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Diffuse astrocytoma of (WHO grade II) has a tendency to progress spontaneously to anaplastic astrocytoma (WHO grade III)
and/or glioblastoma (WHO grade IV). However, the molecular basis of astrocytoma progression is still poorly understood. In
current study, an essential initial step toward this goal is the establishment of the taxonomy of tumors on the basis of their gene
expression profiles. We have used gene expression profiling, unsupervised (hierarchal cluster (HCL) and principal component
analysis (PCA)) and supervised (prediction analysis for microarrays (PAM)) learning methods, to demonstrate the presence of
three distinct gene expression signatures of astrocytomas (ACMs), which correspond to diffuse or low-grade astrocytoma (WHO
grade II), Anaplastic astrocytoma (WHO grade III) and Glioblastoma multiforme (WHO grade IV). We also demonstrate a 171
gene-based classifier that characterize the distinction between these pathologic/molecular subsets of astrocytomas. These results
further define molecular subtypes of astrocytomas and may potentially be used to define potential targets and further refine
stratification approaches for therapy. In addition, this study demonstrates that combining gene expression analysis with detailed
annotated pathway and gene ontology (GO) category resources was applied to highly enriched normal and tumor population; it
can yield an understanding of the critical biological mechanism of astrocytomas.

1. Introduction

Astrocytomas (ACMs) are cancers of the brain that origi-
nated in star-shaped brain cells called astrocytes; ACMs ac-
count for roughly 75% of neuroepithelial tumors. Of the
numerous grading systems that have been devised, the most
commonly used system for ACMs is the World Health
Organization (WHO) grading system [1]. The WHO system
assigns a grade from I to IV, with I being the least aggressive
and IV being the most aggressive [2]. The number of col-
lected ACM specimens is relatively low compared with
other tumor collections, and there have been few reports
of in-depth coverage using microarray technology. This
study of ACM gene transcription profiles sets the stage for
further discovery of the basic mechanisms that underlie the
diseased state of ACM, which will help to identify targets
for diagnosis and therapeutic intervention. The raw data
has been deposited in the Gene Expression Omnibus (GEO;

http://www.ncbi.nlm.nih.gov/projects/geo/) so that other re-
searchers have access to it. Our analysis provides novel
insights into differences between normal and malignant can-
cer tissues that may be used in assessing the impact of therapy
on ACM cells. Because WHO grade I ACM often occurs in
children, this study mainly focused on typically adult-onset
ACM. The independent series of 15 ACMs consisted of five
samples each of WHO grades II, III, and IV. In current study,
an essential initial step toward this goal is the establishment
of the taxonomy of tumors on the basis of their gene expres-
sion profiles. We aimed at identifying expression profiles
that differentiate three groups of astrocytic glioma: WHO
grades II, III, and IV. In a novel gene selection approach, we
combined unsupervised statistical analysis with hierarchical
clustering (HCL) [3], an supervised method called PAM [4]
that applies nearest shrunken centroid analysis to identify
correlated groups of genes that distinguish between the var-
ious tumor subtypes. Here, we demonstrate that ACMs can
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be separated according to their gene expression profiles. By
using expression data of the most informative separating
gene clusters, we were successful to construct an almost per-
fect tumor clustering model. Class prediction was performed
by using prediction analysis of microarrays for excel pack-
age that applies nearest shrunken centroid analysis [4] to
determine 37 predictor genes that achieve optimal prediction
accuracy for sample classification. Meanwhile, we have also
applied the gene sets to systems-level pathway analysis and
identified molecular pathways and networks that are dysreg-
ulated between ACM and normal tissues. To build on this
approach, functional enrichment analysis based on BioCarta
and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathways [5, 6] can be used to illustrate causal relationships
between genes (gene products). While gene ontology (GO)
[7] is organized into hierarchical annotations in the con-
text of normal cellular function, the BioCarta and KEGG
database organizes genes (gene products) into pathway reac-
tion maps and functional complexes, including some disease-
specific pathways. Our study provides valuable information
for pharmaceutical screening programs and future cancer
research.

