRHa [145].

In addition, estrogens and progesterone, which are recognized to be important pro-
moters of the leiomyoma growth [96–104], impair MCP-1 expression [89].

Therefore, the discrepancy between the results obtained by Khan [144] and the results
obtained by Sozen [145] may be due to the use of different tissue types or to the difference
in tissue specificity and number of analyzed samples. The most important point to focus
on is that within the complex network of molecules that are involved in the leiomyomas’
development and growth, MCP-1 can also carry out an important role, taking part in the
regulation of the macrophage infiltration. The MCP-1 regulatory action on macrophage
infiltration may in turn be important for the development of the uterine fibroids. In
addition to this, the cited studies about GnRHa, which is known to be commonly used
for the treatment of uterine myomas, testify in any case that macrophages represent an
aspect to be taken into consideration for the treatment and further clarification of the
etiopathogenesis of uterine fibroids.

In addition, Kitaya and Yasuo have provided further evidence of the involvement
and importance of the macrophages in the pathology of uterine fibroids. They analyzed
the leukocyte density and composition in the human cycling endometrium in women
affected by uterine fibroids. By immunohistochemical analysis, the authors compared en-
dometrium with neighboring nodules with autologous endometrium without neighboring
nodules and with allogeneic endometrium belonging to women without uterine fibroids.
In particular, the macrophage (CD68 positive cells) density is significantly higher in the
endometrium close to the leiomyoma nodules compared to the autologous endometrium
far from the leiomyoma, as well as compared to the allogenic endometrium of women
without uterine fibroids in the mid-to-late secretory phase [148]. The authors reported also
that the endometrium far from the leiomyoma nodules had more macrophages than the
endometrium of women without uterine fibroids in the proliferative and late secretory
phase [148].

In addition, according to the results obtained by Miura et al. [142], the authors high-
lighted that the macrophage density is significantly higher in SMM than in IMM and
SSM [148].
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In addition, Kitaya and Yasuo showed that the whole stromal pan-leukocyte density
is altered in the endometrium containing neighboring nodules of the women affected by
uterine fibroids. Above all, they highlighted that the increased stromal pan-leukocyte
density in endometrium with neighboring nodules during the proliferative phase is largely
due to the increased macrophage density [148]. These findings testify once again that
macrophages represent a very important aspect within the pathology of uterine fibroids.

Another aspect that is important to highlight about the involvement of the macrophages
in uterine fibroids is the GM-CSF expression in leiomyoma and in myometrium. In fact,
this cytokine represents the most important growth factor for macrophage proliferation,
differentiation and functional activation [149].

In addition to this, GM-CSF has been demonstrated to determine the fibrotic reaction
in several tissues [150–154]. In particular, thinking about the association between the over-
expression of TGF-β and the establishment of tissue fibrosis through the stimulation of the
conversion of fibroblasts into myofibroblasts in various sites throughout the body [155–157],
GM-CSF has been shown to be involved in a fibrotic process that includes the accumulation
of α smooth muscle actin-rich myofibroblasts through a mechanism involving TGF-β ex-
pression [150–154,157]. In addition, bearing in mind that it was demonstrated that TGF-β
synthesis and release are increased in uterine fibroids [158], all of this makes GM-CSF one
of the most important cytokines that may be able to play a key role in the initiation and
maintenance of uterine leiomyoma, which is a typical fibrotic disorder [44].

In addition, since GM-CSF is considered to be the most important growth factor for
macrophage proliferation, differentiation and functional activation [149], we could think
that GM-CSF action and macrophage infiltration as they have been previously described
could be interconnected within the development of the uterine fibroid pathology.

Considering the relationship between macrophages and uterine fibroids development,
it is relevant that TGF-β is involved in tissue fibrosis in several sites throughout the
body [155,156], is overexpressed in leiomyomas [158], and at the same time is the most
important growth factor produced by macrophages [159]. In addition, TGF-β contributes
to myofibroblast transformation [159], which represents another important aspect leading
to the development of uterine fibroids [42,53].

It is very important to highlight that macrophages secrete not only TGF-β, which
plays a key role in the progression of the fibrosis [159], but also produce activin A, an
immunoregulator belonging to the TGF-β family [160]. Our group showed that, in pri-
mary leiomyoma cells, activin A acts as a pro-fibrotic factor leading to the expression of
ECM proteins [161] that are upregulated in leiomyoma [44]. In addition to this, we later
demonstrated in leiomyoma that activin A mRNA expression is upregulated by TNF-α [53]
according to the literature, where the same effect is reported also in human bone marrow
stromal cells and monocytes, human bone marrow stromal cell lines, cultured fibroblasts
and keratinocytes [162–165]. The most remarkable aspect about activin A upregulation by
TNF-α is that TNF-α is also mainly produced by macrophages [166] (Figure 3).