2. Materials and Methods

The mean age of patients was 48.6 years old (range, 18–
64). Fifteen human pathologic ACM specimens and corre-
sponding normal brain tissue samples were obtained from
resected tissues in the Neurosurgery Department of Shanghai
Changzheng Hospital (Shanghai, China) between 2004 and
2006. The normal brain control samples were obtained as
overlying cortex during routine resection of deep inter-
cerebral metastases. All protocols and consent forms were
approved by the hospital’s institutional review board, and
informed consent was obtained from all patients. The patho-
logical diagnoses of the specimens were confirmed by two
senior clinic-pathological experts, Fulin Zhang and Yichang
Yu, at the Department of Pathology, Huashan Hospital, Fu
Dan University (Shanghai, China) before RNA extraction
was performed. Specimens were snap frozen in liquid nitro-
gen and stored at −80◦C. Histological characteristics of tu-
mor samples and clinical disease stage, five WHO grade
II, III, and IV ACMs and one pooled and three additional
normals, are shown in Table 1.

RNA was extracted using Trizol reagent and further
purified using the Qiagen RNeasy Mini Kit according to the
manufacturer’s instructions. RNA quality was assessed by
formaldehyde agarose gel electrophoresis and was quantified
by spectrophotometry. The samples were hybridized to the
Affymetrix Human Genome U133 Plus2.0 GeneChip arrays
according to the Affymetrix protocols. The arrays were
scanned with a GeneChip Scanner 3000. The scanned array
images were processed with GeneChip Operating software
(GCOS v1.3), and the CEL files were extracted for further
analysis. The raw data were deposited in the Gene Expres-
sion Omnibus (GEO, http://www.ncbi.nlm.nih.gov/projects/
geo/) with accession series number GSE19728, consisting of
17 different grades tumor samples plus four normal brain

tissue sample, and GSE21354 including three additional nor-
mal brain tissue specimens the GEO sample names have been
shown in Table 1.

The CEL files from all datasets (newly generated array
data from 15 ACMs, including 5 WHO II, 5 III, and 5 IV
and unmatched pooled normal and 3 additional normal
samples) were imported into the statistical software R
(v2.10.1.) [8] using Bioconductor (v2.5.11) [9]. After pre-
installing two key packages, hgu133plus2cdf (v.2.5.0) and
hgu133plus2probe (v.2.5.0), in R environments, the quality
control of Affymetrix arrays (Affymetrix Hu133plus2.0) was
first performed using the package affy (v 1.24.2) and sim-
pleaffy (v 2.22.0) for Raw CEL files. RNA degradation was
assessed using the function AffyRNAdeg() from the affy
package. We checked the results of quality control imple-
mentation; all the qualities of arrays were pretty satisfied (see
Supplementary Figure 1 in Supplementary Material available
online at doi: 10.1155/2011/245137), then the raw data were
normalized using the package gcRMA [10]. We used the
“affinities” model of gcRMA, which uses mismatch probes as
negative control probes to estimate the nonspecific binding
of probe sequences. The normalized values of expression are
in log2 scale, which attenuates the effect of outliers. The
presence/absence calls provide a statistical measure of the
presence of a transcript within the tested biological sample.
Details of the calculations can be found in the Affymetrix
Microarray Suite User Guide [11]. For the absolute detection
of transcripts (presence or absence calls), the method we
used [12] replaces all MM probe values by a threshold value
which is based on the mean PM value (after gcRMA transfor-
mation) of probe sets that are very likely to have absent target
transcripts. This removes the influence of probe sequence
affinity and results in better performance than the MAS 5
algorithm [13]. In current study, the command mas5calls()
of Bioconductor was used to generate MAS 5.0 P/M/A
calls. Of the resulting output only the presence/absence calls
were extracted and then mapped to the expression values
output from the gcRMA [14]. We then saved the normalized
expression values with the corresponding P/M/A values in
a matrix. This matrix was regarded as data source in TIGR
MeV Version 4-6-01 software tool (http://www.tm4.org/)
[15]. For filter in MeV operation platform, (a) we first
removed a set of probes that were used for quality control; (b)
a matrix was composed of each probe ID, expression value,
and its corresponding sample CALL (CALL: P, present; A,
absent, M, medium); the following formula was used to filter
the redundant probes,

value = N(P)
N(P) + N(A) + N(M)

× 100%, (1)

where N(P), N(A), N(M) stand for the number of P, A, M,
respectively; if the value ≤10%, the corresponding probe ID
would be excluded. Briefly, the probe with P/(P+M+A)% ≤
10 was removed.

Analysis of variance (ANOVA) [16] is a technique that
assesses whether a set of measurements from two or more
experimental groups indicates, given observed variance, that
the groups are different. For microarrays the measurements
are the expression levels of one transcript, and the groups
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Table 1: Patients’ characteristics.

No Array ID GEO No Title Histological diagnosis Age/Gender WHO grade

1 190-063A GSM492652 Astrocytomas T2-1-Signal Diffuse or low-grade astrocytoma 72, M II

2 0286-29 GSM492653 Astrocytomas T2-2-Signal Diffuse or low-grade astrocytoma 32, M II

3 0286-71 GSM492654 Astrocytomas T2-3-Signal Diffuse or low-grade astrocytoma 73, M II

4 0286-98 GSM492655 Astrocytomas T2-4-Signal Diffuse or low-grade astrocytoma 45, M II

5 0286-86 GSM492656 Astrocytomas T2-5-Signal Diffuse or low-grade astrocytoma 65, M II

6 0286-94 GSM492657 Astrocytomas T3-1-Signal Anaplastic astrocytoma 18, F III

7 0286-95 GSM492658 Astrocytomas T3-2-Signal Anaplastic astrocytoma 64, F III

8 0190-068 GSM492659 Astrocytomas T3-3-Signal Anaplastic astrocytoma 28, M III

9 0286-27 GSM492660 Astrocytomas T3-4-Signal Anaplastic astrocytoma 45, M III

10 0286-88 GSM492661 Astrocytomas T3-5-Signal Anaplastic astrocytoma 54, M III

11 0190-031B GSM492662 Astrocytomas T4-1-Signal Glioblastoma multiforme (GBM) 68, M IV

12 0286-83 GSM492663 Astrocytomas T4-2-Signal Glioblastoma multiforme (GBM) 62, M IV

13 0286-89 GSM492664 Astrocytomas T4-3-Signal Glioblastoma multiforme (GBM) 80, M IV

14 0286-92 GSM492665 Astrocytomas T4-4-Signal Glioblastoma multiforme (GBM) 78, F IV

15 0286-90 GSM492666 Astrocytomas T4-5-Signal Glioblastoma multiforme (GBM) 69, M IV

16 Normal Plus1 GSM525014 Normal Normal brain tissues Normal

17 Normal Plus2 GSM525015 Normal Normal brain tissues Normal

18 Normal Plus3 GSM525016 Normal Normal brain tissues Normal

19 0190-normalA GSM492649 Normal Pooled normal tissues Normal

correspond to the experimental sample groups. The most
basic type of ANOVA is a one-way ANOVA. In a one-way
ANOVA, the sample groups are stratified along a single
experimental variable. Currently, only one-way ANOVA is
implemented in TIGR MeV (V 4-6-01) software tool. The
user is initially required to enter the number of groups in
our study, the numbers are set to 4 (ACMs II, III, IV, and
normals). We then fit one-way ANOVA models with separate
means for each of the four groups. Standard Bonferroni
correction is calculated for each gene, and a gene is con-
sidered significant if P value associated with its Standard
Bonferroni correction is smaller than the critical P value
(0.01). Currently, P values are computed only from the
Standard Bonferroni correction. We performed standard
Bonferroni correction for each of the null hypotheses that
the means of the average intensities of the four groups
were equal; the alternative hypothesis was that at least one
mean was different. After one-way ANOVA processing, the
significance probe sets (saved as new original data source)
were performed by HCL in TIGR MeV software tool and
principal components analysis (PCA) [17] using the R
function prcomp (. . ., scale=TRUE) of Bioconductor version
2.2. HCL was performed using the Euclidean distance and
the average linkage algorithm.