Studying leiomyomas, we found, according to the other results reported in this paper,
that macrophage infiltration inside the leiomyoma is significantly higher compared with
autologous myometrium more than 1.5 cm from the leiomyoma [53]. More precisely, by
CD68 staining, our group found that macrophages predominantly localize inside leiomy-
oma and in the myometrium tissue next to leiomyoma. On the contrary, autologous distant
myometrium showed low levels of CD68-positive macrophages [53] (Figure 4a,b). So, these
findings highlight unequivocally the importance of inflammation, and above all, the key
role of the macrophages in the development and growth of uterine fibroids.
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pathology. (b) Enlargement of the detail showing the macrophage density in uterine fibroids pathology. Macrophages
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density is higher also in the endometrium (brown in the figure) next to uterine fibroids than in the autologous endometrium
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Since these results were obtained by studying different histotypes of leiomyomas,
we could add that the reported macrophage localization is valid for both cellular and
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usual leiomyomas with the cellular leiomyoma showing higher levels of CD68-positive
macrophages compared with usual leiomyoma [53].

So, our group proposed a possible phase mechanism for the leiomyoma develop-
ment. According to this mechanism, cellular leiomyoma histotype, as also suggested by
Dixon et al. [54], could be considered as the first step in the tumoral transformation. In
fact, cellular leiomyomas show low levels of the typical ECM proteins. On the other hand,
our group noticed that cellular leiomyomas, in addition to higher levels of CD68 positive
macrophages, also have an increased number of leukocytes and mast cells that are other
types of inflammatory cells [53]. This aspect could represent a response to an inflammatory
stimulus. As a result, these first step cells of the cellular leiomyoma undergo myofibroblast
differentiation with the consequent upregulation of the typical ECM proteins [53]. In fact,
usual leiomyomas that could be considered as the late-phase tumor show a larger amount
of ECM proteins than we observed [53] (Figure 5).
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Figure 5. Illustration of the possible phase mechanism of leiomyoma development proposed by our group. Cellular
leiomyoma is considered as the first step in the tumoral transformation. In fact, cellular leiomyoma shows higher levels of
macrophage (yellow in the figure) infiltration and an increased number of inflammatory cells. This aspect could represent a
response to an inflammatory stimulus that leads some cellular leiomyoma cells to myofibroblast differentiation with the
consequent upregulation of the typical extracellular matrix (ECM) proteins. In fact, usual leiomyoma shows a larger amount
of ECM proteins and low levels of macrophage infiltration. So, usual leiomyoma could be considered as the late-phase
tumor. The blue net represents the typical ECM proteins: collagen 1A1, fibronectin and versican. The red color represents
the uterine fibroids (light red for cellular leiomyoma histotype and dark red for usual leiomyoma histotype). The pink color
represents the myometrium; the brown color represents the endometrium. The blood vessels within endometrium are also
represented (red lines in the figure).

So, the data published by our group provide additional proof of the involvement of
inflammation and the importance of the macrophages’ action in the pathophysiology of
uterine fibroids.

4. Conclusions

About uterine fibroids, whose etiopathogenesis has not yet understood at all, a dereg-
ulated inflammatory process leading to an exaggerated tissue repair may explain the
abundant ECM, a typical feature of the uterine fibroids that, just because of this charac-
teristic, is considered a typical fibrotic tissue. In particular, a key role in this complex
network can be played by the macrophages when a deregulation in their action happens.
In fact, the macrophages are important tissue repair actors by means of their highly flexible
programming and their consequent plasticity. So, during the inflammation process and
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the consequent wound healing that the inflammatory mechanisms lead to, macrophages
have to proliferate and infiltrate within the damaged tissue; then, they assume different
phenotypes and produce molecules that start, drive and finally stop the tissue repair up
to the wound closure. So, there are a lot of critical checkpoints that need to be tightly
regulated. In the uterine fibroids, sufficient proof of deregulated macrophage action was
provided. In fact, increased infiltration and accumulation of macrophages within some
subtypes of fibroid tissue were demonstrated. In addition to this, the importance of cy-
tokines and chemokines such as GM-CSF and MCP-1 for the proliferation and infiltration
of the macrophages in the uterine fibroids was shown. Furthermore, their expression in
leiomyomas has been altered. All this, in turn, has an impact on the molecules that are
secreted by macrophages. Among these molecules, the inflammation mediator TNF-α and
the growth factors activin A and TGF-β can be considered the most important ones because
they are known to be involved in the fibrosis that characterizes the uterine fibroids. In ad-
dition, these molecules, secreted by macrophages, were demonstrated to be interconnected
with each other and with the GM-CSF. In this way, they establish in the uterine fibroids
a complex network that, because of a dysregulation, at one or more levels, may explain
the mechanisms that occur from an excessive wound healing driven by the inflammatory
process to the fibrosis.

Better understanding the process leading to the increased infiltration and accumula-
tion of macrophages in leiomyomas and the molecules involved within the consequent
exaggerated tissue repair that arises from it, may represent proof of the macrophages’
importance for the leiomyoma pathology. All this can also contribute to shed light on
uterine fibroids etiology.

In turn, better understanding the uterine fibroids’ etiology may represent the starting
point to identify possible new therapy targets. This could improve the quality of life of the
women affected by uterine fibroids.

Last but not least, a therapy against this pathology could also bring about better
outcomes for pregnant women affected by this pathology.
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