For all kinds of data mining algorithms, we performed
unsupervised data mining including HCL; on the other
hand, for the supervised mining method, we chose predic-
tion analysis of microarrays (PAM) [4] for class predication
of all samples. The filtered dataset was separated in learning
dataset including two normal samples, three WHO grade II,

III, and IV ACMs, and test datasets consisting of two normal
samples, two WHO grade II, III and IV ACMs using 10-
fold cross-validation. One-way ANOVA was implemented
to define the significant probes in TIGR MeV (V 4-6-01)
software tool all the parameter settings and performances
referred to the preceding descriptions. Class prediction with
10-fold cross validation using PAM for excel package was per-
formed for the 996 significant probes exported from TIGR
MeV. (http://www-stat.stanford.edu/∼tibs/PAM/) (version
2.212) [4]. In PAM operation, with threshold (Δ) of 41.0,
we built a classifier containing 171 probes which gave “zero”
misclassification error (refer to Supplementary Figure 2);
the classifier generated was applied to the test data which
is matrix data consisting of aforementioned 996 significant
probes and corresponding expression values in the test
datasets.

The differentially expressed genes (DEGs) output from
one-way ANOVA performance. All DEGs were first distrib-
uted for functional profiles using Gene Ontology terms
including biological process, cellular component, and molec-
ular function (http://david.abcc.ncifcrf.gov/) [18], with hy-
pergeometric distribution [19] and FDR correction param-
eter settings [20]. The three category-annotated files con-
taining the gene annotations and categories of biological
process, cellular component, and molecular function, were
exported using DAVID online tools [20]. In each file, the
GO terms in each annotated category with corrected P values
(expanded) <0.05 were collected. Unannotated genes were
excluded. The GO database was updated as of July 1st, 2009.
Two databases, BioCarta and KEGG, were used to identify

http://www-stat.stanford.edu/~tibs/PAM/
http://david.abcc.ncifcrf.gov/


4 Comparative and Functional Genomics

significantly altered pathways. Dys-regulated pathways were
identified using the DAVID system [18, 21] by means of
mapping the DEGs generated by one-way ANOVA into the
BioCarta and KEGG databases. A P value for each pathway
was obtained using the hypergeometric test described by
Zhang et al. [22].

3. Results

We analyzed the expression of 54,676 probe IDs using
Affymetrix HU-133PLUS 2.0 GeneChip microarrays for 15
ACM tissue samples consisting of five each of grade II,
III, and IV tumors and four normal tissue specimens. The
quality control was implemented for the raw data after
normalization. Basic quality control for Affymetrix array
consists of checking for RNA degradation and examining the
expression for control genes, scaling factors, percentage of
present genes, and the average background. Supplementary
Figures 1(a) and 1(b) show the general quality control
statistics and RNA degradation of all arrays; the information
in Supplementary Figure 1 explicitly illustrates that the
quality of all those arrays is completely acceptable.

3.1. HCL and PCA. After gcRMA normalization and filters,
the remaining 32,095 probes were performed using one-
way ANOVA, and then the 4015 probes left were executed
by PCA, HCL, and class prediction (see Methods and
Materials). The dendrogram and heatmap (Figures 1(a) and
1(b), resp.) from hierarchal clustering and two (2D plot
Figure 1(c)) and three (3D plot Figure 1(d)) main principal
components from PCA analysis illustrate that ACMs and
normal tissue samples can be almost perfectly separated
according to their pathological stages.

We used a HCL and PCA algorithm to study the changes
in the ACMs on a genome-wide level. The resultant data
are shown in Figure 1. In Figure 1(b), each row represents
the expression levels of a particular gene across all samples,
and each column represents the expression level of all of the
genes tested for each sample. At a glance, our genome-wide
level analysis showed that the ACM samples were grouped
into one cluster, whereas the normal control samples were
clustered separately. This shows that genome-wide transcript
profiling can be used to distinguish ACM from normal
tissue. Furthermore, within the cancer cluster, tumors from
a particular pathologic grade or clinical stage were also
clustered reliably with other tumors of the same grade or
stage, indicating that there is significant molecular profile
among tumors classified within a particular pathologic
grade or clinical stage (Figures 1(a) and 1(b)). The tumor-
tissue cluster consists of two subbranches, one is only
WHO grade II cluster and another includes WHO III
and WHO IV clusters. Multidimensional scaling using the
first two (Figure 1(c)) and three (Figure 1(d)) principal
components, a linear projection method that reduces the
complex dimensionality of microarray data to create a
three-dimensional plot that visualizes the relatedness of the
tumors, was then used to test whether the above subsets
could be used to distinguish WHO II, III, and IV tumor and

normal brain. This analysis showed a clear separation of all
three groups based on these genes. In general, the analysis
of HCL and PCA (Figure 1) explicitly indicates that classi-
fication of ACM on the basis of genome-wide level is com-
pletely consistent with clinical stages, which is an inspiring
result.

3.2. ACM Classification. We applied a supervised analysis
using “nearest shrunken centroid classifier” and the PAM for
excel package (version 2.212). As Supplementary Figure 2
shows, the threshold (Δ) of 41.0 was chosen as arguments,
we built a classifier containing 171 genes which gave mis-
classification error = 0 (Supplementary Figure 2). We then
used this classifier to predict the subtypes of the 6 tumors
and 2 normal samples analyzed in this study. As Table 2 and
Figure 2 show, the results of predication are in agreement
with clinical pathological classification. In order to gain the
marker genes of different pathological grade of ACM, we
further run listgenes button with threshold = 41.0 in PAM for
excel package. As a result, 12 genes for grade II, 12 genes for
grade III, and 13 genes for grade IV (Table 3) were selected
as markers to distinguish different grade pathological tis-
sues, excluding the 132 genes referred to as normal tissue
markers.

3.3. GO Categories. Similarly, after gcRMA normalization
and filtering and one-way ANOVA procedures, the 4015
probes left were mapped to 2649 unique gene symbols,
and those genes were further analyzed using DAVID system
(parameter settings, refer to Methods and Materials) (http://
david.abcc.ncifcrf.gov/). The significantly overrepresented
GO terms (corrected P values< 0.5 and no gene>10) are
shown in Supplementary Table 1. In the cellular component
category, 19 GO terms were significant, including extrinsic
to membrane, endomembrane system, cell junction, nuclear
lumen, chromatin remodeling complex, integral to organelle
membrane, intrinsic to organelle membrane, and plasma
membrane part. Most of these were enriched in the “core
dataset” membrane at the same significance level. In the
molecular function category, 17 GO terms were enriched, in-
cluding enzyme binding, metal ion binding, zinc ion bind-
ing, cation binding, Ras GTPase binding, transition metal
ion binding. The predominant terms related to biological
processes consisted of intracellular signaling cascade, positive
regulation of apoptosis, and positive regulation of program-
med cell death.

3.4. Dysregulated Pathways. The significance of enrichment
from one-way ANOVA implementation was calculated by the
hypergeometric test with microarray type Affymetrix HU-
U133-PLUS-2. 19 dysregulated pathways with more than five
DEGs and with P < 0.01 in Biocarta database and in the
KEGG data base were identified using DAVID (Supplemen-
tary Table 2). The five most significant BioCarta pathways
were first multivalent nuclear factor, FAS signaling pathway
(CD95), p38 MAPK signaling pathway, control of skeletal
myogenesis by HDAC and calcium/calmodulin-dependent
kinase (CaMK), role of BRCA1, BRCA2, and ATR in cancer
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Figure 1: The exhibition of results of HCL and PCA. Hierarchal clustering: the analysis was performed using the Euclidean distance and the
average linkage algorithm; principal component analysis with scaling. (a) dendrogram plot: the astrocytomas tissue group and normal-tissue
group were separated obviously in the top node; tumor node is composed of two branches, one is just WHO II grade, and another includes
WHO III cluster and WHO IV cluster; (b) heatmap plot: each column represents the expression levels for all genes in a particular sample,
whereas each row represents the relative expression of a particular gene across all samples. The expression level of any given gene in any given
sample (relative to the mean expression level of that gene across all tissue samples) is reported along a color scale in which red represents
transcriptional upregulation, green represents downregulation, and the color intensity indicates the magnitude of deviation from the mean;
(c) the two main principal components 2D-plot; (d) the three main principal components 3D-plot. In Figures 1(c) and 1(d): different colors
stand for different pathological stages, Green, blue, yellow, and red represent normal, II, III, and IV grade, respectively.
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Figure 2: Estimated probabilities for the cross-validation (a) and test data (b). Samples are partitioned by the true class (a) and the predicted
class (b). All 11 of the training samples and all 8 of the test samples known to be astrocytomas are correctly classified.

Table 2: Actual and predicted classification.

Sample labels Normal plus2 Normal plus3 II-86 II-98 III-84 III-95 IV-90 IV-92

Predicted class
labels

Normal Normal Stage-2 Stage-2 Stage-3 Stage-3 Stage-4 Stage-4

Normal 1 1 0 0 0 0 0 0

Stage-2 0 0 1 1 0 0 0 0

Stage-3 0 0 0 0 1 1 0 0

Stage-4 0 0 0 0 0 0 1 1

susceptibility. The top five significant dysregulated path-
ways from the KEGG database were pathways in cancer,
mitogen-activated protein kinase (MAPK) signaling pathway
(Figure 3), inositol phosphate metabolism, dilated cardiomy-
opathy, focal adhesion, calcium signaling pathway.

4. Discussion

Although microarray technology is now available to many
researchers, methods for evaluation and interpretation of
microarray data are still evolving. To date, most microarray
studies presented from clinical settings concentrated on
classification and/or pattern recognition for discrimination
among different tumor types or subgroups. Here, we gener-
ated expression profiles of 15 tumors using HG-U133plus2.0
chips (Affymetrix) to characterize the astrocytomas tran-
scriptome comprising the clinical stages. We focused on
molecular definition of clinical and biological subgroups
and the identification of molecular transcription-level gene
signatures of astrocytomas.

We used a HCL and PCA algorithm to study the changes
in gene expression in the ACMs on a genome-wide level.

Consequently, our analysis showed a clear separation of all
three groups based on these genes, which suggest that there
are classable differences underlying transcriptional level of
genes amongst tissue-type categorization of astrocytomas.
Fortunately, we are successful to classify accurately the ACMs
into three subgroups, WHO II, III, IV, by PAM method and
detect the marker genes aiming at the different pathological
stages of ACM (Table 3). It is interesting to compare our
list of 37 genes with genes that are presently considered to
be diagnostic for ACMs. In the future research, several gene
products will be measured by immunostaining and PCR
to distinguish he ACMs from each other: 12 upregulated
genes including gene C12orf39 are specific for WHO II; 8
upregulated genes and 4 downregulated genes are specific
for WHO III, and 13 upregulated genes are specific for
WHO IV. The data are displayed in Table 3 to demonstrate
their shortcomings in comparison to the genes identified by
nearest shrunken centroids.

We further analyzed the gene expression profiling of
ACMs using GO category and pathway using Biocarta and
KEGG database. The dys-regulated pathways and GO terms
implicated in ACMs were reported. In the dys-regulated
pathways implicated in ACM, inositol phosphate metabolism
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Table 3: The marker genes of three different grades of ACM.

Gene symbol II-astro score
III-astro

score
IV-astro score Normal-score

II-mean
(log base 2)

III-mean
(log base 2)

IV-mean
(log base 2)

Normal mean
(log base 2)

EPHB1 15.4462 0 0 0 6.869894 2.55495 2.65409 2.72811

LOC732229 13.8658 0 0 0 5.460512 2.59371 2.77408 2.26366

C12orf39 8.5766 0 0 0 5.361751 2.238085 2.58682 2.48695

MARVELD3 7.8886 0 0 0 6.800398 2.37729 2.86839 2.39552

LOC283677 4.4758 0 0 0 3.883122 2.826663 2.71392 2.8898

C20orf42 3.5577 0 0 0 7.627308 2.859789 2.4558 2.52664

SPTLC3 3.2679 0 0 0 4.01698 2.255256 2.30132 2.59188

KCNQ1OT1 2.9128 0 0 0 4.103731 2.338234 2.2464 2.26363

FLJ21062 2.1167 0 0 0 4.753168 2.238085 2.48495 2.26875

ATP13A5 1.9707 0 0 0 3.214755 2.238085 2.2464 2.43345

PDXDC1 1.3847 0 0 0 3.134729 2.25661 2.26636 2.26363

CNNM2 0.8081 0 0 0 3.148803 2.27347 2.6133 2.54342

ZBTB39 0 15.0318 0 0 4.173501 6.19055 4.6856 4.68794

C6orf89 0 11.2219 0 0 2.621672 4.699428 2.91788 2.30613

LOC116236 0 11.0126 0 0 2.254329 4.397317 2.72612 2.44326

FKHL18 0 10.2107 0 0 2.258635 3.994112 2.2464 2.6121

CTRL 0 10.0666 0 0 2.526428 3.937424 2.31851 2.58541

TIRAP 0 9.5523 0 0 2.324936 4.216794 2.2464 2.75954

NEUROG1 0 2.5236 0 0 2.258056 3.768388 2.64751 2.27475

TMEM44 0 0.4603 0 0 2.315798 3.374982 2.45605 2.51802

RPUSD1 0 −0.647 0 0 4.034009 2.703442 3.84208 4.14466

DHRS7 0 −2.0711 0 0 3.425335 2.573317 3.60534 4.03533

AKAP7 0 −2.6126 0 0 4.723465 2.652648 5.11056 3.7332

PDE3B 0 −4.2169 0 0 5.989233 4.535432 6.10718 6.31594

C20orf160 0 0 14.9825 0 2.523126 2.790445 4.41487 2.27477

PKMYT1 0 0 11.89 0 2.644079 2.486864 3.84824 2.26751

TRPV2 0 0 10.5089 0 2.397686 2.732524 4.5048 3.31894

LEFTY2 0 0 5.3507 0 2.231583 2.258491 5.56688 2.28191

C20orf77 0 0 5.1848 0 2.333998 2.404051 3.48131 2.3379

MOBKL2C 0 0 3.8936 0 2.517987 2.58549 3.86723 2.45653

STAC 0 0 2.9965 0 2.275399 2.238151 6.32448 2.78522

GGA3 0 0 2.8351 0 2.295872 2.433914 3.46887 2.26651

VAV1 0 0 2.1584 0 2.396392 2.515654 4.53627 2.34353

TXNRD2 0 0 1.3886 0 2.582906 2.358745 3.38602 2.41848

SP100 0 0 0.9134 0 2.385938 2.339246 3.58699 2.37374

LCP2 0 0 0.7656 0 2.268675 2.292975 3.62601 2.88405

RHEB 0 0 0.6002 0 2.254732 2.244571 3.16583 2.31595

The first column lists the marker genes for different ACM WHO grades; the scores from 2th to 5th columns suggest the estimates of the class probabilities by
PAM [4], which are similar to that used in linear discriminant analysis (LDA); the means from 6th to 9th columns represent the average values of log (base 2)
gene expression. Bold indicates a marker gene of one WHO grade ACM relative to other WHO grades which are overexpressional; italic indicates those that
are underexpressional.

was reported to be involved in astrocytomas [23]. Wang
et al. [24] demonstrated that p125 focal adhesion kinase
(p125FAK) is a cytoplasmic tyrosine kinase that is activated
upon engagement of integrin cell adhesion receptors and
initiates several signaling events that modulate cell function

in vitro [24]. A recent report suggested that the communica-
tion pathway has received utmost attention since it is known
that astrocytic calcium signals can be induced by neuronal
stimulation and can be communicated back to the neurons
to modulate synaptic transmission [25] The current study
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Figure 3: MAPK signaling pathway. Red stars marks indicate dysregulated genes.

represents the first effort to simultaneously compare the
transcriptional profiles of highly enriched ACMs and normal
tissues from a variety of patients using modern microarray
technology. The comparison of expression patterns of ACM
and normal tissues enhanced our ability to identify genes
and pathways that are disrupted in ACM tumor tissue. This
analysis provides critical insights into the differences between
normal and malignant cancer tissue populations that may be
used for assessing therapies targeting ACM.

Analysis of specific cellular processes and pathways with-
in the different transgenerationally altered gene sets is shown
in Supplementary Table 2. The pathways containing the
highest numbers of affected genes are listed. The mitogen-
activated protein kinase (MAPK) signaling pathway was
affected in all of the altered gene sets (Figure 2). MAPK sig-
naling is responsive to a large number of regulatory factors
[26]; MAPK signaling pathways are evolutionarily conserved
in eukaryotes and are involved in many cellular processes,
including growth, differentiation, apoptosis, and the im-
mune response [27]. These pathways feature a conserved sig-
naling cascade downstream of small GTPases of the Ras and
Rho families. The cascade consists of a MAPK kinase kinase
kinase, which phosphorylates and activates a MAPK kinase
kinase, which then activates the MAPK by phosphorylation

on Thr and Tyr residues within a conserved motif located
in the kinase activation loop [27]. A considerable number
of studies have demonstrated the dysregulation of MAPK
signaling in a variety of cancers [28]. For example, Bakin
et al. [29] showed that MAP kinase activation correlates with
the progression to advanced hormone refractory disease in
patient samples and that stable expression of Ras effector
loop mutants that activate the Ras/MAP kinase pathway is
sufficient to reduce the androgen requirement of LNCaP
prostate cancer cells for growth, prostate-specific antigen
expression, and tumorigenicity [29]. A recent report by
Zafon and Obiols [30] showed that constitutive activation
of the MAPK signaling pathway is a major event in the pro-
gression of papillary thyroid carcinoma [30]. Mizoguchi
et al. [31] found that MAPK signaling was correlated with
malignant astrocytic gliomas [31]. The results of our analysis
suggest that this pathway is dysregulated in ACM and may
contribute to the pathogenesis of ACM.

5. Conclusion

There are an abundance of data on the gene expression pro-
files of normal and ACM tissue. A few studies have recently
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been published that aimed to detect molecular markers to
distinguish the different grade ACMs. In our study, the
method of nearest shrunken centroids was successful in
finding genes that accurately predict classes. The method
found a set of 37 genes that was able to assign ACMs to
one of three classes, WHO II, III, and IV ACMs, with 100%
accuracy. The success of our methodology has implications
for improving the diagnosis of cancer. The method efficiently
finds and ranks genes that can distinguish one type of tumor
from another. Ultimately, it may be used to search for genes
that are predictive for response to chemotherapy. For ACMs,
the predictive genes are attractive candidates for raising anti-
bodies suitable for immunostaining. Immunohistochemistry
has an advantage for analyzing difficult specimens, because
it allows the pathologist to localize the stain to tumor cells.
In addition, our results suggest that RNA-based diagnostic
tests may soon become feasible, based on either small-scale
microarrays or quantitative PCR.

In addition, we performed clustering and classification of
GO categories and dysregulated pathways on the basis of gene
expression in ACM versus normal brain tissue. According
to the microarray-wide gene level, we first reported that
categorization of ACMs by gene expression using HCL, PCA,
and PAM is almost completely in agreement with clinical
pathological stages. This study sets the stage for the further
discovery of basic mechanisms that underlie a diseased state
of astrocytoma and will be useful in targeting genes for
diagnosis and therapeutic intervention.

Comparing the expression signatures of ACM from dif-
ferent grades (II, III, and IV) of ACM patients to that of
normal tissue, we identified the DEGs of ACMs, on the basis
of which, GO terms and dysregulated pathways implicated in
astrocytomas have been identified and profiled. Supplemen-
tary Table 2 summarizes the top dysregulated pathways by
P value from the KEGG and BioCarta databases and shows
the number of genes referenced by the KEGG and Biocarta
pathways and the numbers of genes that were found in
our data set by one-way ANOVA analysis. For each KEGG
or Biocarta pathway, an unbiased systems-level pathway
analysis was implemented by DAVID. The P value of each
pathway reflects the significance of pathway dysregulation.
These pathways, such as MAPK signaling, were identified
as significant. The DEGs were effectively categorized by GO
terms between ACM and normal tissue samples.

The use of pathway analysis and GO categories to derive
gene signature networks has several advantages. First, it
allows a transition from biological function at the molecular
level to a more global, systems approach to disease and
biological processes. Second, it identifies key regulators and
transcription factors that might not be identified by microar-
ray technology alone. Third, it permits further interpretation
of gene expression data by providing information on protein-
protein interactions, metabolic, signaling, and transcription
regulatory networks. This paper thus provides a novel global
view of the differences between ACMs and normal tissue at
the transcriptional level. Further investigation and validation
by experiments should be targeted to the processes that have
been identified to play key roles in metabolic and signaling
pathways in ACM. The raw data has been deposited in GEO

(http://www.ncbi.nlm.nih.gov/projects/geo/) so that other
researchers can have access to this important resource.
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